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ABSTRACT 
Floorplan representations are a fundamental issue in designing 
floorplan algorithms. In this paper, we first derive the exact 
number of configurations of mosaic floorplans and slicing 
floorplans. We then present two non-redundant representations: a 
twin binary tree structure for mosaic floorplans and a slicing 
ordered tree for slicing floorplans. Finally, the relations between 
the state-of-the-art floorplan representations are discussed and their 
efficiency is explored. 

1. INTRODUCTION 
Floorplanning and building block placement are becoming more 
important for VLSI physical design, because circuit sizes are 
growing rapidly and hierarchical design with IP blocks is now 
widely used to reduce the design complexity.  

Unfortunately, many floorplanning problems are NP-complete. 
Hence, most floorplanning algorithms adopt either analytical force 
directed methods or perturbations with random searches and 
heuristics. Because the efficiency and effectiveness of these 
opertaions rely on the expression of the geometrical relation 
between circuit blocks, floorplanning representation becomes a 
fundamental issue. The redundancy of the representations and the 
complexity of the transformation between a representation and its 
corresponding floorplan can determine the execution time and the 
quality of the results.  

1.1 State-of-the-art in floorplan representations 
The representation of floorplans has been intensively studied over 
the past few decades. Most of these representations have addressed 
the completeness of a floorplan topology. For a floorplan with a 
slicing structure [10], a binary tree representation was widely used. 
The leaves of the binary tree correspond to the blocks and each 
internal node defines a vertical or horizontal merge operation of 
the two descendents. The upper bound on the number of possible 
configurations for the tree is O(n!25n-3/n1.5).  

For a more general non-slicing floorplan, there was no efficient 
representation other than the constraint graph until the sequence 
pair[8] and the bounded-sliceline grid [9] were proposed in the mid 
90’s.  

In [8], Murata et al. proposed a sequence pair (SP) representation. 
They used two sets of permutations to represent the topological 
relations between blocks. Thus, the number of combinations of the 
SP’s is O((n!)2). It takes O(nloglogn) time to transform between an 
SP and its corresponding placement [11]. 

In [9], Nakateke et al. introduced a bounded sliceline grid (BSG) 
approach. A special n-by-n grid is devised for placing n blocks. This 
approach has n!C(n2, n) combinations and contains a lot of 
redundancy. The time complexity of the transformation is O(n2). 

More recently, Hong et al. [7] proposed a Corner Block list (CB) 
representation of a mosaic floorplan. The mosaic floorplan covers all 
slicing floorplans and all non-slicing floorplans with n rectangles for 
n blocks. This representation has a relatively small combination 
number O(n!23n-3/n1.5) compared to SP or BSG, and the time 
complexity of the transformation is O(n).  

In [6], Guo et al. proposed an ordered tree (O-tree) representation of a 
non-slicing floorplan. An O-tree represents partial topological 
information, which together with the dimensions of all the blocks 
describes an exact floorplan.  The O-tree has a very small 
combination number O(n!22n-2/n1.5). The approach produces a 
floorplan in time O(n). 

1.2 Our contributions 
We find the exact numbers of slicing and mosaic floorplans. Two 
efficient representations of both slicing and non-slicing floorplans are 
developed. We then study the relationships between some of these 
representations. Our contributions in this paper include the following 
results: 

(1) We find the exact numbers of two kinds of floorplans: mosaic 
floorplans and slicing floorplans. The number of mosaic floorplans is 
a Baxter number [1], and that of slicing floorplans is a Schröder 
number [5]. The combination numbers of SP’s, mosaic floorplans, 
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slicing floorplans, and O-trees are illustrated in a log scale below 
[Fig. 1]. The values are normalized by n!.  

(2) We present two new representations of floorplans: a twin 
binary tree structure for mosaic floorplans and a slicing ordered 
tree structure for slicing floorplans. These two structures have zero 
redundancy because they present an exact one-to-one mapping to 
the corresponding floorplan.  

(3) We study the relations between SP’s, O-Trees, CBL’s, twin 
binary trees, and slicing ordered trees. This study points out the 
redundancy of different representations.  

