Algorithmen im Chip-Entwurf 5

Längenmaße und Platzierung: VPR

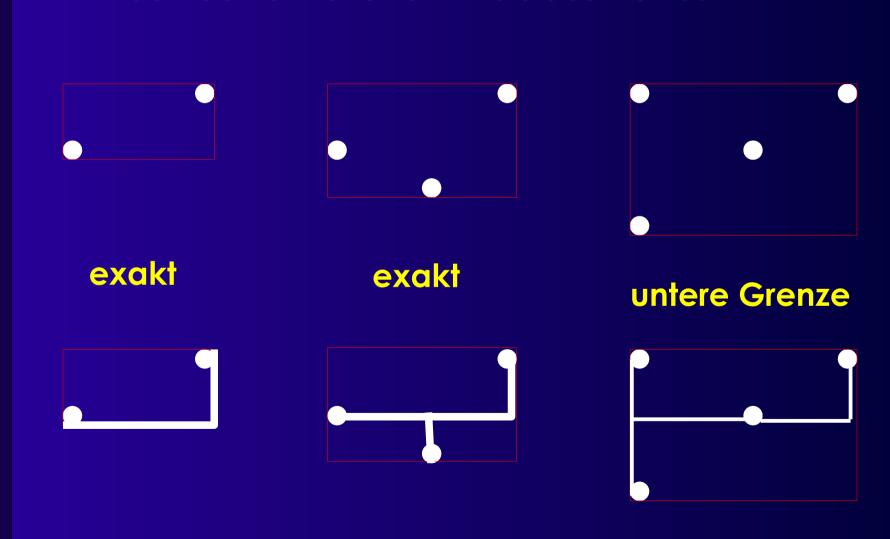
Andreas Koch FG Eingebettete Systeme und ihre Anwendungen TU Darmstadt

- Längenmaße: Halber Umfang
- Arten von Platzierungsproblemen: MPGA/FPGA
- Konkreter FPGA-Placer: VPR
- Zusammenfassung

Verdrahtungsfläche

- Mögliches Platzierungs-Qualitätskriterium
 - Gesamtfläche für Verdrahtung
 - ♦ Nur bei ASIC
 - ◆ Bei FPGA: Feste Breite der Leitungen, Länge reicht
- Aber: Vollständiges Routing zu komplex
 - NP
- Abschätzen der Länge durch Metrik
 - Einzeln pro Netz
 - Aufsummieren der Teillängen
 - Multiplizieren mit angenommener
 - ◆ Leitungsbreite plus
 - Leitungsabstand

