Algorithmen im Chip-Entwurf 1

Probleme, Werkzeuge und Graphen

Andreas Koch FG Eingebettete Systeme und ihre Anwendungen TU Darmstadt

Orga 1 - Material

- Grundlage der Vorlesung
 - Algorithms for VLSI Design Automation Sabih H. Gerez
 - In Informatikbibliothek vorhanden

Wissenschaftliche Arbeiten ("Papers")

- Wissenstiefe
 - Kein perfektes Verständnis ...
 - ... aber Überblick über das Material
 - Fragen stellen!

Orga 2 - Prüfungsmodus

- Idealerweise in Projektarbeit: 5 SWS
 - Programmierung, Kolloquien, Vorträge
 - Viel Arbeit: 15K-20K LoC in Java
 - Hierfür aber max. 18 Plätze (betreuungsintensiv!)
- Für alle anderen: 2 SWS
 - Normale Prüfung zum Ende der Vorlesung
 - Je nach Andrang mündlich oder schriftlich
 - Optional: Teillösung der ersten Aufgabe zur Anrechnung auf Prüfungsnote

Orga 3 - Mündliche Prüfung

- Nur im Prüfungsmodus 2 SWS relevant
 - Länge ca. 30 Minuten
- Einbringen der ersten Programmieraufgabe
 - Nur Untermenge erforderlich
 - Mündliche Prüfung muß <u>bestanden</u> sein
 - Aufgabe bringt maximal 25 Punkte
 - ◆ 15 P Funktion, 5 P Effizienz, 5 P Code-Qualität
 - Notenverbesserung nach folgendem Schlüssel
 - ◆ Ab 21 Punkte: +1,0
 - ◆ Ab 17 Punkte: +0,7
 - ◆ Ab 13 Punkte: +0,3

Orga 4 - Benotung 5 SWS

- Viel Freiheit bei der Realisierung
- Keine starren Bewertungsrichtlinien
 - Analog zu Diplom-Arbeit etc.
- Grundideen
 - Brauchbar kommentierte, brauchbar dokumentierte und funktionierende Lösung der Aufgabenstellung: 2,0
 - ◆ Kleinere Schwächen: OK
 - Einbußen in Lösungsqualität, Rechenzeit, Speicher, ...
 - Aber Luft nach oben (Richtung 1,0), z.B. für
 - Sehr gute eigene Algorithmen und Datenstrukturen
 - Umfassende Kommentierung und Dokumentation
 - Sehr gute Lösungsqualität
 - Kurze Rechenzeiten
 - Niedriger Speicherverbrauch

Orga 5 - Prüfungsleistung

- Benotete Prüfungsleistung
 - Beginnend <u>in</u> 5. Semesterwoche (1. Abgabe)
 - Gewertet
 - Programme
 - Funktion, Code-Qualität, (Dokumentation)
 - ◆ Kolloquien
 - ◆ Vorträge

- Individuelle Prüfung
 - Nur in Zweifelsfällen
 - Bei nicht nachvollziehbarer Mitarbeit

Orga 6 - Aufbau

- Integrierte Veranstaltung
 - Zu Beginn: Nur Vorlesung (2x pro Woche)
 - Dann: praktische Programmierarbeit
 - In Gruppen
 - ◆ Kolloquien
 - Vorträge
 - Vorlesung nun 1/Woche, am Ende keine mehr
- Kick-Off zu den praktischen Arbeiten
 - Anfang 2. Semesterwoche
 - Vorher Leitfaden lesen!

Orga 6 - Zeitplan und WWW

Geplanter Zeitplan

- Vorlesung
 - ◆ KW 42-44: Di+Fr, KW 45...4: Nur Di 11:40-13:20
 - ◆ Keine mehr in KW 5-7
- Projektarbeit
 - ◆ Abgaben KW 46, 50, 3, 6: Mo 23:59
 - ◆ Vorträge KW 46, 50, 3, 6: Fr 9:50-11:30
 - ◆ Kolloquien KW 45, 50, 3, 6: Do nachmittags

Web-Seite

- http://www.esa.informatik.tu-darmstadt.de
 Unterpunkt "Lehre"
- Material und Ankündigungen

Überblick

- VLSI Entwurf
 - Probleme
 - Bereiche
 - Tätigkeiten
 - → Werkzeuge
- Hierarchie und Abstraktion
- Algorithmische Graphentheorie
 - Strukturen
 - Verfahren

