24 CHAPTER2 Background and Previous Work

perature equals the maximum cost change caused by any one move at that tempera-
ture.

The schedule of Lam and Delosme [83], employs feedback control to set the anneal-
ing schedule. It monitors the standard deviation of the cost, the average cost, and the
fraction of proposed moves that were accepted, o, over the past T moves. Typically 1
is 100. These values are inputs to a sophisticated feedback system that determines a
new temperature. In this schedule, a new temperature is computed every move — that
is, the “inner loop” in Figure 2.9 exccutes only one iteration each time control reaches
it. The anneal terminates when there has been no change in the average cost for the
last kT moves, where k is typically 5. This annealing schedule also employs a range
limiter to control the move generation process. The Ry;;; parameter in Figure 2.9
controls how close together blocks must be to be considered for swapping. Initially,
Ryimi¢ s fairly large, and swaps of blocks far apart on a chip are likely. Throughout
the anneal, Rj;; is adjusted to try to keep the fraction of moves accepted at any tem-
perature close to 0.44. If the fraction of moves accepted, ., is less than 0.44, Ry is
reduced, while if o is greater than 0.44, Ryjm; is increased.

One disadvantage of the Lam schedule is its complexity. Fortunately, Swartz and
Sechen have developed an annealing schedule incorporating some of the key ideas of
the Lam schedule, and which achieves equivalent quality, but is much less complex
[84]. In this schedule, the number of moves attempted in the “inner loop” is 10 -
Nblocksl'33- The range limiter, Ry is updated according to a fixed (hard-coded)
schedule; the exact form of Ry is not specified in [84], but it likely initially spans
the entire chip, and gradually shrinks to a small region. The “outer loop” is executed
150 times, and then the anneal terminates. The temperature is controlled by the frac-
tion of moves accepted:

o-0.44
by] old»

T [1 ol 2.3)

where 0.44 is desired acceptance rate, and 40 is a damping coefficient to prevent wild
oscillations in temperature. While this schedule is much simpler than Lam’s, it has
sacrificed some of the adaptability of the Lam schedule, since the range limiter varia-
tion and the number of outer loop iterations are now hard-coded.

Since the amount of routing in FPGAs is limited and set by the manufacturer when
the FPGA is fabricated, some FPGA placement tools attempt to optimize not just the
wirelength of a placement, but also its routability. In [85], Ebeling et al describe a
simulated annealing based placer that targets the Triptych FPGA developed at the
University of Washington. Its cost function incorporates not only a bounding-box
wirelength term, but also a “porosity” term that monitors the fraction of logic blocks

22 CAD for FPGAs 25

in a local area that are being used. Since the Triptych FPGA is usually unroutable in
regions where the logic blocks are completely used, maintaining a porosity of 50% or
so across the FPGA is essential. In [86, 87], Nag and Rutenbar describe a simulated
annealing based tool that performs placement and routing simultaneously in one com-
bined step. After any swap of blocks, all the affected nets are re-routed via a maze
router. To keep the CPU time reasonable, this maze router is constrained to look at
only a small number of potential routes when the temperature is high; at lower tem-
peratures, the router is allowed to spend more time looking for routes. If no suitable
route is found among the allowed candidates, the net is marked as currently
unroutable, and the placement cost is increased. The result quality of this tool is high,
but the CPU time required is very large — a circuit containing only 461 Xilinx 4000
logic blocks required 11 hours of CPU time to place and route, and the complexity of
this algorithm appears to be approximately O(n3), where n is the number of logic
blocks in a circuit. Alexander et al have created a partitioning-based algorithm, FPR
[88], that performs placement and global routing simultaneously, again in an attempt
to maximize circuit routability.

Some work has also been done in routability-driven standard cell placement that is
applicable to FPGAs. Cheng [89] describes a simulated annealing placer that divides
a chip into many subregions and estimates the demand for wiring in each region. This
demand is compared to the supply of routing in each region, and when the expected
demand outstrips the routing supply in some regions the placement is penalized by
having its cost increased. Dividing the chip into subregions and estimating wiring
demand makes localized congestion visible, and merely estimating the wiring
demand in a region is faster than actually routing each placement proposed during the
anneal.

