Algorithmen im Chip-Entwurf 2

Kompaktierung, Schaltungsdarstellungen und Timing-Analyse

> Andreas Koch FG Eingebettete Systeme und ihre Anwendungen TU Darmstadt

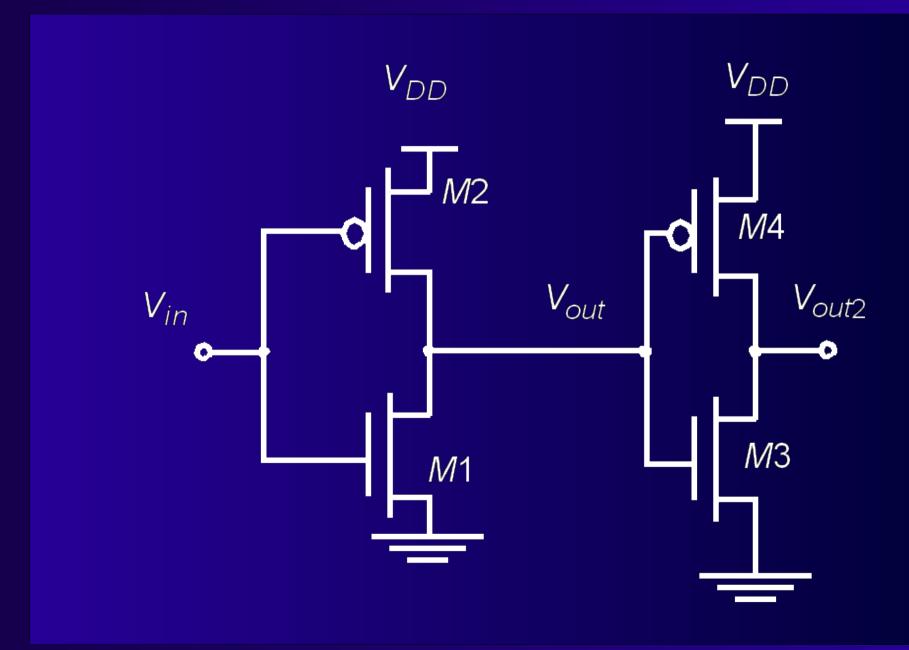
Organisatorisches

- Vorgehensweise
 - Anmeldebögen
- Wichtige Spalten ganz rechts: Ankreuzen
 - IV 4 SWS
 - Sie wollen nur das ganze Programm
 - ◆ Falls Sie keinen Platz bekommen, vertagen Sie sich
 - IV 4 SWS / Fallback VL 2 SWS
 - ◆ Sie versuchen einen Platz zu bekommen
 - ◆ Falls Sie keinen kriegen, hören Sie nur die VL
 - VL 2 SWS
 - Sie wollen ohnehin nur die VL hören
 - Gar nix
 - Sie setzen in diesem Durchgang aus

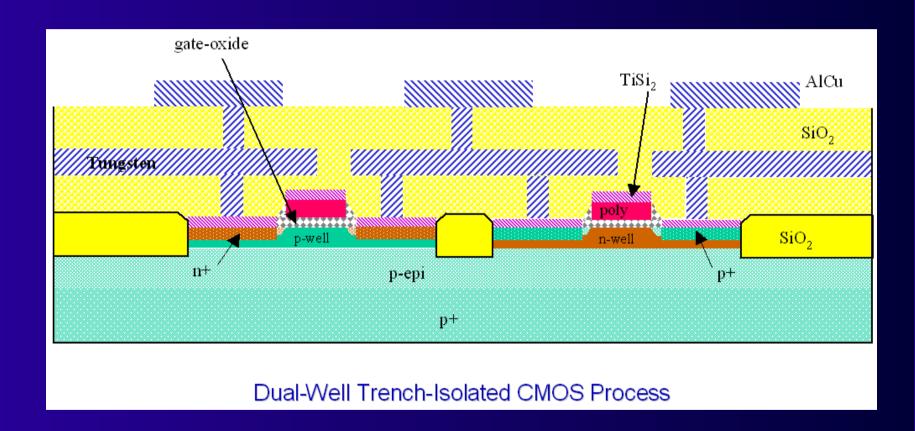
Übersicht

- Grundlagen von VLSI-Chips
- Kompaktierung
 - Längste Pfade
- Datenstrukturen für Schaltungen
- Timing-Analyse
- Zusammenfassung