- Halber Umfang (half perimeter)
 - Rechteck um alle Terminals des Netzes

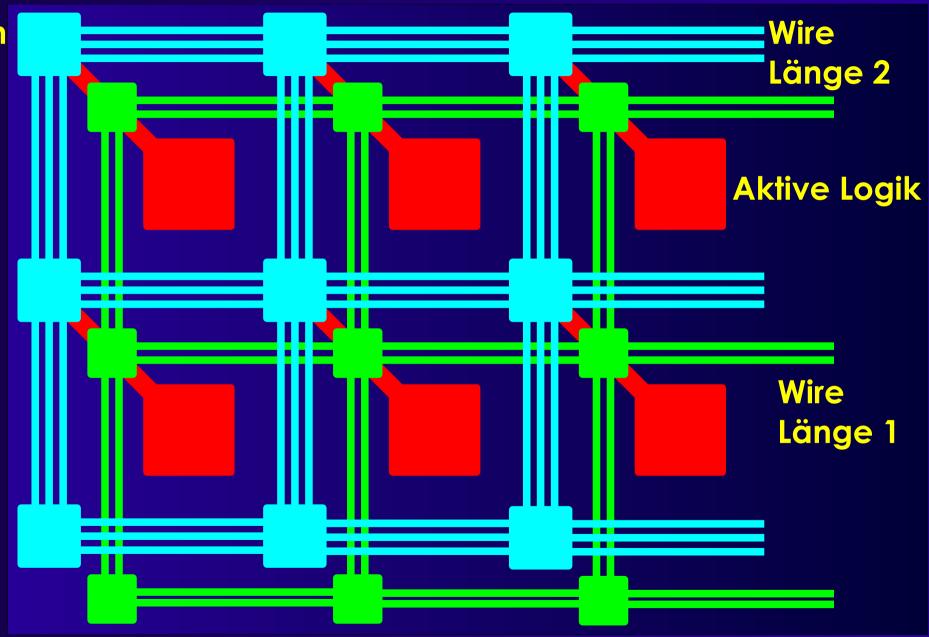


MPGA/FPGA 1

- Mask-Programmable Gate Array
 - Modebezeichnung: Structured ASIC
- Field-Programmable Gate Array
- Feste Anordnung von
 - Logik
 - Verdrahtung
- Anpassung auf Anwendung
 - MPGA: Beim Hersteller (Metalllagen)
 - FPGA: Beim Anwender (Programmierung)

MPGA/FPGA 2

Switch Box



MPGA/FPGA 3

- Sehr ähnlich zu UPP
- Aber: Segmentierte Verbindungen
 - Mehrere Verdrahtungslängen
- Verzögerung abhängig von
 - Anzahl durchlaufener Switch Boxes
 - Last (Fan-Out)
- Feste Verdrahtungskapazität
- Nicht jede Platzierung verdrahtbar
- Verdrahtbarkeit in Kostenfunktion

- Versatile Place and Route
 - Betz und Marquardt, U Toronto
 - Ab hier Auszüge aus Paper auf Web-Seite
- Platzierer
 - Simulated Annealing-basiert
 - Adaptive Annealing Schedule
 - Optimiert gleichzeitig
 - ◆ Leitungslänge
 - Verzögerung

- Paarweises Austauschen von Blöcken
 - N_{blocks} = Größe der Schaltung
- Aber nicht ganz wahllos
 - Beschränkung der Entfernung

Starttemperatur

- Wird automatisch bestimmt
 - Für aktuelle Schaltung passend
- Idee:
 - Anfangs fast alle Züge akzeptieren
 - Wie hoch muss die Starttemperatur sein?
- Vorgehen
 - N_{blocks} paarweise austauschen
 - Beobachte Änderung der Kostenfunktion x
 - Standardabweichung $s_x = \sqrt{\frac{1}{n-1}((\sum_i x_i^2) n \, \overline{x}^2)}$
 - Starttemperatur = $20 \cdot s_x$

Thermal Equilibrium

Anzahl von Schritten pro Temperaturstufe:

$$10 N_{blocks}^{4/3}$$

■ 10x schneller, aber ca. 10% schlechter:

$$N_{\it blocks}^{\rm 4/3}$$

Beobachtung

- Anfangs: T hoch, fast alle Züge akzeptiert
 - ◆ Im wesentlichen zufälliges Bewegen
 - ♦ Keine echte Verbesserung der Kostenfunktion
- Ende: T niedrig, kaum Züge akzeptiert
 - Fast keine Bewegung mehr
 - Wenig Veränderung in Kostenfunktion

Idee

- Meiste Optimierung passiert <u>dazwischen</u>
- Bringe T schnell in den produktiven Bereich
- Halte T lange im produktiven Bereich

Vorgehen

Steuere T anhand der Akzeptanzrate

$$T_{\text{new}} = \alpha T_{\text{old}}$$

O.

Acceptance Rate

R

$$R_{\rm g} > 0.96$$

$$0.80 < R_{a} \le 0.96$$

$$0.15 < R_a \le 0.80$$

$$R_a \leq 0.15$$

- Vorahnung
 - Gute Fortschritte bei $R_a \approx 0.5$
- Am effizientesten $R_a = 0.44$
 - Beste Fortschritte
- Idee
 - R_a möglichst auf diesem Wert halten, aber wie?
 - Nicht temperaturbasiert (kühle nur ab!)
 - Sondern: <u>Auswirkungen</u> der Züge beeinflussen
 - Beobachtung
 - Weite Züge: Grosse Änderung der Kostenfunktion
 - ♦ Kurze Züge: Kleine Änderung der Kostenfunktion
- Vorgehen
 - Variiere Zugweite R_{limit} , um $R_a \approx 0.44$ zu halten