2.2.3 Routing

Once locations for all the logic blocks in a circuit have been chosen, a router deter-
mines which programmable switches should be turned on to connect all the logic
block input and output pins required by the circuit. In FPGA routing, one usually rep-
resents the routing architecture of the FPGA as a directed graph [86, 85]. Each wire
and each logic block pin becomes a node in this routing-resource graph and potential
connections become edges. Some prior research has represented FPGAs as undi-
rected graphs [90], but a directed graph representation is needed if directional
switches, like tri-state buffers and multiplexers, are to be modelled correctly.

Routing a connection corresponds to finding a path in this routing-resource graph
between the nodes representing the logic block pins to be connected. To avoid using
up too many of the limited number of wires in an FPGA, one wants this path to be as
short as possible. As well, it is important that the routing for one net not use up rout-

26 CHAPTER 2 Background and Previous Work

ing resources another net needs, so most FPGA routers have some kind of congestion
avoidance scheme to resolve contention for routing resources. An additional optimi-
zation goal is to make nets on or near the critical path fast by routing them using short
paths and fast routing resources. Routers that attempt to optimize timing in this way
are called timing-driven, whereas delay-oblivious routers are purely routability-
driven. Since most of the delay in FPGAs is due to the programmable routing, tim-
ing-driven routing is crucial to obtain good circuit speeds.

FPGA routers can be divided into two groups. Combined global-detailed routers (85,
90, 91, 92, 93, 94, 95, 96] determine a complete routing path in one step, while two-
step routing algorithms first perform global routing [97, 98] to determine which logic
block pins and channel segments each net will use, and then perform detailed routing
[99, 100, 101, 34] to determine the wire(s) each net will use within each of the speci-
fied channel segments. A channel segment is the length of routing channel that spans
one logic block — a channel that spans M logic blocks contains M channel segments.
The task of an FPGA detailed router is often difficult or impossible because FPGA
routing has limited flexibility and the detailed router is highly constrained by the deci-
sions the global router made about which channel segments each net must use. Com-
bined global-detailed routers have the potential to more fully optimize the routing,
since they are free of such constraints.

Of the routers listed above, only those of [83, 95, 94] use timing analysis (see Section
2.2.5) to determine which nets are on, or “almost” on, the critical path so they can be
given priority for fast routing paths. Since much of our work is concerned with tim-
ing-driven routing, we will focus on these three algorithms. At their core, all these
routers use variants of maze routers [102] to connect the terminals of each net. A
maze router essentially consists of running Dijkstra’s algorithm [103] to find the
shortest (lowest total cost) path between a net source node and a net sink node in a
routing-resource graph. All of these algorithms perform multiple routing iterations in
which some or all of the nets are ripped-up and rerouted by different paths to resolve
competition for routing resources or improve circuit speed. Both [94] and [95] use
timing analysis only to help identify good nets to rip-up and re-route — nets which
are likely to lead to a circuit speed-up if they can be rerouted using a faster path. Rip-
ping-up and re-routing these nets only changes the net ordering, however; they are all
routed by the same maze routing algorithm, regardless of how timing-critical they are.
The PathFinder negotiated congestion-delay algorithm [85] uses a more sophisticated
technique in which the congestion-delay trade-off of each connection is controlled by
how timing critical it is. In other words, a timing-critical connection will be routed by
a minimum delay path even if it is congested, while a non-timing-critical net will take
a longer, uncongested path. This algorithm produces excellent results and incorpo-
rates several important ideas, so we describe it in detail below.