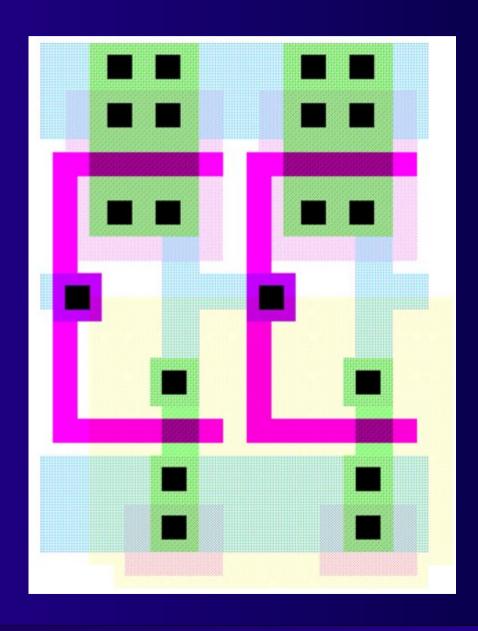
Transistorschaltungen



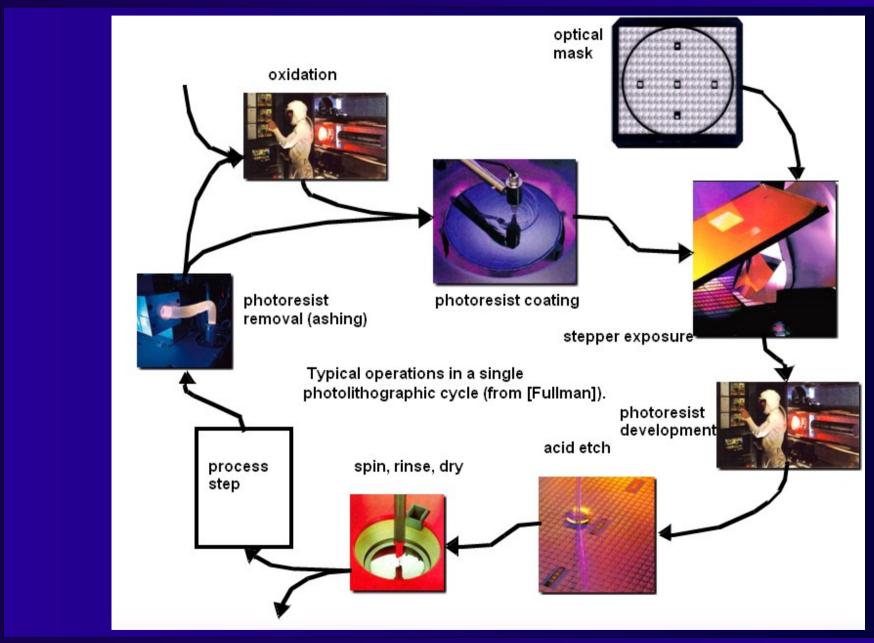
Seitenansicht durch Chip



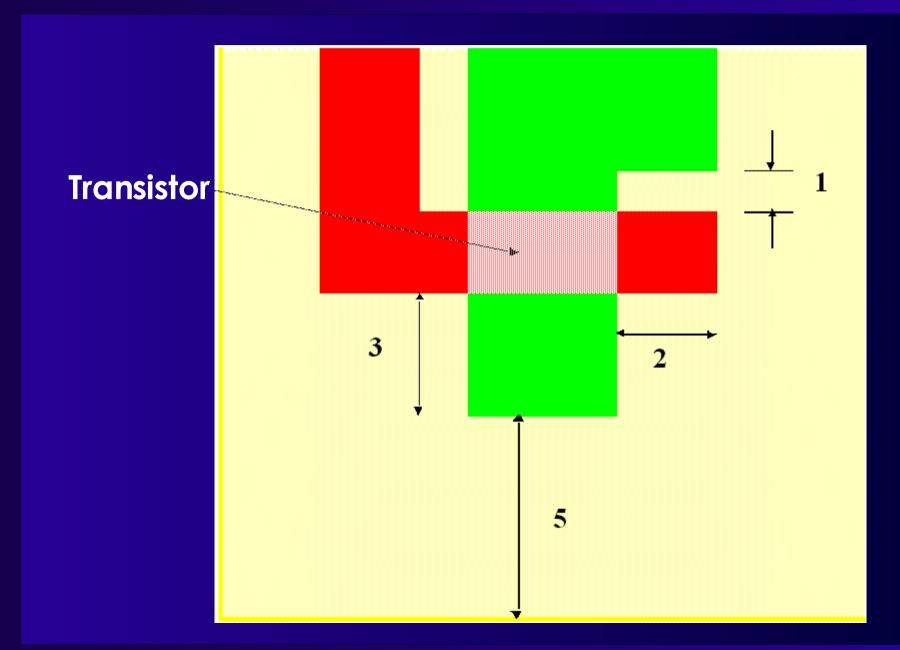
Layout-Sicht



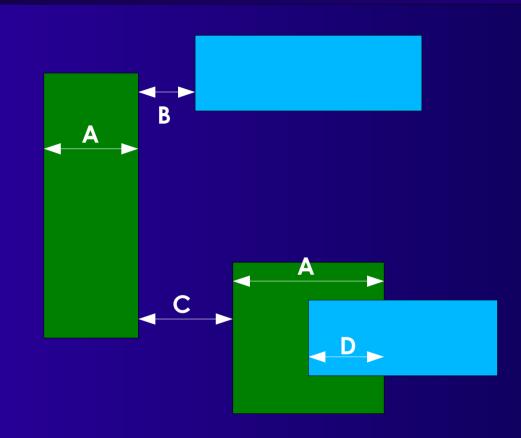
Fertigung



Entwurfsregeln 1



Entwurfsregeln 2



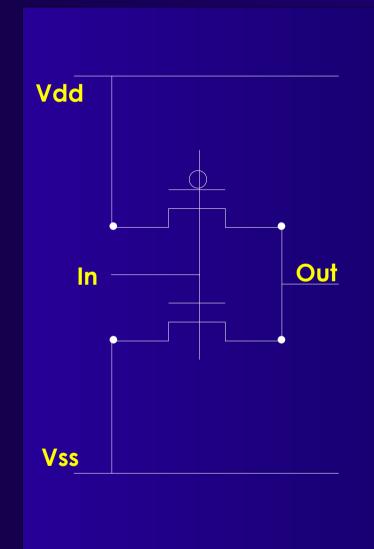
- A minimale Breite
- B minimaler Abstand (L1-L2)
- C minimaler Abstand (L1-L1)
- D minimale Überlappung

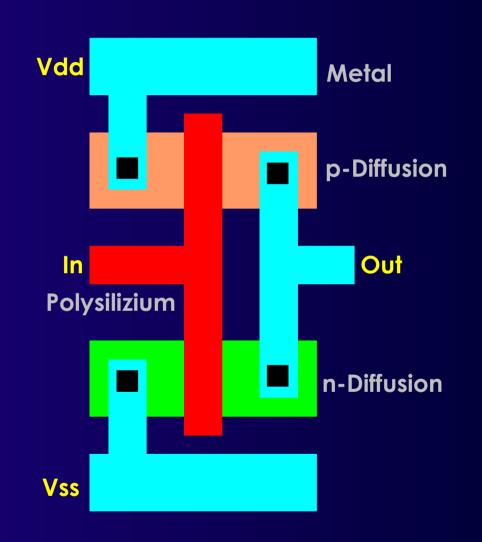
- Bei ASIC-Layouts
 - Grundlage f
 ür erfolgreiche Fertigbarkeit
 - Von "Technologen" erarbeitet

Symbolisches Layout

- Kein vollständiges Layout
 - Keine absoluten geometrischen Angaben
- Stattdessen
 - Symbole für Elemente
 - ◆ Transistoren, Kontakte
 - Für Elemente noch variabel
 - ◆ Länge, Breite, Layer
 - Einige Angaben fehlen vollständig
 - n- und p-Wells (irrelevant für Funktionalität)
 - Automatisch berechenbar