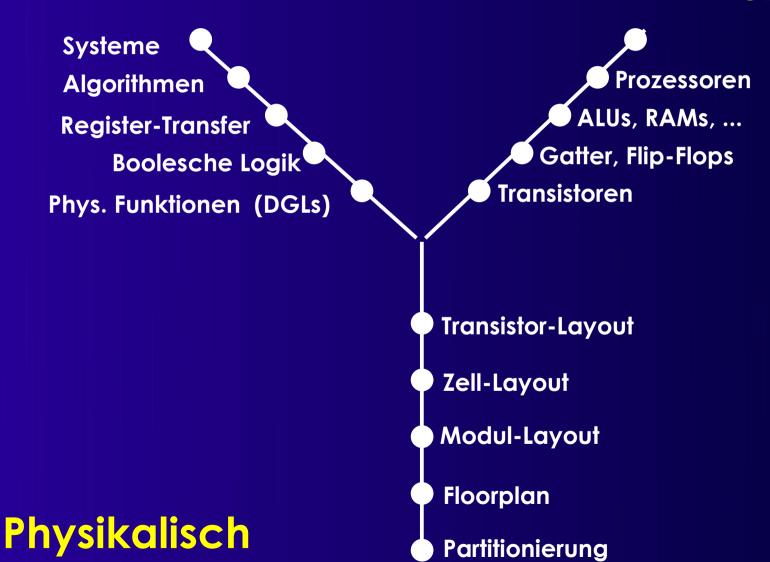
VLSI Entwurfsproblem

- "Implementiere eine Spezifikation in Hardware und optimiere dabei …"
 - Fläche (min.)
 - Stromverbrauch (min.)
 - Geschwindigkeit (max. oder passend)
 - Entwurfszeit (min.)
 - Testbarkeit (max.)
- ,,Alles auf einmal" ist zu komplex
- → Aufteilen und vereinfachen
 - Qualitätseinbußen

Entwurfsbereiche - Gajskis "Y"

Verhalten

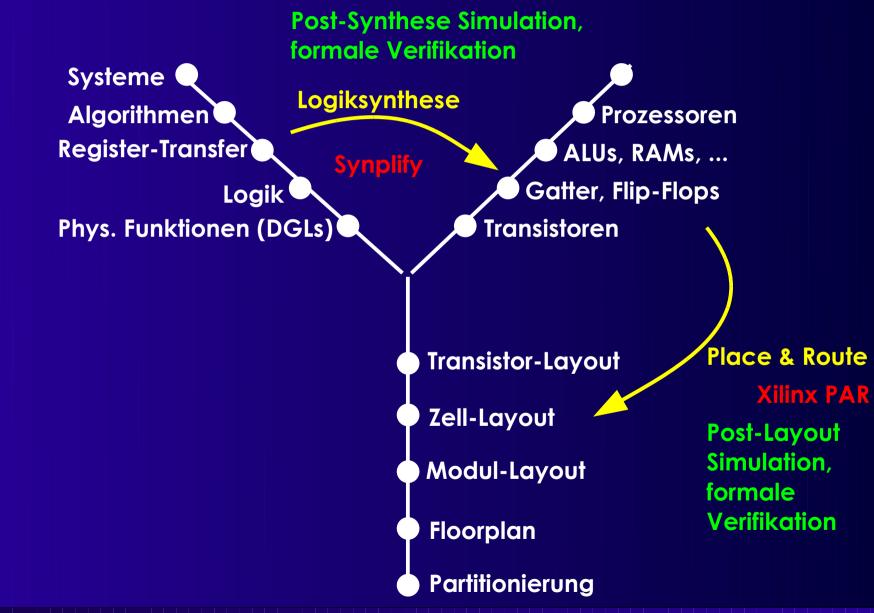
Struktur



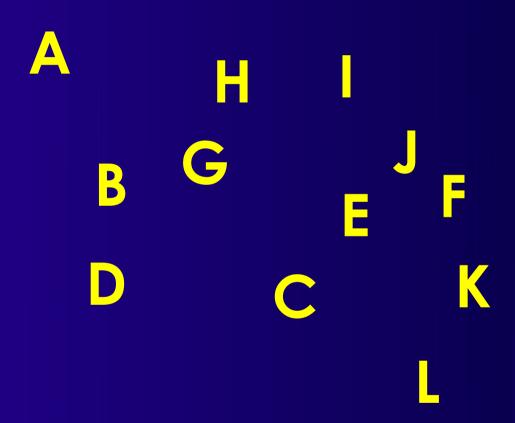
Tätigkeiten

- Synthese
 - Mehr Details durch Anwendung von Regeln
- Verifikation
 - Vergleiche Ergebnis mit Spezifikation
- Analyse
 - Untersuche Eigenschaften eines Ergebnisses
- Optimierung
 - Verbessere ein Ergebnis
- Datenverwaltung