22 CAD for FPGAs 27

Pathfinder repeatedly rips-up and re-routes every net in the circuit until all congestion
is resolved — this idea is due to Nair [104]. Ripping-up and re-routing every net in
the circuit once is called a routing iteration. During the first routing iteration, every
connection is routed for minimum delay, even if this leads to congestion, or overuse,
of some routing resources. A circuit routing in which some routing resource is over-
used, such as a wire being used by two different nets, is not a legal routing. Conse-
quently, when overuse exists at the end of a routing iteration, another routing iteration
(or more) must be performed to resolve this congestion. After each routing iteration
the cost of overusing a routing resource is increased, so that the probability of resolv-
ing all congestion increases. At the end of each routing iteration we have a complete,
but potentially somewhat illegal, routing. We can therefore determine the net delays
from this routing, and perform a full timing analysis to compute the slack (see Section
2.2.5) of each source-sink connection. These slack values are used in the next routing
iteration to control how much attention each connection pays to delay, and how much
is paid to congestion-avoidance. Pseudo-code for the algorithm is given in
Figure 2.10.

The criticality of the connection from the source of net i to one of its sinks, j, is:

Crit(iy j) = 1—”“T”k("’—f—) 2.4)

max

where Dy, is the delay of the circuit critical path, and slack(i,j) is the amount of
delay that could be added to this connection before it affected the circuit’s critical
path. Crit(i,j) is therefore between 0 and 1.

The cost of using a routing resource node, n, as part of connection (i,j) is
Cost(n) = Crit(i, j) - delay(n) + [1 - Crit(i, j)] - [b(n) + h(n)] - p(n). (2.5)

The first term in (2.5) is the delay sensitive term — the criticality of the connection
times the intrinsic delay of the node. The second term is the congestion sensitive
term. b(n) is the base cost of node n, and is set equal to delay(n) in [85]. h(n) is the
historical congestion of node n; it is increased after every routing iteration in which
node n is overused and gives the router “congestion memory.” p(n) is the present con-
gestion cost of node n; it is 1 if using this node to route the current connection will not
cause any overuse, and increases with the amount of overuse of the node. p(n) is also
a function of the number of routing iterations that have been performed. In early iter-
ations, p(n) grows slowly with the current overuse of node n; in later iterations, p(n)
goes up very rapidly with overuse of node n.

28 CHAPTER 2 Background and Previous Work

Let: RT(i) be the sct of nodes, n, in the current routing of net(i).

Crit(i,j) = 1 for all nets i and sinks j;
while (overused resources exist) { /* Illegal routing? */

for (each net, 1) {
rip-up routing tree RT(i) and update affected p(n) values;
RT(i) = NetSource(i);

for (each sink, j, of net(i) in decreasing crit(i,j) order) {
PriorityQueue = RT(i) at PathCost(n) = crit(i,j)-delay(n) for
each node n in RT(i);
while (sink(i,j) not found) {
Remove lowest cost node, m, from PriorityQueue;
for (all fanout nodes n of node m) {
Add n to PriorityQueue at PathCost(n) =
Cost(n) + PathCost(m);

}
for (all nodes, n, in path from RT() to sink(i,j)) { /* Backtrace */

Update p(n);
Add n to RT(i);

}
Update h(n) for all n;

Perform timing analysis and update Crit(i,j) for all nets i and sinks i
} /* End of one routing iteration */

FIGURE 2.10 Pseudo-code of the Pathfinder routing algorithm.

The excellent performance of Pathfinder is due to two innovations: allowing overuse
of routing resources, and using the cost function of (2.5) to allow congestion to grad-
ually be resolved, and timing to be directly optimized. By slowly increasing the cost
of congestion, via p(n) and h(n), as more routing iterations are performed, connec-
tions that are on or near the critical path tend to take the fastest paths and stay there,
while less timing-critical connections are gradually forced off any overused nodes
onto slower paths.

Notice that the router of Figure 2.10 uses a breadth-first search through the routing
resource graph to connect net terminals. The creators of Pathfinder [85] also describe

22 CAD for FPGAs 29

an enhancement to the basic algorithm that uses an A*, or directed, search [105] to
speed execution. In Figure 2.10 a node is added to the priority queue with a PathCost
equal to the sum of all the node costs along the path up to and including it. To convert
this to an A* search, one simply adds this term to a lower bound on the sum of the
node costs needed to reach the target sink from the current node; the result is then
used as the sort value when the node is added to the priority queue.