Symbolisches Layout

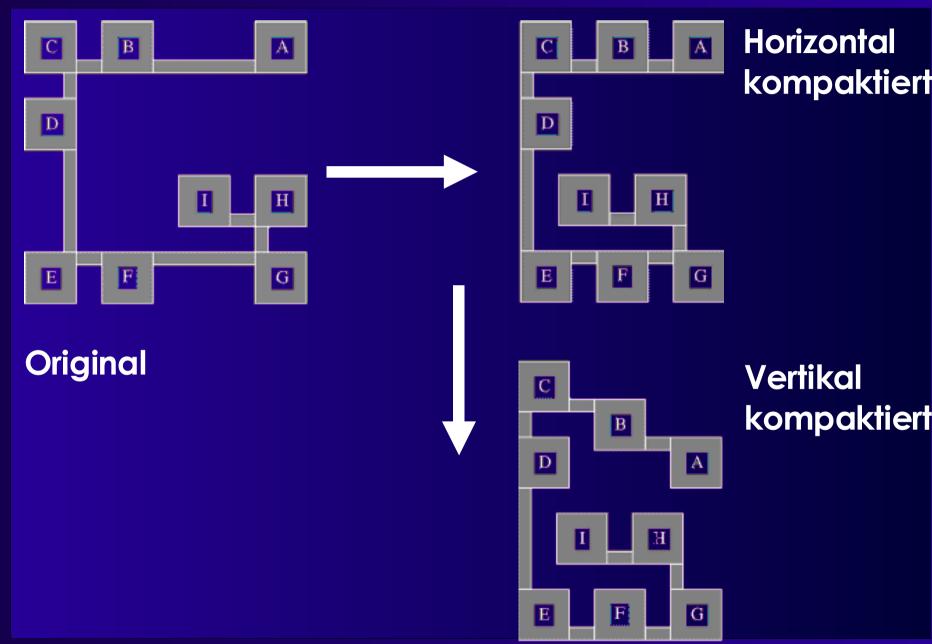


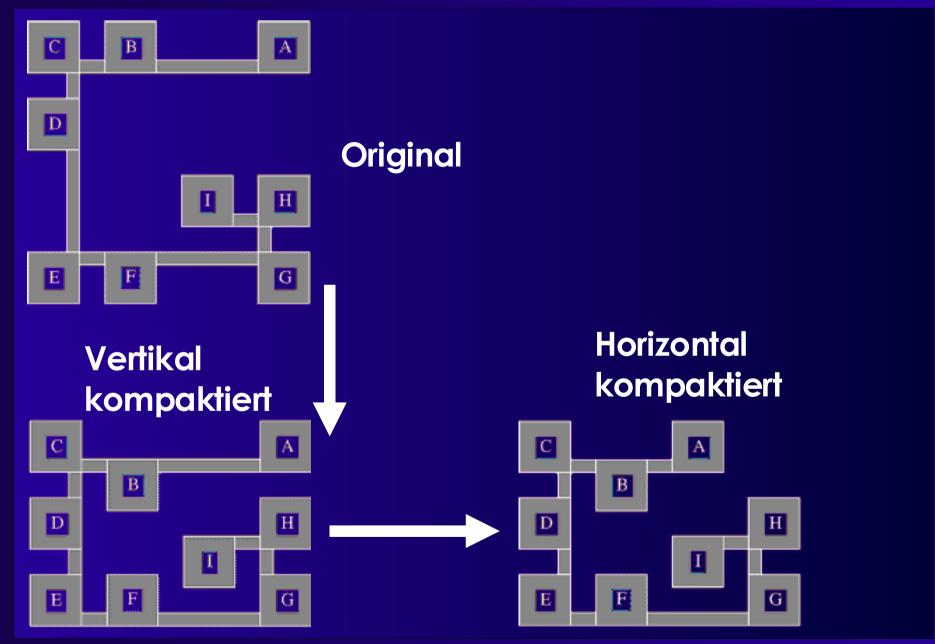


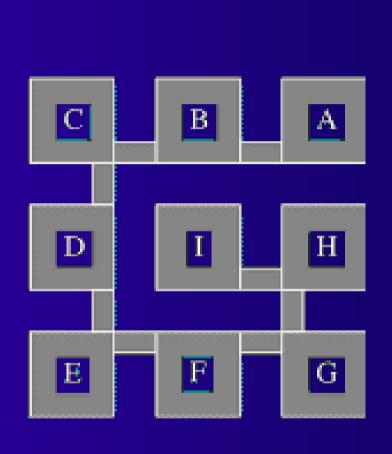
- Komprimieren/Expandieren von Layouts
 - Unter Beachtung der Design-Rules
- Anwendungsgebiete
 - Layout-Compilierung
 - Von symbolischen in geometrische Layouts
 - Flächenminimierung
 - Von bestehenden Layouts
 - Korrektur
 - ◆ Entfernung von Entwurfsregelverletzungen
 - Skalierung
 - Portierung eines Layouts auf andere Technologie

Vorgehensweise

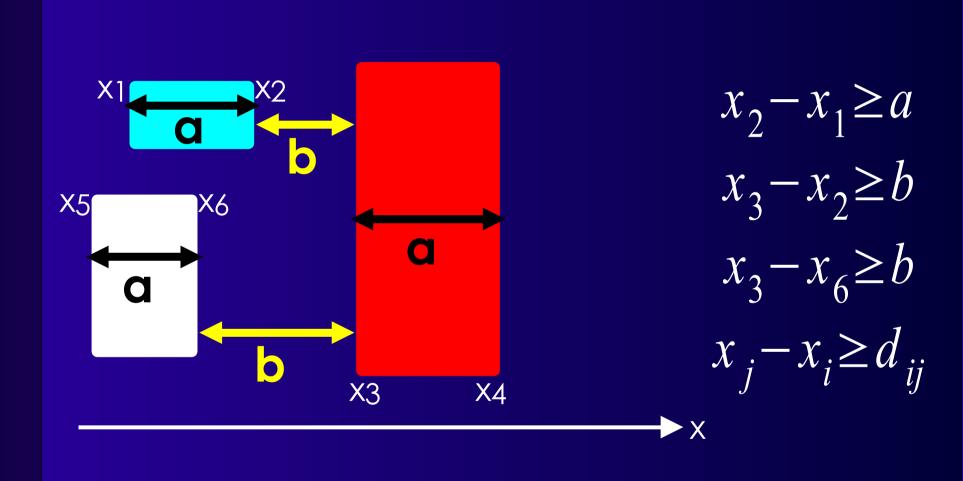
- Eindimensional (1D)
 - Nur eine Richtung bearbeitet
 - ◆ Operationen: Bewegen, Stauchen
 - Oft abwechselnd in X, Y Richtungen
- Zweidimensional (2D)
 - Beide Richtungen simultan bearbeiten
- Problem
 - 1D ist effizient machbar, aber suboptimal
 - 2D liefert optimale Lösung, ist aber NP-hart