R_{limit} klein

- Kleine Zugreichweite
- Kleine Änderungen der Kostenfunktion
- Kleine Verschlechterungen
 - Werden eher angenommen
- R_a steigt

R_{limit} gross

- Grosse Zugreichweite
- Grosse Änderungen der Kostenfunktion
- Große Verschlechterungen
 - Werden eher abgelehnt
- R_a sinkt

- Anfangs: R_{limit} = ganzer Chip L_{Chip}
- Bei jedem Abkühlschritt:

$$R_{limit}^{new} = R_{limit}^{old} (1 + R_a^{old} - 0.44), 1 \le R_{limit}^{new} \le L_{Chip}$$

- Zuviel akzeptiert: R_{limit} grösser machen
- Zuwenig akzeptiert: R_{limit} kleiner machen

Abbruchbedingung

- Wann Abkühlung beenden?
- Idee
 - Erkennung von Stillstand
- Vorgehen
 - Jeder Zug beeinflusst mindestens ein Netz
 - Bestimme die durchschnittlichen Kosten pro Netz
 - Wenn T kleiner als Bruchteil davon ...
 - Nur noch kleine Chance, dass Zug akzeptiert wird
 - ◆ T < 0.005 Cost/#Nets
 - Auch einfachere Realisierungen möglich
 - Letzte k Züge ohne akzeptierten Zug
 - Letzte k Züge ohne Verbesserung von BSF
 - **•** ...

Kostenfunktion 1. Teil

- Gleichzeitig optimieren
 - Zeitverhalten
 - Verdrahtungslänge
- Verdrahtungslänge
 - Bestimmt als korrigierter halber Netzumfang

$$c_w = \sum_{n \in N} q(n_{pincount}) [bb_x(n) + bb_y(n)]$$

$$q(i) = 1 \text{ für } i=1..3, =2.79 \text{ für } i=50$$
 (Cheng 1994)

Web-Seite: Paper, Datei mit Korrekturfaktoren q(i)

Inkrementelle Berechnung 1

Berechnung des Netzumfangs

- Simpel: O(k), k Anzahl der Pins
- Problem: k = 100 ... 1000 realistisch
- Nach jedem Zug neu berechnen

Besser:

- Nach Möglichkeit nur bewegte Pins neu berechnen
 - ◆ Ein Pin ist nur in einem Netz
 - Ein Block hat aber mehrere Pins

Vorgehen

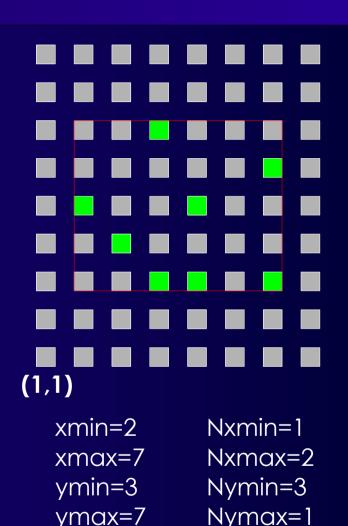
- Je Netz umspannendes Rechteck speichern
 - - Position der Seiten
 - ◆ (N_{xmin}, N_{xmax}, N_{ymin}, N_{ymax})
 - * Anzahl Pins direkt auf den Seiten

Inkrementelle Berechnung 2

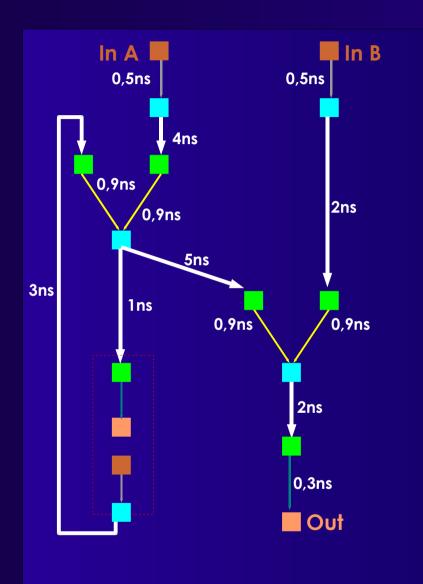
Betrachtet nur linke Seite (xmin)