Finally, Ebeling et al [85] also describe a purely routability-driven variant of the Path-
finder router, which they call the Pathfinder negotiated congestion algorithm. This
algorithm simply sets the criticality of every net, Crit(i,j), to O so that the cost of a
node is given solely by the congestion-sensitive term in (2.5). As well, this router
connects the current routing tree to the first net sink found, rather than a pre-deter-
mined target sink, during maze expansion.

The router used in the simultaneous placement and routing tool developed by Nag and
Rutenbar [86] has one unique feature of interest. This router is again maze-router
based, and it is targeted at Xilinx XC4000 series FPGAs. When routing a multi-ter-
minal net, a maze router will typically route to the closest sink, and then use this par-
tial routing as the source (start point) when it attempts to route to the next closest sink,
and so on. This can cause problems when routing high-fanout nets on FPGAs that
contain some long wire segments. High-fanout nets typically span most of the FPGA,
but the distance from one sink to the next closest sink is usually only a few logic
blocks. Consequently, a traditional maze router, that looks only at how to connect the
partial routing to the next closest sink, will tend to use short wires to build the routing
trees for high-fanout nets, even though using longer wires would be more efficient and
result in faster nets. Nag solved this problem by dramatically reducing the cost of
using a long line when the net bounding box spanned most of the FPGA. The router
then saw the cost of using a long wire to be less than that of even one short wire, so it
would use long lines to connect even to nearby sinks and construct a routing tree of
long wires for high-fanout nets. This idea of varying the cost of resources depending
on the type of connection being routed, or dynamic weighting, is a powerful one; in
some sense Pathfinder’s varying the weighting of delay and congestion according to
the criticality of the connection being routed is another example of this idea.

One shortcoming of current non-commercial timing-driven FPGA routers is that they
are designed to optimize only the linear delay model, in which every routing resource
has a fixed delay.l Most FPGAs contain at least some pass transistor switches in their
routing, so the delay of a routing resource actually depends on the topology of the net

1. SEGA can use a more advanced delay model, but [36] showed that SEGA achieved better
speed with a cost function that emphasized recombining the two-point nets passed to it by
the global router into multi-terminal nets than it did with this delay-based cost function.

30 CHAPTER 2 Background and Previous Work

using it. As well, since the FPGAs we study in Chapter 7 include buffers in the rout-
ing, the router must understand when to use a buffered switch and when to use a pass
transistor. Unfortunately, no non-commercial FPGA router is “buffer-aware” The
Xilinx commercial router, described by Trimberger in [106], is buffer-aware and uses
the Penfield-Rubinstein [107] delay model during routing. It is likely that the routers
of other FPGA companies whose products contain a mix of pass transistors and buff-
ers are also buffer-aware, but to our knowledge the algorithms used by these other
companies have never been made public.

Considerable work has been done in the standard cell and MPGA routing areas on
routing under more accurate delay models [108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121] and buffer insertion [122, 123, 124, 125, 126]. How-
ever, much of this work is not easily applicable to the FPGA routing problem because:

1. MPGA and standard cell routers can choose exactly where they want wires, how
long these wires should be, and where buffers should be placed. Since all FPGA
routing resources are prefabricated, however, FPGA routers are constrained to
choose from a set of prefabricated wires and switches. The flexibility of FPGA
routing is low enough that if the router decides to connect two wires together it
usually has no further choice about whether to insert a buffer or not at the join.
There is usually only one switch that can connect these two wires, and whether it
is a buffer or a pass transistor was determined when the FPGA was fabricated. In
graph theoretic terms, FPGA routing consists of finding Steiner trees embedded in
a graph, while MPGA routing consists of finding Steiner trees embedded in the
Manhattan plane [90].

2. The complexity of many MPGA and standard cell routing algorithms is quite high
— O(k3) to O(k4) is common, where k is the number of terminals on a net. Since
we will be routing circuits with thousands of nets, and a few of these nets have
hundreds of terminals, we must use algorithms with reasonably low (ideally lin-
ear) complexity [127].