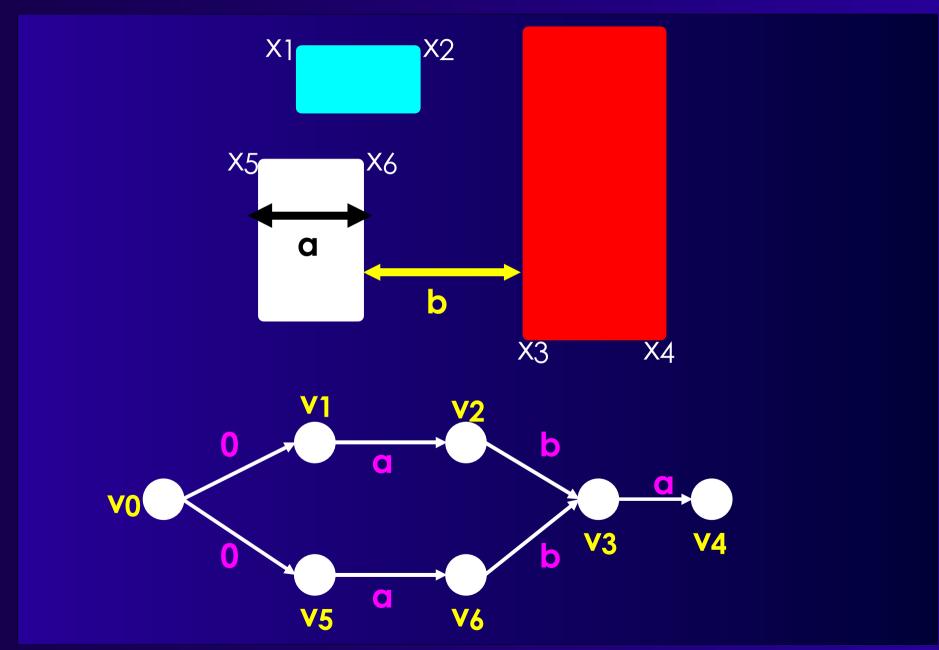




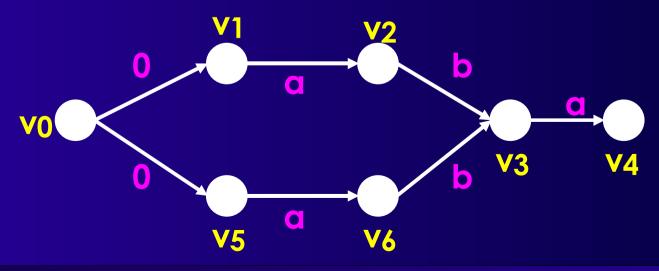


- 2D Kompaktierung
 - Optimal
 - NP-vollständig
- Vorgehensweise
 - Mehrfache 1D-K
 - Wechselnd in H, V
 - Aber: nicht optimal

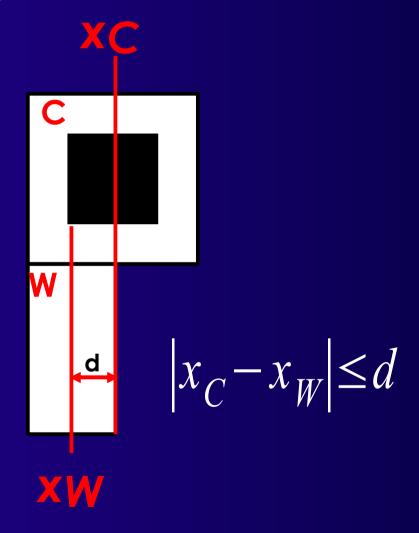




- Einschränkungsgraph G(V, E)
 - Gerichtet von (vi, vj)
 - Zyklenfrei
- Längster Pfad von vo zu vi
 - → Minimale Koordinate von xi



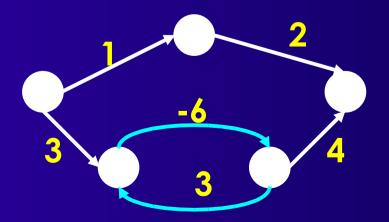
Bedingungen an maximalen Abstand

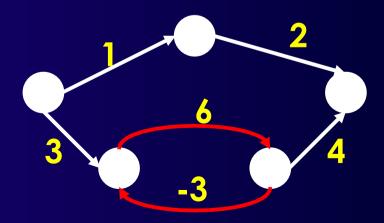


- **■** |xc-xw| ≤ d
 - $x_j x_i \le c_{ij}$, $c_{ij} \ge 0$
 - Xi Xj ≥ -Cij
- Passende Form für Einschränkungsgraph
 - Jetzt aber Richtung (vj, vi): Zyklen möglich!
- Aufgabe:
 - Berechnung des längsten Pfades in Graphen mit Zyklen

Längster Pfad

- Zyklenfreie Graphen
 - OK, ähnlich BFS
- Graphen mit Zyklen
 - Ohne positiven Zyklus: OK
 - Mit positivem Zyklus: Undefiniert
 - ◆ Kompaktierung: Überbeschränktes Layout

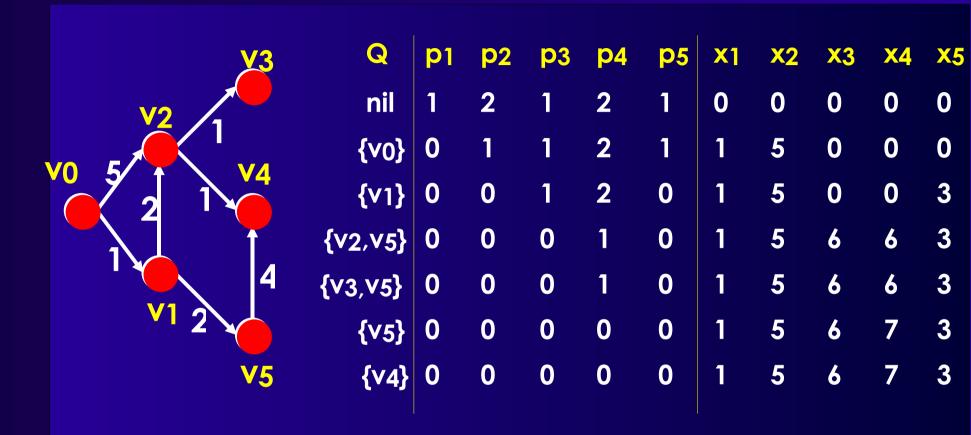




Zyklenfreie Graphen 1

```
longest path(G) {
main() {
                                            for (i:=1; i \le n; ++i)
   for (i:=0; i \le n; ++i)
                                               pi := vi.indegree();
      x_i := 0;
   longest path(G);
                                            set Q := {v<sub>0</sub>};
                                            while (Q \neq \emptyset) {
                                               v_i := Q.pickany();
                                               Q := \overline{Q \setminus \{v_i\}};
                                               foreach (\vee_i, \vee_i) \in E \{
- Directed Acylic Graph (DAG)
                                                  xi := max(xi, xi + dii);
- Längster, gerichteter, einfacher
                                                   --p;;
  Pfad (trail)
                                                   if (p_i \leq 0)
                                                      Q := Q \cup \{v_i\};
```