- Bewege Terminal von xold nach xnew
- Netz an Terminal: n

```
If (xnew!= xold) { // horiz. bewegt
       if (xnew < n.xmin) {
              n.xmin = x_{new};
              n.Nxmin = 1;
       } else if (x_{new} == n.xmin) {
              n.Nxmin++;
       \} else if (x_{Old} == n.xmin) {
              if (n.Nxmin > 1) {
                      n.Nxmin--;
              } else {
                      BruteForce(n);
```



Kosten 2. Teil: Zeitverhalten 1



- Betrachte
 - Platzierungs-abhängiges
 Zeitverhalten
- Punkt-zu-Punkt Verbind.
- Von
 - Netzquelle u
- Zu
 - Jeder Netzsenke v
- Sicht: Two-Terminal-Nets
- Zeitverhalten
 - Bestimmt aus Slacks
 - Nicht auf Pfaden (langsam)

Zeitverhalten 2

- "Wichtigkeit" einer Verbindung
 - Punkt-zu-Punkt zwischen Terminals u und v

Criticality
$$(u, v) = 1 - \frac{\operatorname{slack}(u, v)}{D_{max}}$$

- (u,v) auf kritischem Pfad
 - ♦ $slack(u,v) = 0 \Leftrightarrow Criticality(u,v) = 1$
- (u,v) absolut unkritisch
 - ♦ $slack(u,v) = D_{max} \Leftrightarrow Criticality(u,v) = 0$
- Timing Cost: Delay(u,v) ist Schätzung!
 - Noch kein "echtes" Routing

$$c_t = \sum_{(u,v) \in E_{NetTiming}} Delay(u,v) Criticality(u,v)^{CriticalityExponent}$$

Zeitverhalten 3

- Criticality Exponent
 - Gewichtet kritischere Verbindungen h\u00f6her
 - ♦ Wenige kritische Verbindungen dominieren c₁
 - Untergewichtet unkritischere Verbindungen
 - ◆ Fallen fast ganz aus c, Berechnung heraus
- Idee
 - Gegen Ende auf kritische Netze konzentrieren
- Vorgehen:
 - Steigern von ce_{start}=1 auf ce_{final}=8 (experimentell)

CritExp=
$$1 - \frac{R_{limit}^{now} - 1}{R_{limit}^{start} - 1} \cdot (ce_{final} - ce_{start}) + ce_{start}$$

Zeitverhalten 4

- slack() ist platzierungsabhängig
 - Unkritische Netz können kritisch werden
 - ◆ Zu lange Leitungslängen
 - Kritische Netze können unkritisch werden
 - Sehr kurze Leitungslängen
- Slack-Werte müssen <u>aktualisiert</u> werden
 - Timing-Analyse: Ta, Tr
- Wie oft?
 - Nach jedem Zug? Nach N Zügen?
 - N-mal pro Temperaturstufe?
 - Alle N Temperaturstufen?
- Bewährt:
 - 1x pro Temperaturstufe