Table 1: Exact Number of combinations of different floorplan
configurations and representations

Nuber
of

blocks

Combinatio
ns of O-

Tree

Combinations
of Slicing
floorplan

Combinations
of Mosaic
floorplan

Combinations of
Sequence Pairs

1 1 1 1 1

2 2 2 2 2

3 5 6 6 6

4 14 22 22 24

5 42 90 92 120

6 132 394 422 720

7 429 1,806 2,074 5,040

8 1,430 8,558 10,754 40,320

9 4,862 41,586 58,202 362,880

10 16,796 206,098 326,240 3,628,800

11 58,786 1,037,718 1,882,690 39,916,800

12 208,012 5,293,446 11,140,560 479,001,600

13 742,900 27,297,738 67,329,992 6,227,020,800

14 2,674,440 142,078,746 414,499,438 87,178,291,200

15 9,694,845 745,387,038 2,593,341,586 1,307,674,368,000

16 35,357,670 3,937,603,038 16,458,756,586 20,922,789,888,000

17 129,644,790 20,927,156,706 105,791,986,682 355,687,428,096,000  

2. NUMBERS OF FLOORPLANS AND 
REPRESENTATIONS WITH A ONE-TO- 
ONE MAPPING 
In this section, we derive the exact numbers of floorplan 
configurations and describe the representations with a one-to-one 
mapping between the floorplan and its representation. 

2.1 Exact number of mosaic floorplan 
configurations 
Mosaic floorplanning was first introduced in [7], and has the 
following characteristics: 

(1) There is no empty space within the floorplan, i.e., each 
rectangle is assigned to one and only one block. In the floorplan 
space, except the four corners of the chip, the segment intersection 
forms a T-junction. A T-junction is composed of a non-crossing 
segment and a crossing segment. The non-crossing segment has 
one end touching the crossing segment. 
(2) The topology is equivalent before and after the non-crossing 
segment of the T-junction slides to adjust the block sizes.  

(3) There is no degenerate case where two distinct T-junctions meet 
at the same point.  

 

Fig. 2 illustrates a mosaic floorplan example. In general, we can 
summarize that the set of slicing floorplans as a subset of the set of 
mosaic floorplans, which are in turn a subset of the set of general 
floorplans [Fig. 3]. 

The exact number of mosaic floorplan configurations turns out to be 
a Baxter number, which can be represented as follows: 
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These numbers were first used to count the number of Baxter 
permutations, which were first introduced in [1] in an attempt to 
prove a special function conjecture of Dyer. The following is their 
definition: 

Definition 2.1.1 Baxter permutation: A Baxter permutation is a 
permutation σ1, σ2, …, σn of  the integers {1,2,…,n} satisfying the 
following two conditions: 

For any 1<=i<j<k<l<=n, 

 If σi+1 = σl , then σj > σ1 => σk > σ1 (B1) 

 If σl+1 = σi , then σk > σi => σj > σi (B2). 

Definition 2.1.2 Baxter number: The Baxter number of order n, B(n), 
is the number of different Baxter permutations on {1,2,…,n}.  

In [3], Chung et al. proved that B(n) has the nice form (1). This form 
is derived based on the following lemma: 

Lemma 2.1.1: 0.n    ),,()1(
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and Tn(i,j) = 0 if i<0 or j<0 or i+j>n. 
We now consider the number of mosaic floorplans with n blocks, 
which is denoted by M(n). We count this number by breaking it down 
into the numbers of mosaic floorplans with different numbers of T-

 D
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Fig. 2 An example of a mosaic floorplan 
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Fig 3. Categories of floorplans 
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junctions on the top and right boundaries: Let Fn(i,j) be the number 
of configurations in a mosaic floorplan of  n blocks with i T-
junctions  on the top boundary and j T-junctions on the right 
boundary, We have the following equation: 

 1.n    ),,()(
0,

≥= ∑
≥ji

n jiFnM   (3.2) 

where if n= 1, F1(0,0) = 1, and if n > 1, Fn(0,0) = 0, since if the 
number of blocks is larger than 1, there is at least one T-junction 
on either the top or right boundary. Also we have Fn(i,j) = 0 when 
i+j≥n, since there are at most n-1 T-junctions on both the top and 
right edges for a floorplan with n blocks. We set Fn(i,j) = 0 if i<0 
or j<0, because the number of T-junction cannot be negative. 