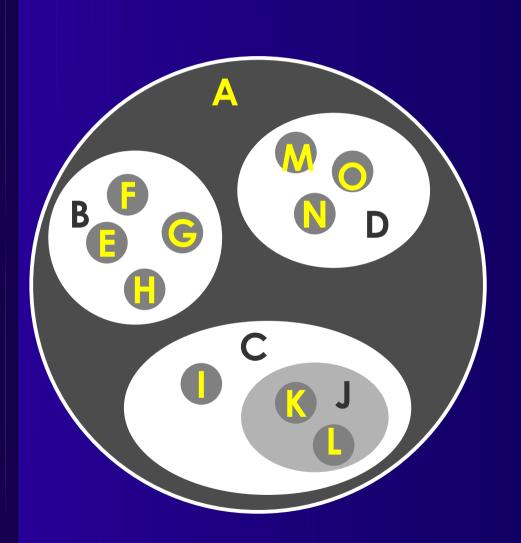
Werkzeuge

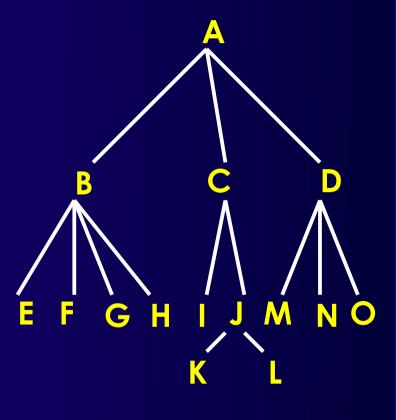


Strukturierung



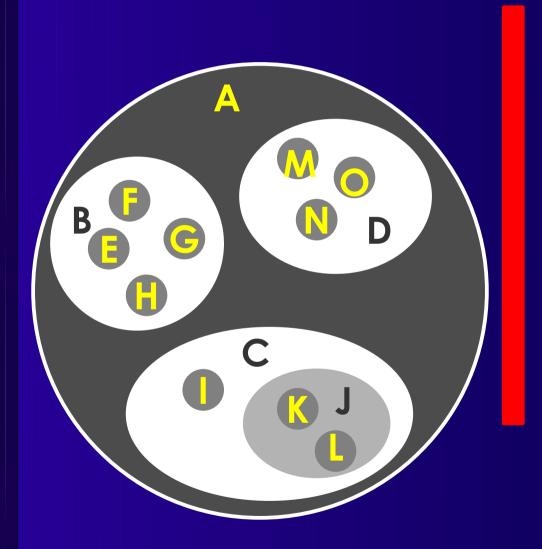
Hierarchie

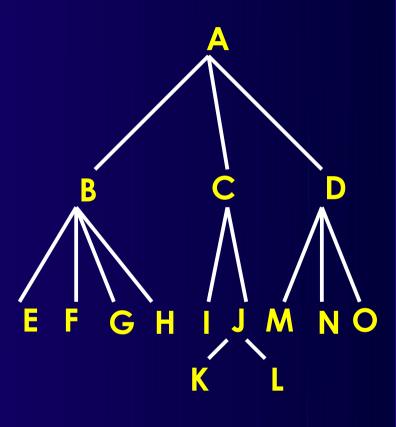




Abstraktion

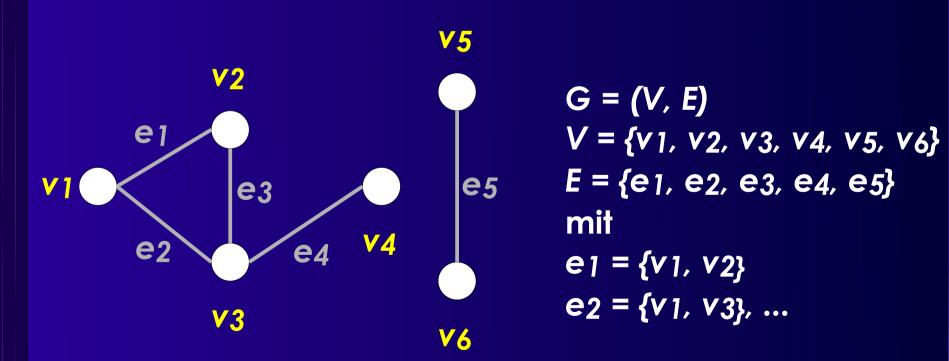
Abstraktionsebene



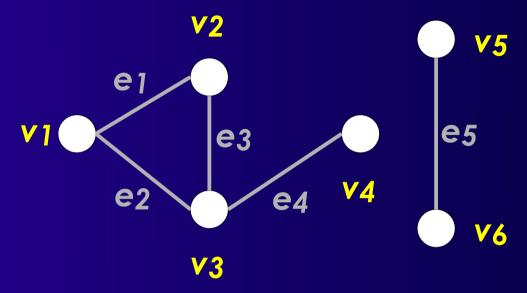


Graphentheorie

- Graph G (V, E)
 - Eine Menge V von Knoten (vertex)
 - Eine Menge E von Kanten (edge)
 - ♦ Kante e = $\{v_1, v_2\}$ verbindet Knoten v_1 und v_2