Gesamtkostenfunktion

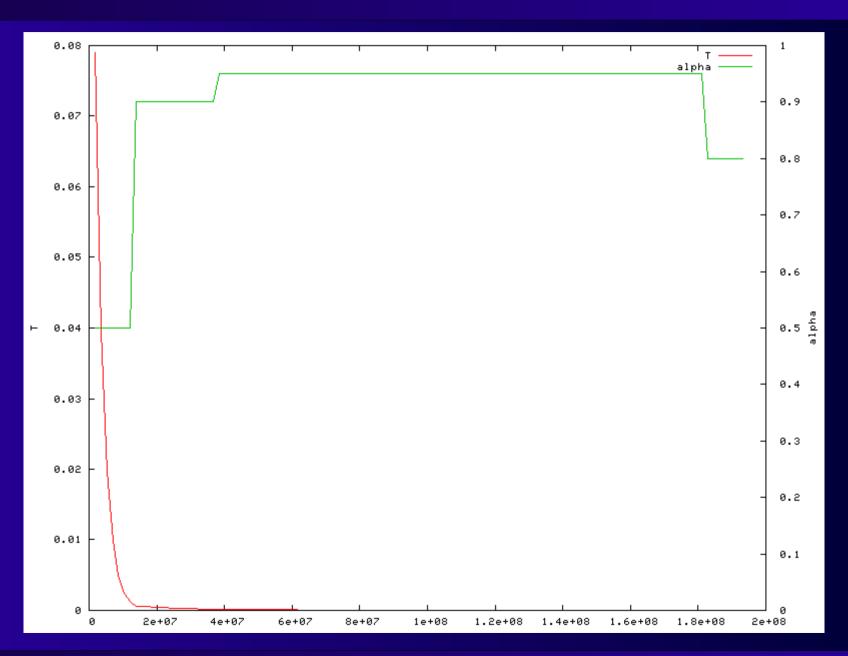
Selbstnormierend

- λ gewichtet Zeit ./. Längenoptimierung
 - Aber $\lambda = 1$ erzeugt <u>nicht</u> die schnellste Lösung
 - Netze wechselnd kritisch/unkritisch
 - Nicht erkannt, da Timing-Analyse nur 1x pro Temp.
 - Besser $\lambda = 0.5$
 - Längenmaß wirkt als Dämpfer für Oszillation

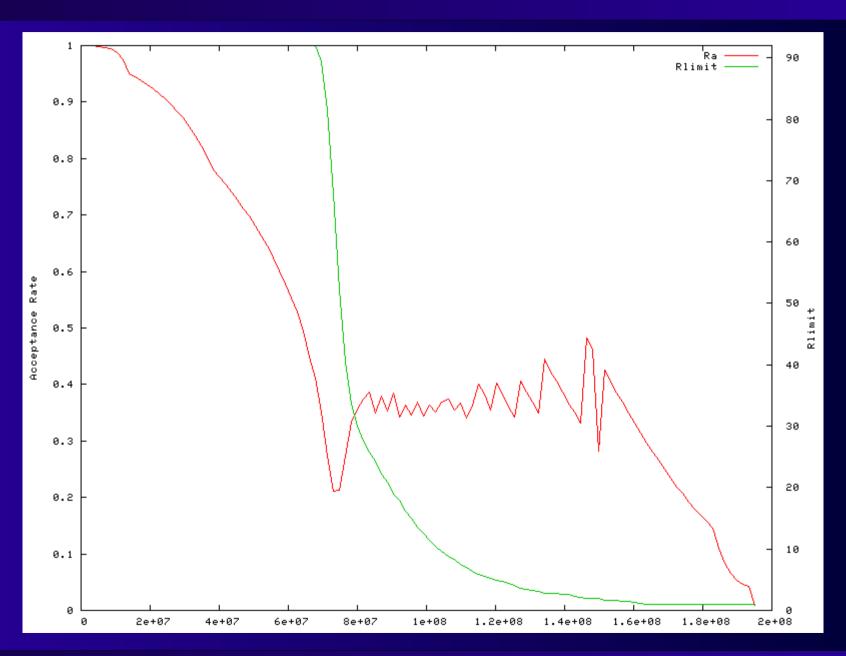
Gesamtalgorithmus

```
S = RandomPlacement();
T = InitialTemperature();
Rlimit = InitialRlimit();
CritExp = ComputeNewExponent(Rlimit);
while (!ExitCriterion()) {
    TimingAnalyze();
                                   // Bestimme T_{a}, T_{r} und slack()
    OldWiringCost = WiringCost(S); // für Normalisierung der Kostenterme
    OldTimingCost = TimingCost(S);
    while (!InnerLoopCriterion()) {     // eine Temperaturstufe
       Snew = GenerateSwap(S, Rlimit);
        ∆timingCost = TimingCost(Snew) - TimingCost(S);
       ∆wiringCost = WiringCost(Snew) - WiringCost(S);
       \Delta C = \lambda \left(\Delta timingCost/OldTimingCost\right) + (1-\lambda) \left(\Delta wiringCost/OldWiringCost\right);
       if (\Delta C = < 0)
            S = Snew:
       else
            if (random(0,1) < exp(-\Delta C/T))
                S = Snew
   T = UpdateTemp();
    Rlimit = UpdateRlimit();
    CritExp = ComputeNewExponent(Rlimit);
```