To calculate Fn(i,j), we introduce the following recurrence: 

Lemma 2.1.2: The recurrence for Fn(i,j) can be written as: 

∑
∞

=
+ +++=++

1
1 )),(),(()1,1(

k
nnn kjiFjkiFjiF ,   n ≥ 1. 

From Lemmas 2.1.1 and 2.1.2 we derive equality for the two 
recurrences. 

Lemma 2.1.3: Fn(i,j) = Tn-1(i,j) for n ≥1. 

Through these two lemmas we get our final theorem on the value 
of M(n). 

Theorem 2.1.1: The number of combinations of mosaic floorplans 
with n blocks is equal to the number of Baxter permutations on 
{1,…, n}, i.e., M(n) = B(n). 

2.2 The Twin Binary Tree Representation of a 
Mosaic Floorplan 
Just as we found the relationship between mosaic floorplans and 
Baxter permutations, it is natural for us to look for an efficient 
representation of a mosaic floorplan by borrowing the expression 
of Baxter permutation. In [4], Dulucq introduced a bijection 
between Baxter permutations on {1,…,n} and twin binary trees 
TBTn. In that paper, twin binary trees were originally defined as 
follows: 

Definition 2.2.1 Twin Binary Trees: The set of twin binary trees 
TBTn⊆Treen× Treen is the set  

   TBTn = {(b1,b2)| b1 , b2 ∈ Treen and Θ(b1) = Θc(b2) } 

where Treen is the set of binary trees with n nodes, and Θ(b) is the 
labeling of a binary tree b as follows. We begin with an empty 
sequence, and carry out an in-order walk on the tree. When a node 

has no left child, we add the letter 0 to the sequence. When it has no 
right child, we add the letter 1 to the sequence. We omit the first 0 
and the last 1 in the resulting sequence. Θc is identical to Θ except 
that letters 0 and 1 are interchanged. Fig. 4 shows an example of twin 
binary trees with n = 7. Each tree has 7 nodes and Θ(b2) is the 
complement of Θ(b1).  

In [4], a sorting algorithm is proposed so that the labels between the 
pair of twin trees have a one-to-one mapping relation. Consequently, 
the number of possible twin binary tree combinations is equal to the 
product of the number of string permutations on n labels, n!, and the 
possible numbers of twin tree pairs. 

To describe the twin-binary representation of a floorplan we need to 
define some terminology concerning mosaic floorplans: 

Definition 2.2.2 0º T-junction, 90º T-junction, 180º T-junction and 
270º T-junction: In a mosaic floorplan, except for the four corners of 
the boundary rectangle, a T-shaped intersection has four different 
orientations [Fig. 5]. We call these four kinds of intersections an 0º T-
junction, 90º T-junction, 180º T-junction and 270º T-junction, 
respectively. 

Definition 2.2.3 C+-neighbor: Given a mosaic floorplan, assume that 
block A is not the up-right corner block of the chip. The T-junction at 
the up-right corner of A is either a 0º T-junction or a 270º T-junction. 
Let B be the block adjacent to A by the non-crossing segment at the 
corner of that T-junction. B is called the C+-neighbor of A [Fig. 5 a, 
b]. 

Definition 2.2.4 C --neighbor: Given a mosaic floorplan, assume that 
block A is not the bottom-left corner block of the chip. The T-
junction at the bottom-left corner of A is either a 90º T-junction or a 
180º T-junction. Let B be the block adjacent to A by the non-crossing 
segment at the corner of that T-junction. B is called the C --neighbor 
of A [Fig. 5 c, d]. 

According to the definition of a C+-neighbor and a C--neighbor, we 
have the following lemma. 

Lemma 2.2.1 Except for the up-right corner block of the floorplan, 
each block of the floorplan has exactly one C+-neighbor. Except for 
the bottom-left corner block of the floorplan, each block of the 
floorplan has exactly one C--neighbor.   