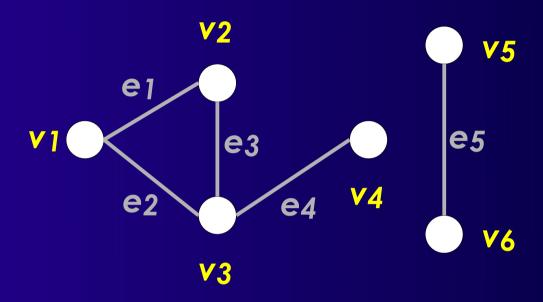
Inzidenz, Adjazenz und Grad



- $= e = \{U, V\} \in E$
 - □ e ist inzident u
 - □ e ist inzident v
 - \square υ ist adjazent v
- Grad $g(v) = |\{e \in E \mid v \in e\}|$

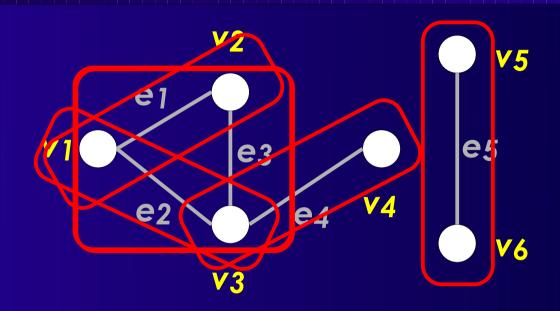
incident incident adjacent degree

Subgraphen



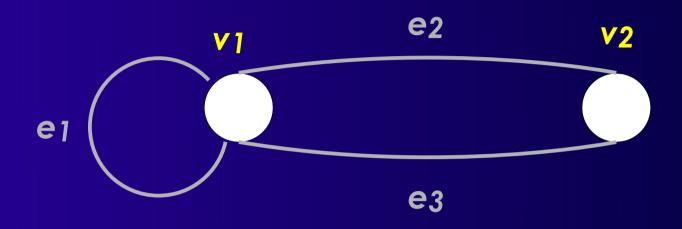
- Subgraph durch Entfernen von Knoten
- Entferne $v \in V$
- → Entferne Kanten inzident zu v

Vollständigkeit und Cliquen



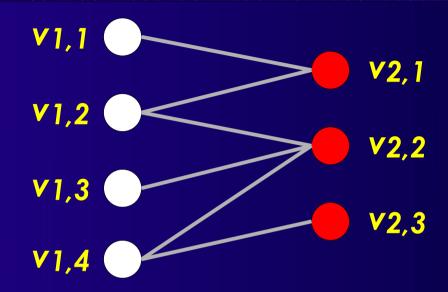
- Komplett untereinander verbundene Knoten bilden vollständigen Graph (complete graph)
- Maximal ausgedehnte vollständige Graphen bilden Cliquen

Schlingen, parallele Kanten



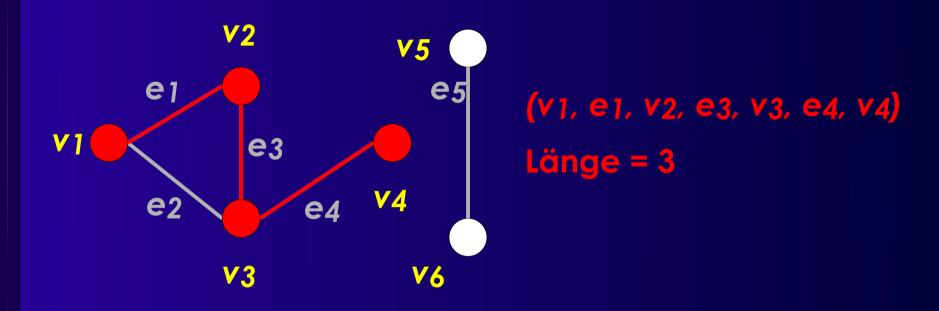
- e₁ Schlinge (selfloop)
- e2, e3 parallele Kanten
- einfache Graphen: weder noch (simple)
- Multigraphen: parallele Kanten OK