Zyklenfreie Graphen 2



Graphen mit Zyklen

- Nur mit negativen Zyklen
- Erkenne positive Zyklen
 - Überbeschränkte Layouts
- Aber lokalisiere sie nicht

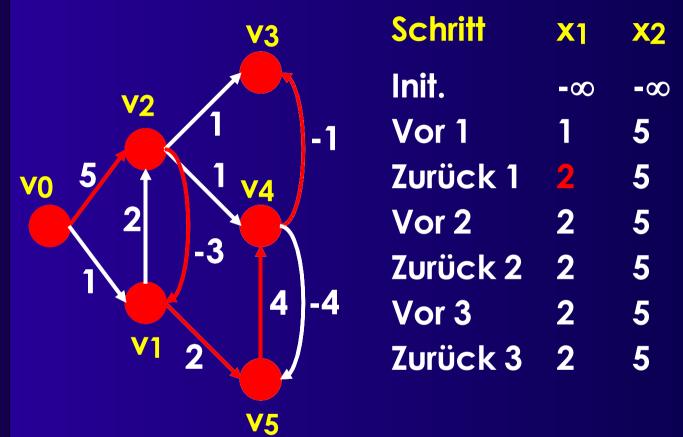
Längster Pfad mit Liao-Wong 1

```
count := 0;
for (i:=1; i \le n; ++i)
 X_i := -\infty;
x_0 := 0;
do {
  is modified := false;
  foreach (v_i, v_i) \in E_b
     if (x_i < x_i + d_{ii}) \{
        x_i := x_i + d_{ii}
        is modified := true;
  ++count;
  if (count > |Eb| && is_modified)
     error("positive cycle!");
} while (is modified);
```

Idee:

- Trennen zwischen
 - ◆ Ef: min. Distanz
 - ◆ Eb: max. Distanz
 - Erzeugen Zyklen!
- Berechne LP Gf(V, Ef)
- Korrigiere für Eb
 - Schließen Zyklen
- Stabilisiert sich in |Eb|
 - ◆ Jedes eb nur 1x in Pfad
- sonst überbeschränkt

Längster Pfad mit Liao-Wong 2



Schritt	X 1	X2	X3	X4	X5
Init.	-∞	-∞	-∞	-∞	-∞
Vor 1	1	5	6	7	3
Zurück 1	2	5	6	7	3
Vor 2	2	5	6	8	4
Zurück 2	2	5	7	8	4
Vor 3	2	5	7	8	4
Zurück 3	2	5	7	8	4

- Verbesserung: longest path(Gf) bemerkt Änderung
- O(|E_f| x |E_b|)

LP mit Bellman-Ford 1

- Kein Unterschied zwischen Ef und Eb
- Vergleichbar azyklischem LP
 - Aber mehrere Durchläufe durch Graph

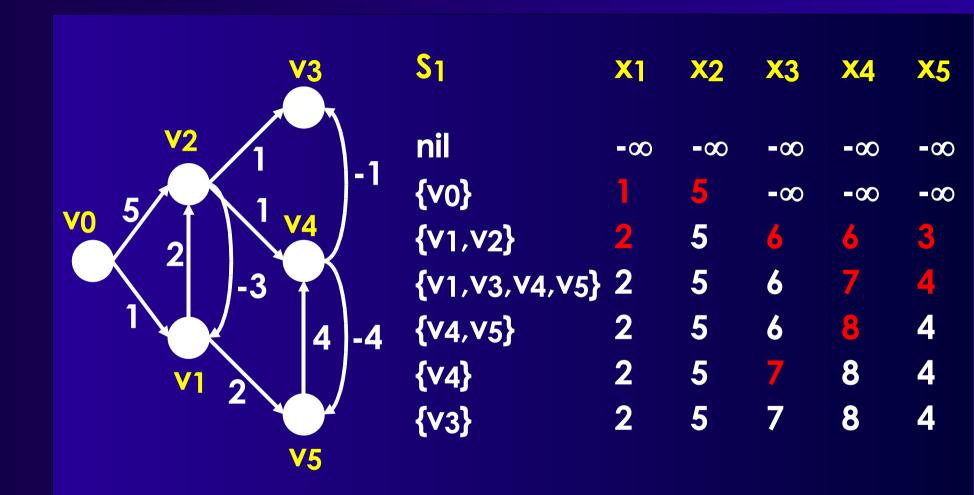
LP mit Bellman-Ford 2

```
for (i:=1; i \le n; ++i)
    x_i := -\infty;
x_0 := 0;
count := 0;
S_1 := \{ v_0 \};
S_2 := \emptyset;
while (count \leq n && S_1 \neq \emptyset) {
    foreach \forall i \in S_1
         foreach (\vee_i, \vee_i) \in E
             if (x_i < x_i + d_{ii}) \{
                  x_i := x_i + d_{ii};
                  S_2 := S_2 \cup \{v_i\};
    S_1 := S_2;
    S_2 := \emptyset;
    ++count;
if (count > n) error("positive cycle!");
```

Idee:

- Zwei Wellenfronten
 - ◆ S₁: aktuelle
 - ♦ S2: nächste Iteration
- Zyklendetektion
 - ♦ k-te Iteration
 - ▶ LP durch k-1 Knoten
 - ◆ LP hat max. n Knoten
 - → Falls mehr Iterationen
 - Zyklus!
- $O(n^3)$, avg. $O(n^{1.5})$