Nonetheless, some ideas from the MPGA world are relevant to our work. For exam-
ple, in the absence of congestion, PathFinder attempts to greedily optimize a combi-
nation of wirelength and (linear delay model) delay to a net’s sinks, which is similar
to the approach of Alpert et al in [110]. In a similar vein, [109] and [111] attempt to
greedily optimize a combination of the Elmore delay and wirelength; it should be pos-
sible to adapt these algorithms to FPGAs. The time complexity of these algorithms is
quite high, however. The algorithm of [111] is O(k4), and while the authors do not
give the complexity of their algorithm in [109], it appears to be at least O(k3). Since
adapting these algorithms to FPGAs involves routing within a large routing-resource
graph, their complexity may increase even further and make them impractical.

2.2 CAD for FPGAs 31

2.2.4 Delay Modelling

One must compute the delay of a route from a net source to any of its sinks in order
to:
1. Determine the speed of a circuit after it has been routed, and

2. Determine the delay of different net topologies during routing.

Ideally, one would use a circuit simulator such as SPICE to obtain highly accurate
delay estimates, but the CPU time required to run SPICE on the thousands of nets in a
typical circuit is prohibitive. Instead, previous researchers have modelled pass tran-
sistors as linear resistors and wires as an RC pi-network, so that a net’s routing may
be modelled as an RC-tree [22]. In [22], the Penfield-Rubinstein delay model [107]
was then used to determine an upper and lower bound on the delay of the RC-tree to
each of the net sinks. An alternative to the Penfield-Rubinstein model is the Elmore
delay [128], which is the most widely used delay estimate in routing research [108].
The Elmore delay was originally defined only for RC-trees, but it has been combined
with a common model of buffer delay to allow its use with circuits that contain buff-
ers, as well as resistors and capacitors [112]. Each buffer is modelled by a constant
delay and a resistor. The constant delay accounts for the intrinsic delay of the buffer,
while the resistance accounts for the load-dependence of the buffer delay. Figure 2.11
shows the RC-model for each of the three elements of FPGA routing. Note that pass
transistors and buffers attached to a wire add parasitic capacitance regardless of
whether they are on or off.!

The Elmore delay of a source-sink path is then [112]:

R;- C(subtree)) + T, ; (2.6)

i € Source-sink path

where Ty ; is the intrinsic delay of a buffer if element i is a buffer, and O otherwise. R;
is the equivalent resistance of element i (Ry;re, Rpyf, OF Rpgas). In (2.6?, C(subtrt?ei) is
the total capacitance of the dc-connected subtree rooted at element i — that is the
total downstream capacitance which is not isolated by buffers.

1. Notice that we model the capacitance of both “on” and “off” pass transistors as being purely
due to diffusion capacitance. In fact the capacitance of an “on” pass transistor is larger than
that of an “off” pass transistor, since the channel created when a transistor is “on” has capac-
itance to the gate and to the substrate. Since relatively few pass transistors are “on” at any
time and most of the capacitance in an FPGA is metal capacitance, the error in total capaci-
tance caused by this approximation is small (~1% to 2%).

76 CHAPTER 4 Routing Tools and Routing Architecture Generation

4.3 Routability-Driven Router 77

4.3 Routability-Driven Router

Recall that VPR incorporates two different routers: one that is purely routability-
driven, and one that is both routability and timing-driven. Both these routers can per-
form either combined global-detailed routing or global routing alone simply by
changing the routing-resource graph passed to them. In this section we describe a
purely routability-driven router, while the next section describes the timing-driven
router. Once a routing is complete, VPR’s graphics can be used to examine it — see
Appendix A for sample pictures.

4.3.1 Cost Functions and Routing Schedules

Our routability-driven router is based on the Pathfinder negotiated congestion algo-
rithm [85]; this purely routability-driven variant of the Pathfinder algorithm was
described in Section 2.2.3. In the discussion below we will focus on new enhance-
ments in our router and on important portions of the algorithm implementation that
were not described in [85].