Bipartite Graphen



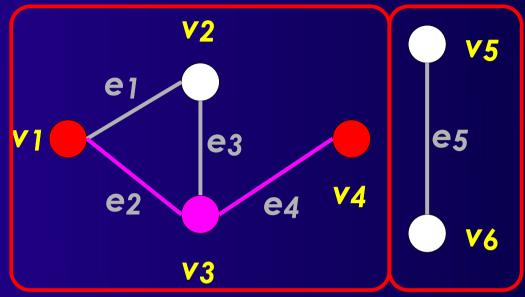
- Kanten nur zwischen Knoten aus nichtüberlappenden Mengen
- $G = (V_1, V_2, E)$ ist bipartiter Graph $\Box V_1 \cap V_2 = \emptyset$
 - $\square E = \{\{U, w\} \mid U \in V_1 \land w \in V_2\}$

Wege und Zyklen



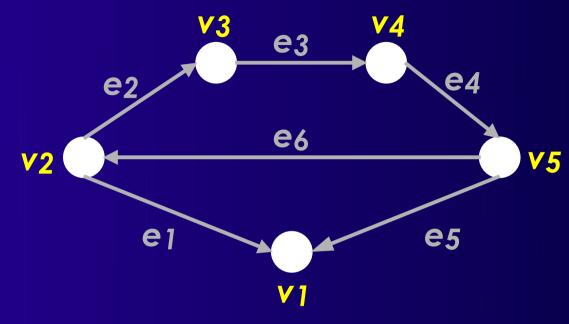
- Weg: Folge von Knoten und Kanten
 - Beginnend und endend mit Knoten
- Länge: Anzahl der Kanten
- Zyklus: Anfang = Ende

Zusammenhang



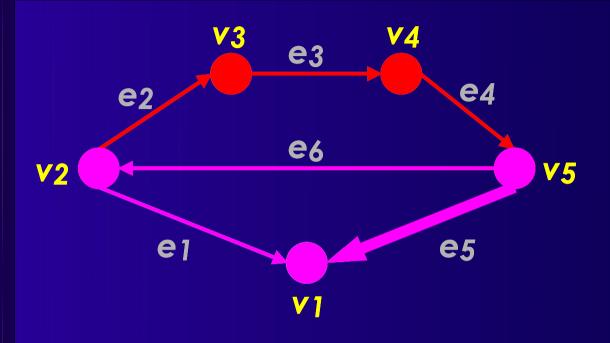
- u hängt mit v zusammen
 - Es gibt einen beide verbindenden Weg
- Zusammenhängender Graph
 - Alle Knoten hängen zusammen.
- Zusammenhängende Komponente
 - Maximale zusammenhängende Subgraphen

Gerichtete Graphen



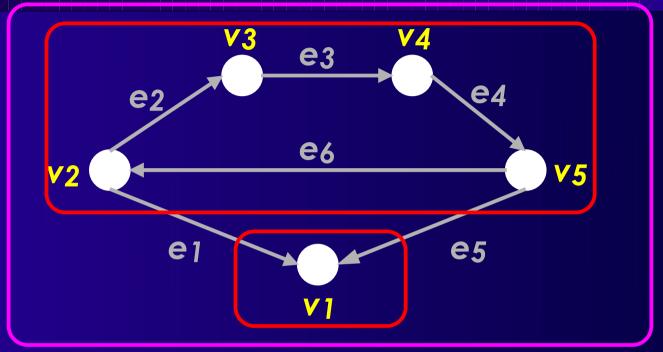
- G(V, E) mit $e = \{u, v\} \land u, v \in E$
 - e inzident von u (ausgehend)
 - e inzident nach v (eingehend)
- Außengrad: Anzahl ausgehender Kanten
- Innengrad: Anzahl eingehender Kanten

Wege und Zyklen



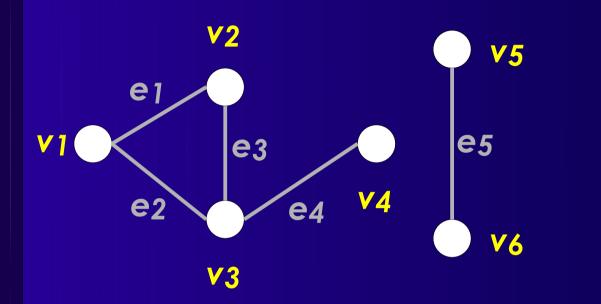
- Gerichteter Weg
- Gerichteter Zyklus
- Weg und Zyklus gelten auch noch!