If we connect each node to its C+-neighbor, we can construct a tree as 
follows. The root of the tree is the up-right corner block of the 
floorplan. Similarly, if we connect each block to its C--neighbor we 
also can get a tree and the root is the bottom-left corner block. Based 
on that, the following algorithms generate the twin binary tree 
representation of a mosaic floorplan. 

Algorithm MFTB //Mosaic Floorplan to Twin Binary Tree 

1. Initialize two sets of nodes V+, V- and two sets of edges E+, E- to 
empty sets. 

2. Let V+= V-={i  | there is a block labeled i in the floorplan} 

A B 

a. 0º T-
junction 

B 

A 

d. 90º T-
junction 

   B    A 

c. 180º T-
junction 

B 

A 

b. 270º T-
junction 

Fig. 5 Four different type of T-junctions 

Fig. 4  Twin binary trees with 7 nodes 
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Θ(b1) = 100101 Θ(b2) = 011010

140



3. For each block i: 

3.1 If i is not the up-right corner block of the floorplan, then 

{ get C+-neighbor j of block i and add (j, i) to edge set E+ 

           If block j is on the right of block i, set i be the left child of j 

           else set i be the right child of j. } 

3.2 If i is not the bottom-left corner block of the floorplan, then 

{ get C--neighbor j of block i and add (j, i) to edge set E- 

           If block j is on the left of block i, set i be the right child of j, 

           else set i be the left child of j. } 

4.  Let τ+ = (V+, E+)  τ- = (V-, E-). 

5.  return (τ+, τ-). 

Lemma 2.2.2: The complexity of Algorithm MFTB is O(n). 

 

Theorem 2.2.1: The graph pair (τ+, τ-) created by Algorithm 
MFTB is a pair of twin binary trees TBTn  

Fig. 6 shows an example of the twin binary tree representation of a 
mosaic floorplan. In Fig. 6(a), a mosaic floorplan that is the same 
as the one in Fig. 2 is redrawn and in Fig. 6(b), we present the 
binary tree representation, (τ+, τ-), for the floorplan in Fig. 6(a). To 
make the derivation of the twin binary trees clear, in Fig. 6(a), we 
mark the upper-right corner of each block with a circle. These 
circles correspond to the nodes in τ+. We mark the lower-left 
corner of each block with a cross. These crosses correspond to the 
nodes in τ-. The line segments between adjacent circles are marked 
with solid bold lines, which correspond to the edges in τ+. The line 
segments between adjacent crosses are marked with dashed bold 
lines, which correspond to the edges in τ-.  

Moreover, there is one-to-one mapping between the representation 
of the pair (τ+ , τ-) and the mosaic floorplan. To each mosaic 
floorplan, we can find a single representation of (τ+ , τ-), and 
conversely. This property makes the twin binary tree 
representation non-redundant in its representation space. 

Theorem 2.2.2: Given a mosaic floorplan, there exists a unique 
twin binary tree representing the floorplan. Likewise, a twin binary 
tree represents a unique floorplan. 

2.3 The exact number of slicing floorplan 
configurations 
Traditionally, a slicing floorplan was represented by a binary tree, 
which can be obtained by recursively cutting a rectangle into 
exactly two parts by either a vertical or a horizontal line. This 

representation is intuitive and simple to implement. However, there is 
redundancy in the representation. For example, the floorplan in Fig. 7 
can be mapped to two different binary trees. 

In order to find the exact number of different slicing floorplans of n 
blocks, we develop a new representation called a slicing ordered tree, 
and set up a one-to-one correspondence between all possible slicing 
floorplans and different slicing-ordered trees. We define a slicing 
ordered tree as follows: 

Definition 2.3.1 Slicing Ordered Tree: A tree with the following 
properties is called a slicing ordered tree:  

1. The tree is a rooted ordered tree with n labeled leaves. 

2. Each internal node has at least two children. 

3. Each internal node has a label either ‘V’ or ‘H’. 

4. Each leaf node has a distinct label. 

5. The label of an internal node must be different from its parent’s 
label. 

Similar to the traditional binary tree representation, we construct a 
Slicing-Orderded Tree by recursively cutting a rectangle either 
vertically or horizontally. The difference is that a Slicing-Ordered 
Tree is not necessarily a binary tree. Therefore, in each cutting step, 
we can partition a region into more than two strips either vertically or 
horizontally. For example, in Fig.8, the root of the tree is labeled V 
with four children. Correspondingly, the chip is divided into four 
vertical strips. The most left child of the root is then cut horizontally 
partitioned into 3 blocks. 