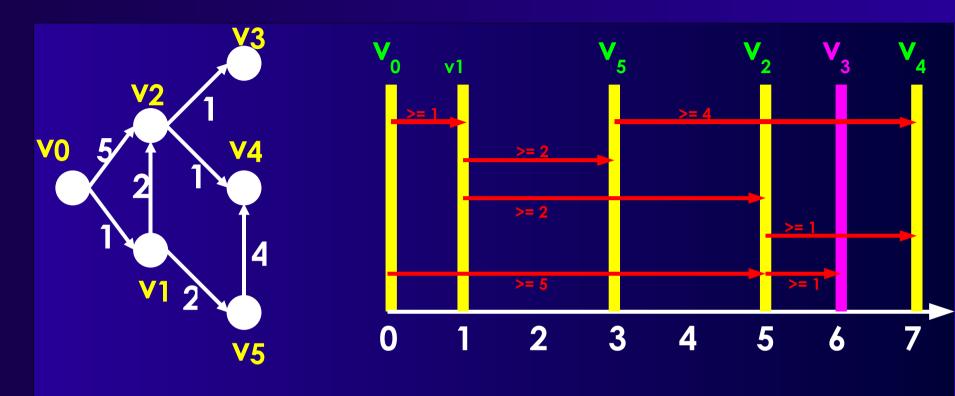
LP mit Bellman-Ford 3



Übersicht Pfad-Algorithmen

- LP wird SP bei Multiplikation der cij mit -1
- Gerichtete zyklenfreie Graphen (DAGs)
 - SP und LP lösbar in linearer Zeit
- Gerichtete Graphen mit Zyklen
 - Alle Gewichte positiv
 - ◆ SP in P (Dijkstra), LP ist NP-vollständig
 - Alle Gewichte negativ
 - ◆ LP in P, SP ist NP-vollständig
 - Keine positiven Zyklen: LP in P
 - Keine negativen Zyklen: SP in P
 - Sonst: NP-vollständig

Kritische ./. Unkritische Elemente

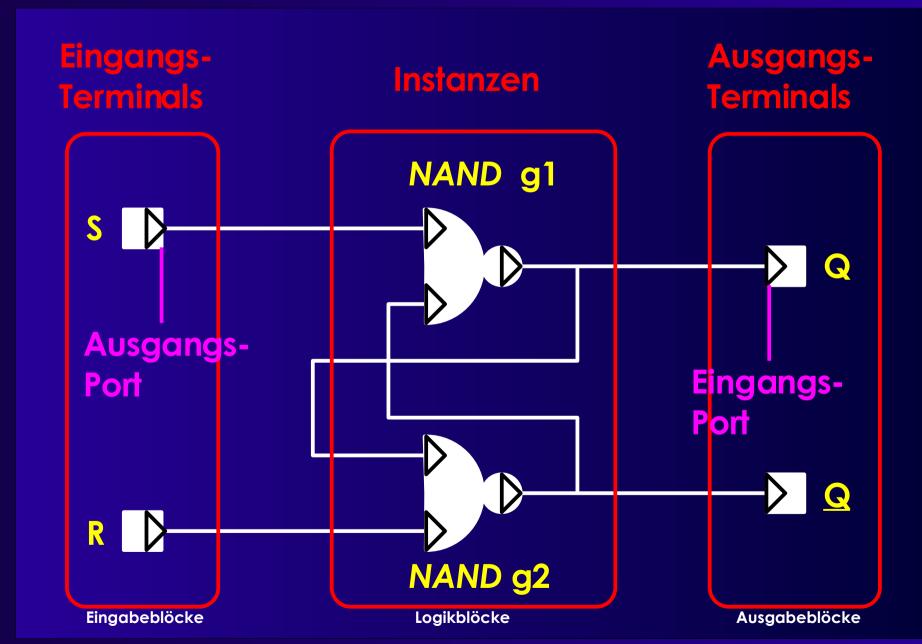


- Layout-Breite
 - Hängt nur von kritischen Elementen ab
- Unkritische Elemente: Verschiebbar
 - Beeinflussen aber weitere Iterationen

Kompaktierungsdetails

- Freie Layoutelemente
 - Optimale Lösung ist 2D-Kompaktierung
- Einfügen von Jogs (Knicke in Leitungen)
- Berechnung der Einschränkungen
 - Einfacher n²-Ansatz: Redundanzen
- Hierarchisches Vorgehen

Darstellung von Schaltungen 1



Darstellung von Schaltungen 2

Instanz oder Zelle

- Ein Auftreten einer Master-Zelle
- Speichert Instanz-spezifische Eigenschaften
 - ◆ z.B. Name

Master-Zelle

- Speichert Eigenschaften aller Instanzen
 - ◆ z.B. Funktion, Ports, Layout, ...

Netz

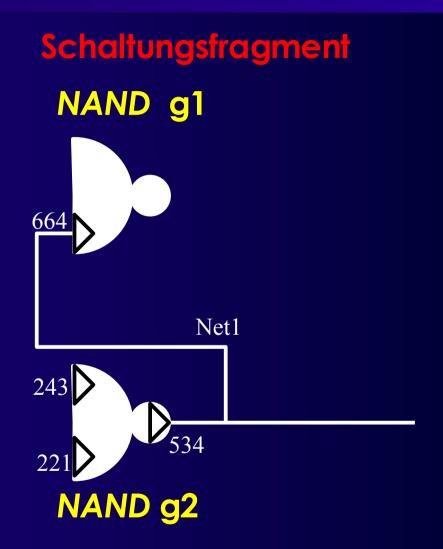
- Verbindung von mehreren Ports
- Port
 - Anschlusspunkt von Leitung an Zelle
 - I.d.R. nicht untereinander austauschbar
 - Hierarchie: Terminals werden zu Ports