Zusammenhang



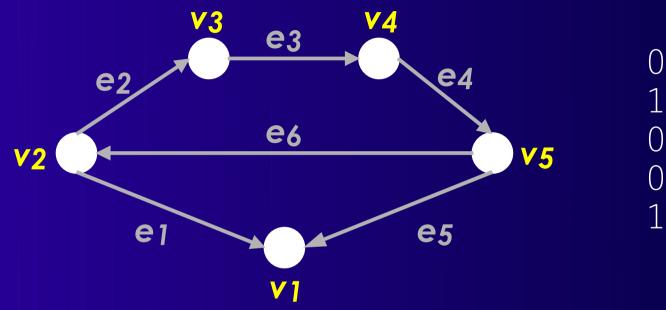
- Starker Zusammenhang
 - Gerichteter Weg von u nach v & von v nach u
- Stark zusammenhängende Komponente
 - Alle enthaltenen Knoten hängen stark zusam.
- Schwacher Zusammenhang: Weg

Datenstrukturen für Graphen



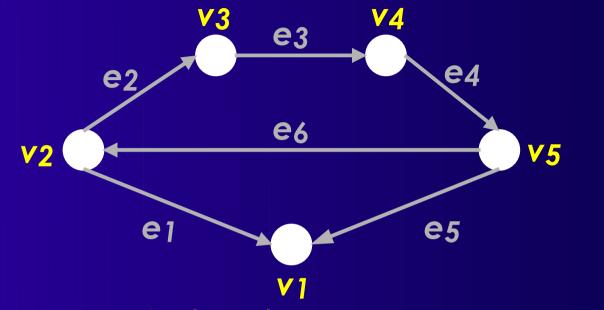
- Adjazenzmatrix AG von G(V,E)
 - \square $n \times n$ Matrix mit n = |V|
 - \square Aij = 1 falls $\{v_i, v_j\} \in E$, sonst = 0
 - □ Symmetrische Matrix

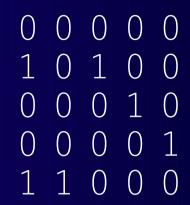
AG für gerichtete Graphen



Matrix nicht mehr symmetrisch

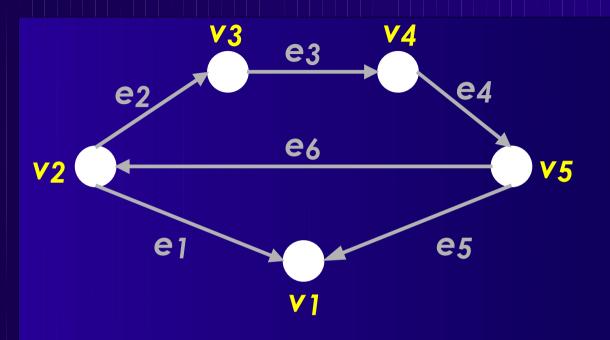
Operationen auf AG-Matrizen



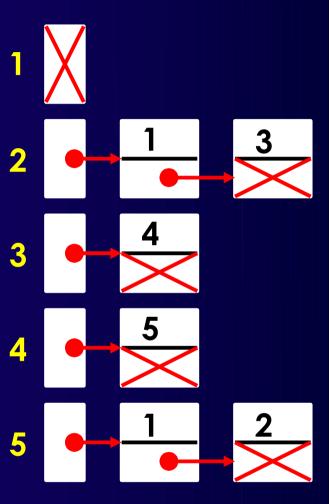


- Test, ob $(v_i, v_j) \in E$
 - □ Nachsehen in Aij: O(1)
- Welche v sind direkt mit u; verbunden?
 - □ Zeile *i* durchgehen: O(*n*)
 - □ Ineffizient bei vielen Nullen

Adjazenzlisten

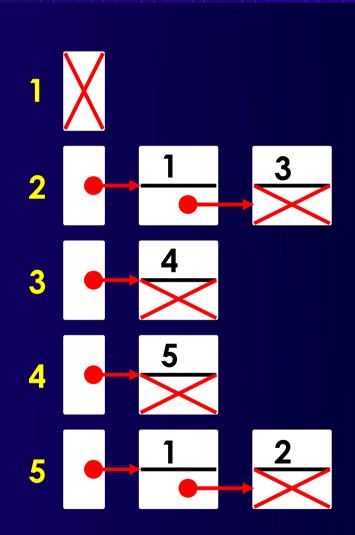


- Array aus Listen
 - Knotennummer ist Index
- Listenelemente
 - Index des Zielknotens
 - Verkettung