We define the cost of a node somewhat differently than [85] (see Equation (2.5)); the
cost of using routing resource n when it is reached by connecting it to routing
resource m is:

Cost(n) = b(n)- h(n) p(n)+ BendCost(n, m), (4.3)

where the b(n), h(n) and p(n) are the base cost, historical congestion, and present con-
gestion terms defined in Section 2.2.3. The BendCost(n,m) term is an enhancement
we have made to improve the results of global routing. It penalizes bends when glo-
bal routing is being performed, since global routes with many bends make it difficult
or impossible for a subsequent detailed routing phase to utilize long wire segments
[36, 31]. Hence reducing the number of bends in a global routing tends to lead to
detailed routes that are both faster and require fewer tracks. If global routing only is
being performed, BendCost(n,m) is 1 if making the connection from node m to node
n implies a bend — i.e. node m is a horizontal channel segment and node n is a verti-
cal channel segment or vice versa. Including this BendCost term in the total cost of
using a node produces routes with very few unnecessary bends and does not signifi-
cantly increase the global routing track count. If combined global-detailed routing is
being performed there is no need to penalize bends, so BendCost(n,m) is always zero
in this case.

Notice that the functional form of (4.3) is different than that of (2.5); we multiply b(n)
and h(n) together rather than adding them. When adding terms in cost functions, it is

important to ensure they are properly normalized to roughly the same range of magni-
tude so that both terms have an effect. We avoid having to normalize h(n) to b(n) by
converting the addition to a multiplication.

In [85], the base cost of a node, b(n) was set to its intrinsic delay. We have found that
this is not the best choice; on average, about 10% fewer tracks per channel are
required when the base costs of Table 4.1 are used instead. Note that the performance
of the router is not extremely sensitive to the exact base costs chosen; the congestion
avoidance terms in (4.3) ensure that the primary goal of the router is congestion
avoidance, regardless of the b(n) values.

TABLE 4.1 Base costs of different types of routing resource.

Routing Resource, n Base Cost, b(n)
Wire segment 1
Logic block output pin 1
Logic block input pin 0.95
Source 1
Sink 0

Four of the five b(n) values in Table 4.1 have virtually the same value — this encour-
ages the router to use as few of these resources as possible to route each connection.
The b(n) value for an logic block input pin and for a sink are set to less than 1 to save
CPU time. Since the maze expansion used to route a connection terminates when it
reaches a sink corresponding to one of the net terminals, some CPU savings can be
obtained by costing resources so that sinks tend to be reached earlier in the maze
expansion. In other words, we would like to cost logic block input pins and sinks so
that the maze expansion checks if the logic block next to a wire segment contains one
of the net sinks for which we are searching before it expands more wire segments. To
achieve this behaviour, a logic block input pin has a base cost of slightly less than 1,
and a sink has a base cost of zero. Since congestion can not occur at sinks, using a
base cost of zero for them will not cause route failures. Using a lower cost for logic
block inputs and sinks in this way speeds the routability-driven router up by 1.5 to 2
times, depending on the FPGA architecture and circuit being routed.

We experimented with several different possibilities for the base costs of wire seg-
ments of different lengths: intrinsic delay, 1, length, the square root of length, and
length+1. For both the routability-driven router described in this section, and the tim-
ing-driven router of the next section, setting b(n) to 1 regardless of a wire segment’s
length yields the best results. Using the intrinsic delay of each routing resource as its

78 CHAPTER 4 Routing Tools and Routing Architecture Generation

b(n) value increased the number of tracks required per channel by 10% on average.
The other choices of b(n) led to performance between these extremes. Setting the
cost of a wire segment to 1 regardless of its length also led to the highest speed cir-
cuits for the routability-driven router, since it encourages connections to use the
smallest number of routing resources possible.