Darstellung von Schaltungen 3

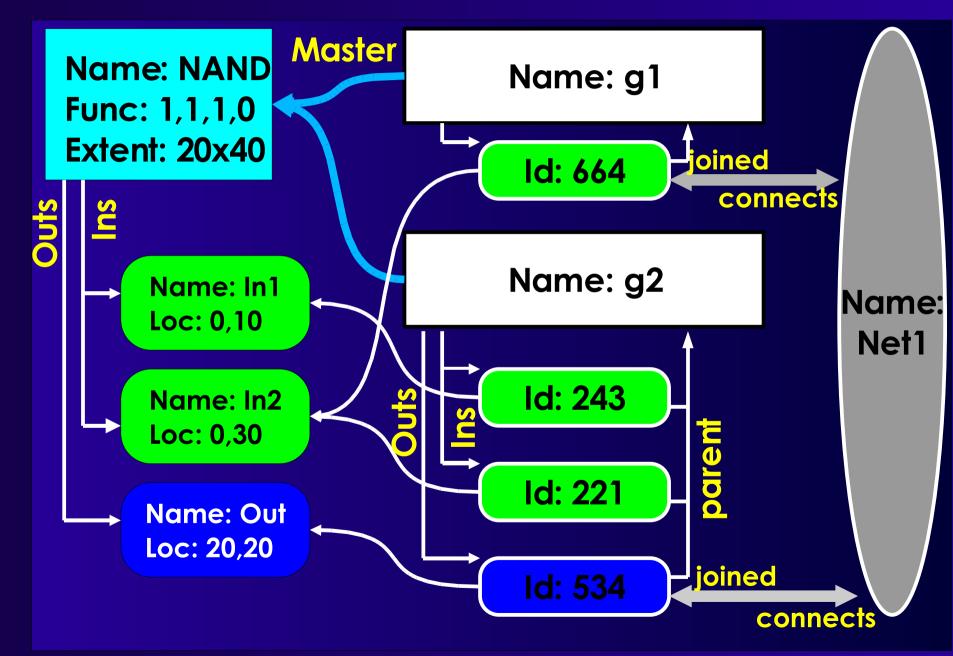
```
class cell master {
                                                class port master {
 String name;
                                                 String name;
 truth table func;
                                                 Point location;
 Rect extent;
 set<port master> ins, outs;
};
                                                class port {
                                                 port master master;
class cell {
                                                 String id;
 cell master master;
                                                 cell parent;
 String name;
                                                 net connects;
 set<port> ins, outs;
                       class net {
                        String name;
                        set<port> joined;
```

Darstellung von Schaltungen 4

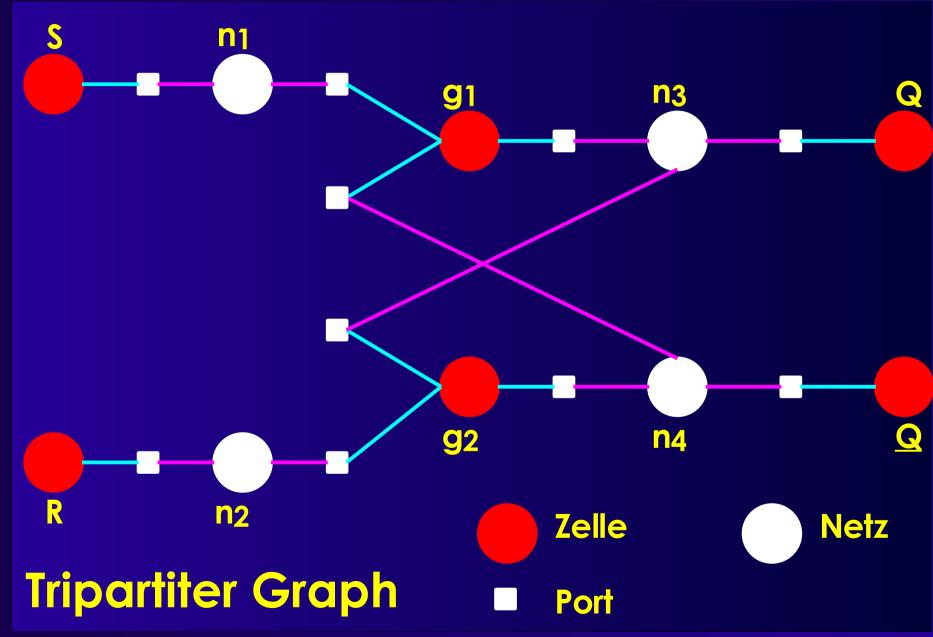




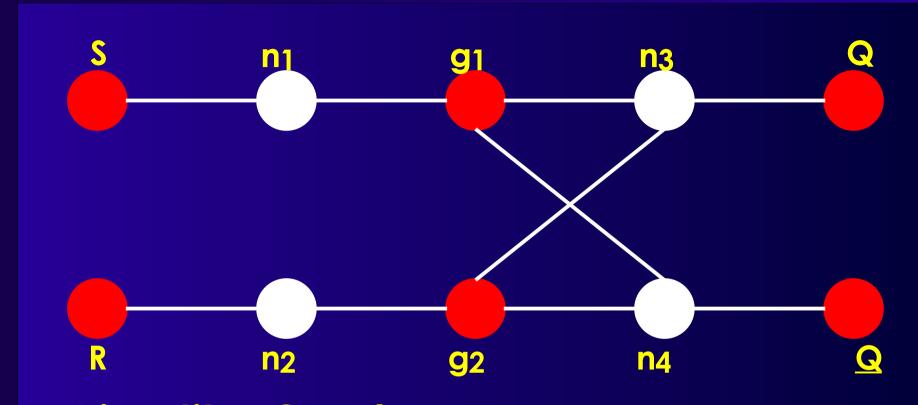
Darstellung von Schaltungen 5



Schaltungen als Graphen 1

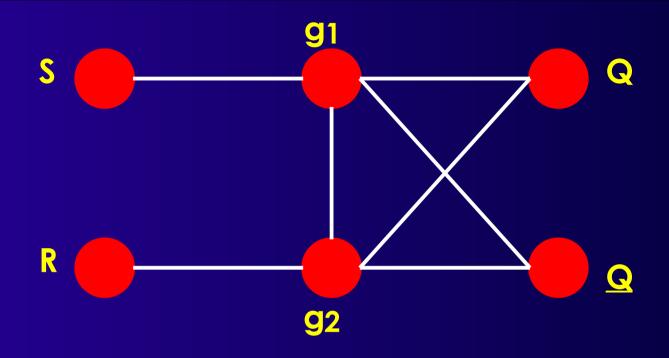


Schaltungen als Graphen 2



- Bipartiter Graph
 - Weniger Details
 - Verschmelze Ports mit Zellen
 - Äquivalent zu Hypergraph

Schaltungen als Graphen 3



- Cliquen-Modell
 - Netze nicht mehr explizit modelliert
 - Zellen an Netzen bilden jetzt Clique

Schaltungsdarstellungen

- Zelle-Port-Netz Modell
- Tripartiter Graph
- Bipartiter Graph
- Clique-Modell

Ungenauer

- Für Problem passendes Modell wählen
 - Mehr Daten nicht immer besser
- Konvertierungsroutinen bereitstellen
 - Nur in ungenauere Darstellung möglich
 - Buchführen über Herkunft von Daten