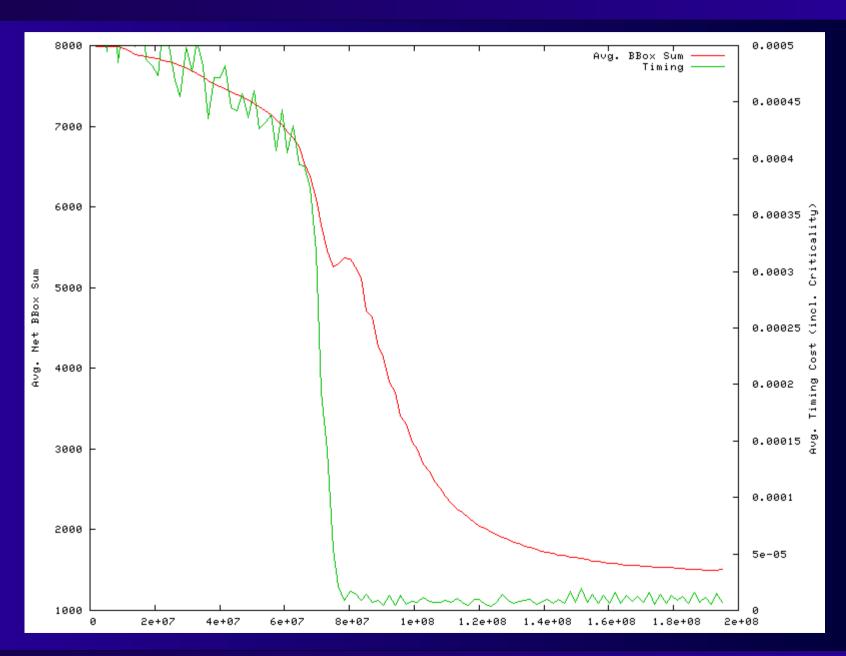
VPR Simulated Annealing 1



VPR Simulated Annealing 2



VPR Simulated Annealing 3



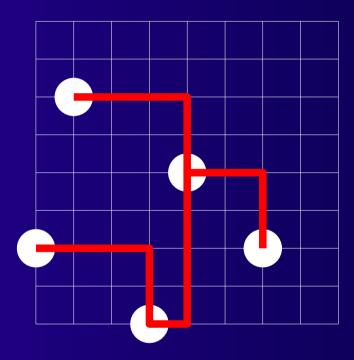
Weiteres Vorgehen

- Für 1. Abgabe der 4SWS'ler
 - Donnerstag, 8.11.: Kolloquien
 - **♦** Termine?
 - Freitag, 16.11.: Vorträge (je ca. 20 Minuten)
 - In gleicher Reihenfolge
- Für alle
 - Keine Vorlesung am Dienstag, 6.11.

Zusammenfassung

- Längenmaße
- VPR
 - Adaptives Simulated Annealing
 - Selbstnormalisierende Kostenfunktion
 - Schnelle Netzumfangsberechnung
 - Gesamtalgorithmus
- Papers auf Web-Seite
 - Cheng 1994: q(i) Korrekturfaktoren
 - ... sonst eher schlecht zu lesen
 - Marquardt & Betz: VPR
 - 1997 Grundlagen
 - 2000 Timing-gesteuerte Betriebsart (Criticality, etc.)