Ebel'ing et al [85] did not describe the exact functional form of the h(n) and p(n) con-
gestion .avoidance terms in (4.3), so we list the equations we use below. The present
congestion penalty is updated whenever any net is ripped-up and re-routed according
to

p(n) = 1+ max(0, [occupancy(n) + 1 —capacity(n)] - pfac) § (4.4)

where occupancy(n) is the number of nets currently using routing resource n, and
capacity(n) is the maximum number of nets that can legally use node n. The histori-
f:al congestion penalty is updated only after an entire routing iteration. Its value dur-
Ing routing iteration i is:

h(n)' = . (4.5)
h(n) " + max(0, [occupancy(n) - capacity(n)] - hﬁw), i>1

The values of hg, and pg, in each routing iteration define what we call the routing
schedule [2]. We have found that it is sufficient to keep hg,. constant for all routing
iterations; the fact that h(n) is incremented after every iteration in which node n is
overused provides sufficient increase in the historical congestion penalty. Any value
of hg,c between 0.2 and 1 works equally well. To achieve the absolute highest quality
results, pg,. should initially be small, allowing congestion with little penalty, and
gradually increase from iteration to iteration. For these highest quality results, Pfac
should be 0.5 or less in the first iteration, and 1.5 to 2 times its previous value in each
subsequent iteration. When the cost of congestion is increased this gradually, how-
ever, it takes several routing iterations (typically 5 - 10) to route even fairly “easy”
routing problems, where there is more routing available than is needed by the circuit,
For such “easy” problems, the router can be sped up by a factor of two to three times
by making congestion very expensive immediately — in this case, we make Pt

10000 in the first routing iteration, ensuring the router will always avoid congestion zll;
it can, even in the first routing iteration. The amount of quality sacrificed by making
congestion expensive immediately is quite small — typically the minimum achievable
track count increases by only 2% to 4%. Throughout this book we will use the slowly
increasing congestion cost schedule to achieve the absolute highest quality, however.

4.3 Routability-Driven Router 79

If a circuit has not routed in 30 routing iterations we normally classify it as
unroutable. Allowing the router to try 45 routing iterations before giving up reduces
the minimum track count by only 1% to 4%, on average.

4.3.2 Speed Enhancements

In addition to tuning the routing schedule and optimizing the routing-resource base
costs, we made two other speed enhancements to the Pathfinder negotiated-conges-
tion algorithm. First, we do not allow net routings to go more than three channels out-
side of their net bounding box. Since our routability-driven router uses a breadth-first
maze router to make connections, this enhancement significantly reduces CPU time.
Restricting each route to remain within 3 channels of its bounding box had no notice-
able effect on the quality of the routing.

The second speed enhancement aids the routing of high-fanout nets, and results in an
order-of-magnitude router speedup on large circuits. Recall that to route a k-terminal
net, the maze router contained in VPR is invoked k-1 times. In the first invocation,
the maze routing wavefront expands out from the net source until it reaches any one
of the k-1 net sinks. The path from source to sink is now the first part of this net’s
routing. In a traditional maze router, and in the Pathfinder algorithm, the maze expan-
sion (the PriorityQueue in Figure 2.10) is emptied, and a new wavefront expansion is
started from the entire net routing found thus far. After k-1 invocations of the maze
router all k terminals of the net will be connected.

This approach requires considerable CPU time for high-fanout nets. High-fanout nets
usually span most or all of the FPGA. Therefore, in the latter invocations of the maze
router the partial routing used as the net source will be very large, and it will take a
long time to expand the maze router wavefront out to the next sink. We have devel-
oped a more efficient method. When a net sink is reached, we add all the routing
resource segments required to connect the sink and the current partial routing to the
wavefront (i.e. the PriorityQueue) with a cost of 0. We do not empty the current maze
routing wavefront, but instead continue expanding normally. Since the new path
added to the partial routing has a cost of zero, the maze router will expand around it
first. Since this new path is typically fairly small, it will take relatively little time to
add this new wavefront, and the next sink will be reached much more quickly than if
the entire wavefront expansion had been restarted. Figure 4.11 illustrates the differ-
ence graphically. The shortest path computed to most of the nodes in the wavefront is
still valid after a net sink is reached; we are taking advantage of this by restarting only
a local portion of the wavefront instead of restarting the entire wavefront.