Grundlagen Timing-Analyse

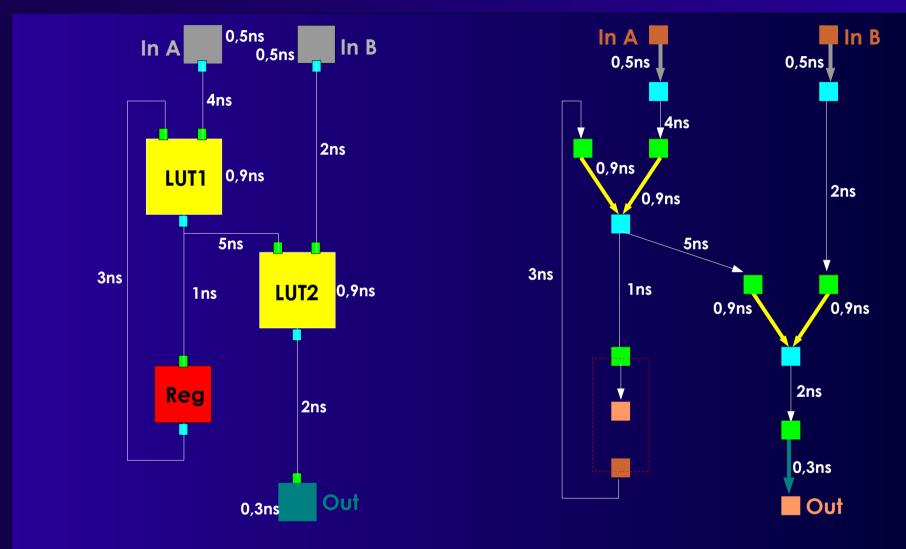
■ Wozu?

- Analysiere fertige Layouts
- Analysiere einzelne Verbindungen während Layouterzeugung
 - **◆ Erkenne kritische Verbindungen**
 - Behandele diese mit Vorrang

Worauf?

- Schaltungselemente
 - ◆ Gatter, Wertetabellen (LUT), Register, I/O-Blöcke, ...
 - Bleiben konstant, exakte Verzögerungen bekannt
- Netze
 - Nur nach Layouterzeugung bekannt, vorher schätzen

Modellierung



- Auf "5-partitem" Graph
 - Externe Ein-/Ausgänge, Ein-/Ausgangs-Ports

Berechnung Ankunftszeit

Ankunftszeit (Arrival) an Knoten v:

$$T_a(v) = Max_{(u,v)\in E} (T_a(u) + w(u,v))$$

- Idee: BFS oder zyklenfreier LP
 - Beginne mit $T_a(v) = 0$ für Knoten v die sind:
 - Externer Eingang, Registerausgang
 - Bearbeite Knoten mit bearbeiteten Vorgängern
 - Späteste Gesamtankunftszeit D_{max} = Taktper.
 - An externem Ausgang oder Registereingang
 - Im Beispiel 13,6ns

Spätestmögliche Ankunftszeit

- Wie unwichtig sind unkritische Netze?
 - Idee: Verschiebbare Elemente bei Kompakt.
 - Hier auf Zeitintervalle anwenden (slack)
 - "Wieviel langsamer kann ein Netz werden, ohne dass die gesamte Schaltung leidet?"

Berechnung

- Mittels spätestmöglicher Ankunftszeit
 - \bullet Required time T(u) an Knoten u
 - Spätestmöglicher Ankunftszeitpunkt von Signalen
 - Sonst Verlangsamung der ganzen Schaltung
 - Analog Kompaktierungsbeispiel
 - Rechteste Position ohne Breitenvergrößerung

Berechnung $T_r(u)$ & slack(u,v)

- Beginne mit $T_r(u) = D_{max}$ für Knoten:
 - Externer Ausgang, Registereingang
- Nun BFS/LP rückwärts
- Bearbeite Knoten
 - Nur mit komplett bearbeiteten Vorgängern
 - Rückwärts: Vorgänger hier sind sonst Nachfolger!

$$\mathbf{T}_r(u) = \underset{(u,v) \in E}{\mathbf{Min}} \left(\mathbf{T}_r(v) - w(u,v) \right)$$

■ Slack einer Verbindung von u nach v

$$\operatorname{slack}(u, v) = \operatorname{T}_r(v) - \operatorname{T}_a(u) - w(u, v)$$

Beachte: Auf kritischem Pfad slack = 0

Beispiel s27.critical

```
Node: 4 INPAD SOURCE Block #2 (s27 in 3)
Tarr: 0 Treq: -3.88578e-16 Tdel: 5e-10
Node: 5 INPAD OPIN Block #2 (s27 in 3)
Pin: 0
T arr: 5e-10 T reg: 5e-10 Tdel: 5e-09
Net to next node: #2 (s27 in 3). Pins on net: 5.
Node: 12 CLB IPIN Block #6 (s27 out)
Pin: 0
T arr: 5.5e-09 T req: 5.5e-09 Tdel: 0
Node: 17 SUBBLK IPIN Block #6 (s27 out)
Pin: 0 Subblock #0
T arr: 5.5e-09 T reg: 5.5e-09 Tdel: 9e-10
Node: 21 SUBBLK OPIN Block #6 (s27 out)
Pin: 4 Subblock #0
T arr: 6.4e-09 T reg: 6.4e-09 Tdel: 0
Node: 16 CLB OPIN Block #6 (s27 out)
Pin: 4
T arr: 6.4e-09 T req: 6.4e-09 Tdel: 1e-09
Net to next node: #5 (s27 out). Pins on net: 2.
Node: 10 OUTPAD IPIN Block #5 (out:s27 out)
Pin: 0
T arr: 7.4e-09 T reg: 7.4e-09 Tdel: 3e-10
Node: 11 OUTPAD SINK Block #5 (out:s27 out)
T arr: 7.7e-09 T reg: 7.7e-09
Tnodes on crit. path: 8 Non-global nets on crit. path: 2.
Global nets on crit. path: 0.
Total logic delay: 1.7e-09 (s) Total net delay: 6e-09 (s)
```

Weiteres Vorgehen

- Dienstag
 - Kick-Off für praktische Arbeiten
 - Vorher zu 3er Gruppen zusammenfinden
 - Vorher den Leitfaden lesen
 - ... um gezielt Fragen stellen zu können
- Nächste Vorlesung: Freitag
- Kleine Übungsaufgabe
 - Berechne T_a, T_r, Slack
 - ◆ Für das Beispiel auf Folie 46
- Allgemeine Vorbereitung
 - Buch Kapitel 5.5 5.9

Zusammenfassung

- Kompaktierung
- Berechnung der längsten Pfade
 - Ohne und mit Zyklen
- Modellierung von Schaltungen
 - Graphbasiert
 - Hierarchisch
- Timing-Analyse
 - Ankunftszeit
 - Spätestmöglicher Ankunftszeit
 - Slack