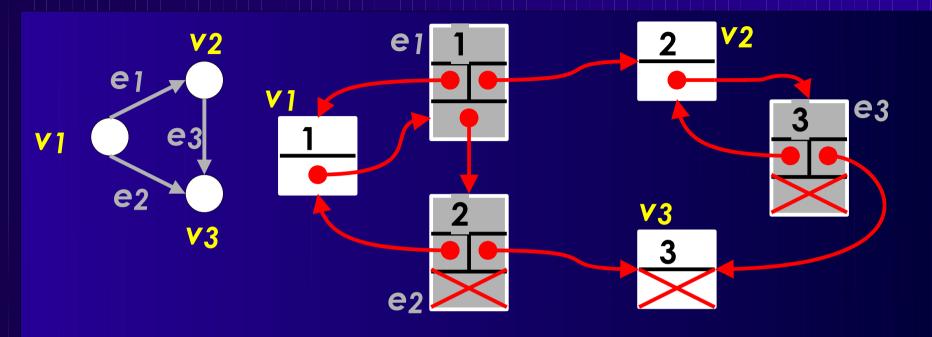


Operationen auf Adjazenzlisten

- Test, ob $(u,v) \in E$
 - durchschnittlicher Außengrad: k(G)
 - \square O(k)
 - □ Unabhängig von *n*
- Welche v sind direkt mit u verbunden?
 - $\square O(k)$



Explizite Knoten und Kanten



- Zugriff auf Knoten und Kanten
- Z.B. Gewichtung von
 - Knoten
 - Kanten

Komplexitätstheorie

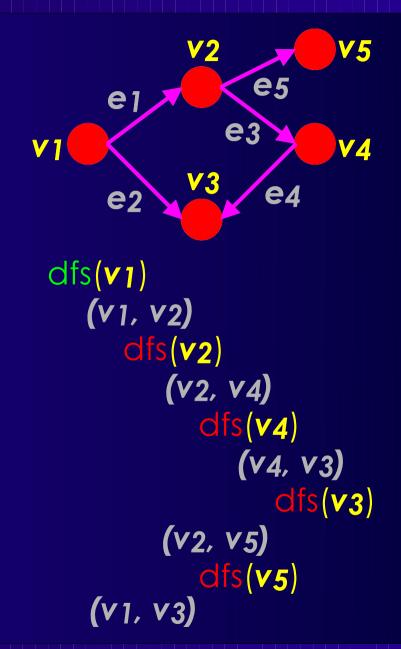
- \blacksquare O und Θ Notation
- Siehe Grundstudium!
- Wichtige Ordnungen
 - Exponentiell, z.B. 2ⁿ.
 - Polynomial, z.B. n³.
 - Quadratisch, z.B. n².
 - Superlinear, z.B. n log n.
 - Linear, z.B. n.
 - Sublinear, z.B. log n
 - Konstant, z.B. 1.

Graphen durchlaufen

- Aufgabe
 - Besuche alle V und E von G(V,E)
 - Jedes Element genau einmal!
- Unterschiedliche Reihenfolgen möglich
- Weit verbreitet
 - Tiefensuche
 - Suche von Ursprungsknoten entfernen
 - Breitensuche
 - Erstmal angrenzende Knoten bearbeiten

Tiefensuche (DFS) - 1

```
dfs(vertex v) {
 v.mark := 0;
 v.process();
 foreach (\lor, \cup) \in \mathsf{E} \{
   (v,u).process();
   if (u.mark) dfs(u);
main() {
 foreach \lor \in \lor
   v.mark := 1;
 foreach \lor \in \lor
   if (v.mark) dfs(v)
```



Tiefensuche (DFS) - 2

- Komplexität für DFS auf G(V,E)
 - Jeder Knoten einmal besucht
 - Jede Kante einmal besucht
 - **→**O(|V|+|E|)
- Anwendungsbeispiele
 - Systematischer Graphdurchlauf
 - Finden der von einem Startknoten aus erreichbaren Knoten
 - Ersetze Schleife in main() durch einfachen Aufruf

Breitensuche (BFS) - 1

```
bfs(vertex v) {
 FIFO Q = ();
 vertex u, w;
 Q.shift in(v);
 do {
  w := Q.shift out();
  w.process();
  foreach (w, \cup) \in E do {
    if (u.mark) {
      u.mark := 0;
      Q.shift in(u);
 } while (Q \neq ())
```

```
main() {
 foreach \vee \in \vee do \vee.mark := 1;
 foreach \lor \in \lor do
   if (v.mark) {
    v.mark := 0;
     bfs(v);
```