Note that slicing floorplans belong to the set of mosaic floorplans. 
According to property 3 of mosaic floorplans, there is no degenerate 
case. Using property 4 of a slicing ordered tree, we can prove the-one 
to-one mapping between slicing ordered trees and slicing floorplans. 

Theorem 2.3.1: Given a slicing floorplan, there exists a unique 
slicing ordered tree representing the floorplan. Likewise, a slicing 
ordered tree represents a unique slicing floorplan. 

Because we can represent an unlabeled slicing-ordered tree by 
inserting brackets into a list with n characters, as we do in Fig.8, we 
can get the number of unlabeled slicing-ordered trees with n leaves 
by counting the combinations of different ways to insert the brackets. 

A     B      C       D

V

V V

A B C D

V

V D

V C

BA

Fig. 7  Example of redundancy in a slicing tree representation
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D G
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H D H G

A B C E F

Fig. 8   Slicing Ordered Tree representation of a slicing floorplan
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Fig. 6  Twin Binary Tree representation of a mosaic floorplan
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These numbers are known as Schröder numbers or Super-Catalan 
Numbers:An  [5]  

nAnAnA
AA

nnn /))3()32(3(
;1;1

21

10

−− −−−=
==   

Theorem 2.3.2: The number of slicing floorplans with n > 1 
blocks is twice the Schröder number nA . 

3. RELATIONSHIPS BETWEEN AND 
REDUNDANCIES OF REPRESENTATIONS  
In this section, we describe the relations between several 
representations and discuss their redundancy. 

3.1 Relationships between representations 
To demonstrate the relationship between the representations, we 
use three examples: a slicing floorplan [Fig. 9], a mosaic floorplan 
[Fig. 10] and a general floorplan [Fig. 11]. 

The slicing floorplan in Fig. 9 is first dissected into three strips 
vertically: the left strip contains A, the middle strip contains blocks 
B, C and D, and the right strip contains blocks E, F and G. Second, 
the middle and the right strips are cut horizontally into 3 pieces. 
The slicing ordered tree representation is shown in Fig. 9. In Fig. 9, 
we also include the twin binary tree representation. The up-right 
corner of each block is marked with a circle and the bottom-left 
corner is marked with a cross. The up-right corners are connected 
to their C+-neighbors with solid lines. These solid lines and circles 
form the τ+ of the twin binary trees. Similarly the bottom-left 
corners are connected to their C- neighbors by dashed lines. These 
dash lines and crosses form the τ-of the twin binary trees.  

Given a floorplan and the dimensions of blocks, we can find a 
sequence pair SP=(Г+,Г+) to represent the floorplan [8]. The Г+ of 
the SP is the order of the blocks from up-left to the right-bottom, 
and Г- is the order of the blocks from bottom-left to up-right. Thus, 
many SP’s may correspond to the same floorplan. For example, in 
Fig. 9, block F can either be above block D or to the right of block 
D. Thus, we have different SP representations (SP1, SP2, SP3) 
[Fig. 9]. With the given block dimensions, the three SP’s (SP1, 
SP2, SP3) produce the same floorplan.   

For the floorplan in Fig. 9, there are quite a few different O-tree 
representations. For example, block F is right adjacent to blocks B 
and C; thus, node F can be the child of either B or C in an O-tree 
representation. Two different O-tree representations are shown in 
Fig. 9. An O-tree can be mapped to a binary tree by converting the 
sibling relations to left child branches and converting the 
descendent relations to right child branches of a binary tree [2]. In 
Fig. 9, O-tree OT2 and the τ-of the twin binary trees are identical 
after the tree conversion. 