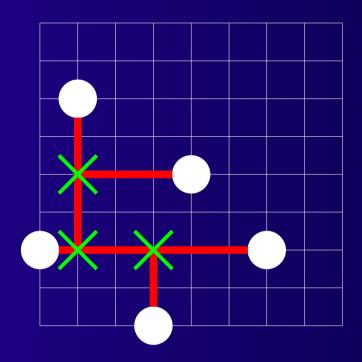
Minimaler Rechtwinkliger Überspannender Baum (MRST)



$$L_R = 19$$

- Sonderfall von MRST im Raster
 - In P via Prim's Algorithmus (im Buch 3.4.4)
 - Vollständiger planarer Graph

Rechtw. Steiner-minimaler Baum (RSMT)



$$L_s = 15$$

 $L_R/L_s = 1.26$

- RSMT-Berechnung ist NP-vollständig
 - Annäherung durch MRST: max. 1,5x so lang
 - Bessere Näherungen existieren

- Quadratischer Euklidischer Abstand
 - Arbeitet auf Zellen, nicht auf Netzen
 - ◆ Für Clique-Modell geeignet

$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{ij} [(x_i - x_j)^2 + (y_i - y_j)^2]$$

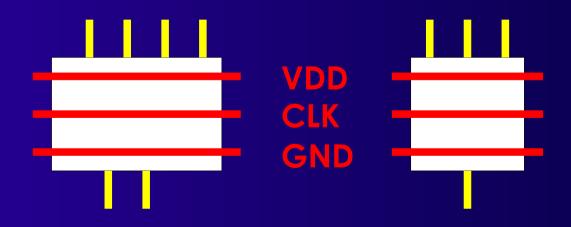
- -γij
 - =0 wenn (vi, vj) ∉ E
 - = |(vi,vj)|: Gewichtet nach Anzahl Kanten
 - < |(vi,vj)|: nicht nur Einzelleitungen</p>

Platzierungsprobleme

- Standardzellen
 - Konstantes Layout auf Zell-Ebene
 - Kaum Variationen bei Abmessungen
 - Semi-Custom
 - Anordnen von Zellen fester Funktionalität
 - ◆ Bibliothek: NAND4, DFF, ...
- Building Block
 - Anordnen von flexiblen Zellen
 - Teilweise Full-Custom möglich
 - Beliebiges Layout auf Zell-Ebene
- MPGA/FPGA
 - Auf vorgegebene Strukturen

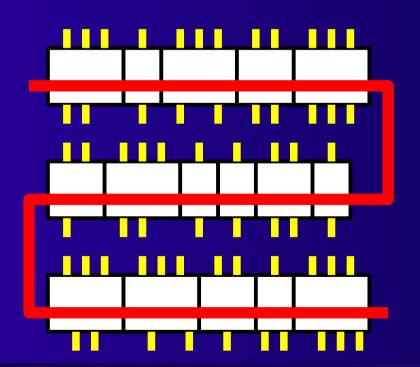
Standardzellen 1

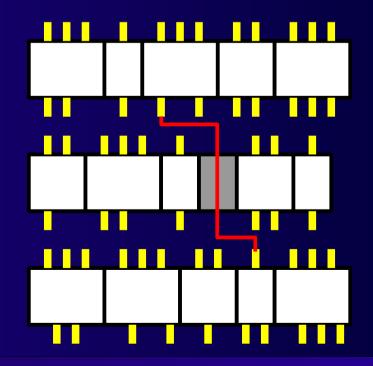
- Standardzellen (Semi-Custom)
 - Kleinere Schaltungen (Gatter) aus Bibliothek
 - Festes Layout
 - ◆ Grösse
 - Terminal-Anordnung
 - Anreihbar in Zeilen
 - Logistische Signale



Standardzellen 2

- Zeilenweise Anordnung
- Verdrahtung zwischen Zeilen
- Ausnahmen
 - Angrenzende Verbindungen (abutment)
 - Durchleitungen (feedthroughs)





Building Blocks 1

- Mehr Flexibilität
 - Kann auch Full-Custom Teile enthalten
 - Automatisch generierte Blöcke (z.B. RAM)
- Verdrahtungskanäle an allen Seiten