Breitensuche (BFS) - 2

```
bfs(vertex v) {
 FIFO Q = ();
 vertex u, w;
 Q.shift in(v);
 do {
   w := Q.shift out();
                                      (\vee 1)
                                                                       (v1,v2)
   foreach (w, \cup) \in E do {
                                      (\vee 2)
                                                                       (v1, v3)
     if (u.mark) {
                                                        v2
                                                                       (\vee 2, \vee 4)
                                      (v2, v3)
       u.mark := 0;
                                                                       (v2, v5)
       Q.shift in(u);
                                      (v3, v4)
                                      (\sqrt{3}, \sqrt{4}, \sqrt{5})
                                                        v3
                                      (v4, v5)
                                                                      (v4, v3)
 } while (Q \neq ())
                                                        V5
                                      (\sqrt{5})
```

Breitensuche (BFS) - 3

- Komplexität für BFS auf G(V,E)
 - Jeder Knoten einmal besucht
 - Jede Kante einmal besucht
 - →O(|V|+|E|)
- Anwendungsbeispiele
 - Systematischer Graphdurchlauf
 - Finden der von einem Startknoten aus erreichbaren Knoten
 - Besuche Knoten in Reihenfolge der Entfernung (Pfadlänge) vom Startknoten

DFS und BFS

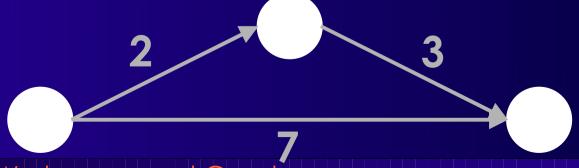
- Weshalb die äußeren Schleifen?
 - Jeweils in main()
 - Um dfs(v) bzw. bfs(v)

```
main() {
  foreach v ∈ V
    v.mark := 1;
  foreach v ∈ V
    if (v.mark)
        dfs(v)
}
```

```
main() {
  foreach v ∈ V do v.mark := 1;
  foreach v ∈ V do
    if (v.mark) {
      v.mark := 0;
      bfs(v);
    }
}
```

Kürzester Pfad

- Bestimme den kürzesten Pfad vom Startknoten zu Zielknoten
 - Manchmal auch: zu allen anderen Knoten
- Bei ungewichteten Graphen z.B. mit BFS
 - Erweitert um Verwaltung der Pfade
- Nicht bei gewichteten Graphen!
 - Niedrige Anzahl von Kanten nicht immer kürzester (leichtester) Weg



Kürzester Pfad nach Dijkstra - 1

```
dijkstra(set<vertex> V, vertex V_S, vertex V_t)
 set<vertex> T; vertex u, v;
  \vee := \vee \setminus \{\vee_S\}; T := \{\vee_S\};
  v_s.dist := 0;
  foreach \cup \in \lor do
   if ((\vee_S, \cup) \in E)
     then \cup.dist := (v_s, \cup).weight;
                                                T= -
                                                           v_i.dist, i=1 2 3
     else u.dist := +\infty;
                                                {V1}
 while (∨† ∉ T) do {
                                                {V1,V4}
   u := V.findmin(dist);
                                                {\\1,\\4,\\5}
   T := T \cup \{U\};
   \vee := \vee \setminus \{\cup\};
                                                {V1,V4,V5,V6}
   foreach (\cup, \vee) \in E do
                                                {V1,V4,V5,V6,V2}
     if (v.dist > u.dist + (u,v).weight)
                                                {V1, V4, V5, V6, V2, V3}
       v.dist := u.dist + (u,v).weight;
```

Kürzester Pfad nach Dijkstra -2

- Komplexität
 - while (v ∉ T): |V|-mal durchlaufen
 - \bullet V.findmin(dist): O(|V|) je Suche
 - \rightarrow O($|V|^2$)
 - foreach $(u,v) \in E$: |E|-mal insgesamt
 - ◆ Einfacher Graph hat max. |V|² Kanten
 - \rightarrow O($|V|^2$)
 - Gesamtaufwand $O(|V|^2+|V|^2) = O(|V|^2)$

Nächste Veranstaltung

- Vorlesung am Freitag
- Vorbereitungstipps
 - Kapitel 6 und 7.1 lesen
 - Ggf. Kapitel 4 (Komplexität) wiederholen

Zusammenfassung

- VLSI
 - Entwurfsbereiche
 - Tätigkeiten
 - Werkzeuge
- Hierarchie und Abstraktion
- Graphentheorie
 - Konzepte und Begriffe
 - Datenstrukturen
 - Algorithmen: DFS, BFS, SP