We traverse τ+ of the twin binary trees in Fig. 9 in a depth-first 
order and get the in-order sequence of τ+: I = ABCDEF. This 
sequence is the same as the first sequence of SP2. The Corner 
Block list representation, CB=(S,L,T), is given at the bottom of 
Fig. 9. We note that the block sequence S=ADCBGFE of CB is 
identical to the second sequence of SP3. 

Fig. 10 describes an example of a mosaic floorplan. A slicing- 
ordered tree is not available to represent this kind of floorplan. We 
illustrate the other four representations. The twin binary trees are 
marked by circles and crosses as shown in Fig. 9.  Two SP’s, SP1 
and SP2, out of many possible choices are described in the figure.  

 

The in-order traversal of the τ+ in the twin binary tree representation 
produces the sequence I = ABCDFE, which is same as the first 
sequence of  SP1 and SP2. In Fig. 10, an O-tree representation is also 

Two different O-tree representations:

(A(BCD)(EFG))

V

A H H

B C D FE G

Slicing-Ordered tree:

τ+

Θ(b1) = 100100

0

001

1

D

GA

0

E

FB

C

Twin-tree:

τ-

Θ(b2) = 011011

1
1

0

A

1

0

D

B

C G

F

1E

In-order
sequence of
τ+ : I =
ABCDEFG

A

D

E

F

G

B

C

One SP representation of this floorplan is SP1=(Г+, Г-) = (ABECFDG, ADCGBFE).
Also the sequence pair SP2=(Г+, Г-) = (ABCDEFG, ADCGBFE) and
SP3=(Г+, Г-) = (ABCDEFG, ADCBGFE) represent the same floorplan.

CB: S = (ADCBGFE), L = (100100), T=(00011000)

Fig. 9: Different representations for a slicing floorplan
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Corner Block List:
S = (FADEBC),
L = (11101),
T = (0010100)

Sequence Pair: SP1 =(Г+, Г-) = (ABCDFE, FADEBC). Also SP2 =(Г+, Г-) = (ABCDFE, FADBEC)
refers to the same floorplanning.

Fig 10: Mosaic floorplan and its different representations
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given. Its binary tree representation is identical to the τ- of the twin 
binary trees after tree conversion. The CB representation is beside 
the O-tree representation in Fig. 10. Its block list S=FADEBC is 
same as the second sequence of SP1. 

Fig. 11 illustrates a general floorplan. Only the O-tree and the 
Sequence Pair are capable of representing a general floorplan. The 
O-tree and SP representations are shown in the figure. 

According to the observations in the above examples, we prove the 
following lemmas. 

Lemma 3.1.1: Given a mosaic floorplan and its corresponding 
twin binary trees (τ+, τ-), there exists a sequence pair SP 
corresponding to the same floorplan such that the first sequence of 
SP is the same as the sequence of a depth-first traversal of τ+. 

Lemma 3.1.2: Given a mosaic floorplan and its corresponding 
corner block list CB=(S, L, T), there exists a sequence pair SP 
corresponding to the same floorplan such that the second sequence 
of SP is same as the sequence S of the corner block list. 

Lemma 3.1.3: Given a mosaic floorplan and its corresponding 
twin binary trees TBT (τ+, τ-), there exists an O-tree corresponding 
to the same floorplan such that τ- is identical to the O-tree after the 
tree conversion from a binary tree to an ordered tree. 

3.2 Redundancy in representations 
Redundancy means that there are more than one representations 
that represent one floorplan, or there is some representation that 
cannot be mapped to a floorplan. The redundancy in representation 
can waste steps in various search procedures. 

For a corner block list, the list may not correspond to a floorplan. 
This is because of the constraints of the list T. In [7], a rule for T is 
given - in any prefix of T, the number of ‘1’s is no more than the 
number of ‘0’s. This rule eliminates most invalid representations 
but still cannot guarantee that every CB represents a legal 
floorplan. For example, S=(ABC), L=(111), T=(0100) is a CB and 
obeys that rule but there is no floorplan corresponding to it. 

In SP, two sequences Г+ and Г- sort all the blocks from up-left to 
bottom-right and from bottom-left to up-right. When the relative 
positions of two blocks is both up and right, their relative position 
in Г+ have multiple choices as shown in Fig. 9. Similarly, if the 
relative position of two blocks is both down and right, their relative 
positions in Г- have multiple choices. This redundant 
representation causes a one-to-many mapping from a floorplan to 
the representations.  

In twin binary tree, there is no redundancy in representing mosaic 
floorplan, since the mapping is exactly one-to-one. This characteristic 
justifies its conciseness. 

According to Lemma 3.1.3, an O-tree provides the information of one 
of twin binary trees only. Different choices of the other twin of the 
twin binary trees represent different mosaic floorplans. On the other 
hand,  the O-tree is claimed to cover all possible compact floorplans 
[6]. This is because O-trees also rely on the dimensions of the blocks. 
The variations of the block dimensions make up for the possible 
choices contributed by the other twin of the twin tree pair. By 
amortizing the block dimensions, O-trees require a very small 
number of combinations to represent a floorplan.  

4. CONCLUSIONS  
We prove that the numbers of mosaic floorplan and slicing floorplan 
configurations are Baxter numbers and Schröder numbers, 
respectively. Two tree structures, twin binary trees and ordered 
slicing trees, are proposed to represent mosaic floorplans and slicing 
floorplans. These two representations are concise in the sense that the 
transformation between the representation and the floorplan is a one-
to-one mapping. We also identify the relations of several 
representations, where the proposed twin binary trees serve as a 
bridge for the relation. 

5. ACKNOWLEDGEMENT 
The authors wish to thank the referees for many valuable comments. 
This work was supported in part under grants from NSF project 
number MIP-9987678 and California MICRO program. 

REFERENCES 
[1] G. Baxter, “On Fixed Points of the Composite of Commuting 

functions”, in Proc. Amer. Math. Soc., Vol. 15, 1964, pp.851-855. 
[2] Y. Chang, Y. Chang, G. Wu, and S. Wu, “B*-Trees: A New 

Representation for Non-Slicing Floorplans”, in Proc. 37th DAC, 
2000, pp. 458-463. 

[3] F.R.K. Chung, R.L.Graham, V. E. Hoggatt, Jr. and M. Kleiman, 
“The Number of Baxter Permutations,” in Journal of 
Combinatorial Theory, Series A, Vol. 24, No. 3, May 1978, pp. 
382-394. 

[4] S. Dulucq and O. Guibert, “Baxter permutations,” in Discrete 
Mathematics, Vol. 180, 1998, pp. 143-156.  (twin Binary Tree)  

[5]  I. M. H. Etherington, “Some Problems of Non-Associative 
Combinations”, in The Edinburgh Mathematical Notes, No. 32, 
1940, pp. i-vi 

[6] P. Guo, C. K. Cheng, and T. Yoshimura, “An O-Tree 
Representation of Non-Slicing Floorplan and Its Applications,” in 
Proc. 36th DAC, 1999, pp. 268-273. 

[7] X. Hong, et al, “Conner Block List: An Effective and Efficient 
Topological Representation of Non-Slicing Floorplan,” in 
Proceeding of ICCAD-2000, 2000, pp. 8-12  

[8] H. Murata, et al, “Rectangle-packing-based Module Placement”, 
in Proc. of International Conference on Computer Aided Design, 
1995, pp. 472-479. 

[9] S. Nakatake, et al. “Module Packing Based on the BSG-Structure 
and IC Layout Applications”, in IEEE Trans. on Computer-Aided 
Design of Integrated Circuits and Systems, Vol. 17, No. 6, June 
1998, pp. 519-530.  

[10] R.H.J.M. Otten, “Automatic Floorplan Design”, in Proc. 
ACM/IEEE Design Automation Conf., 1982, pp. 261-267. 

[11] X. Tang, M. Wong “FAST-SP A Fast Algorithm for Block 
Placement based on Sequence Pair”, in ASP-DAC 2001.  

F

B

  C

        A

       D

        E

O-tree:

F

E

B

D

C

A

Sequence Pair: SP1=(Г+, Г-) = (FBADEC, EFDBCA),
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Fig. 11: A  general floorplan with its O-tree and SP representations
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