Algorithmen im Chip-Entwurf 9

Kanalverdrahtung und globale Verdrahtung

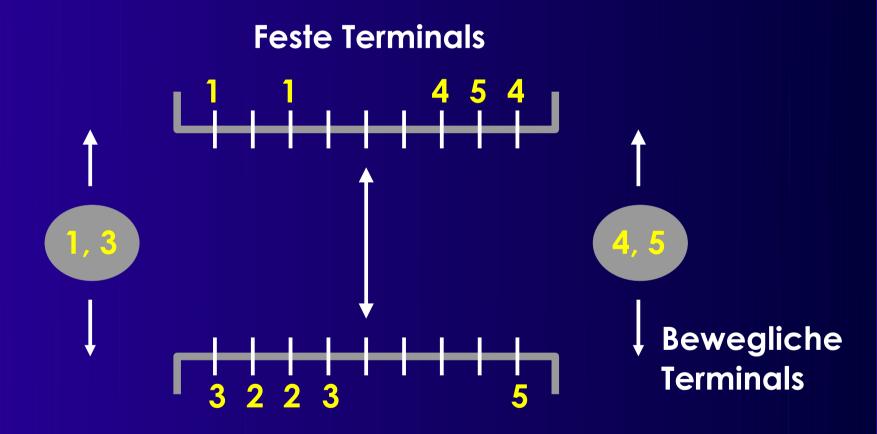
Andreas Koch FG Eingebettete Systeme und ihre Anwendungen TU Darmstadt

Überblick

- Wiederholung
 - H- und V-Einschränkungen
- Kanalverdrahtung
 - Yoeli's Robuster Router
 - Beispiel
- Globale Verdrahtung
- Konstruktion von Steiner-Bäumen
- Zusammenfassung

Kanalverdrahtung 1

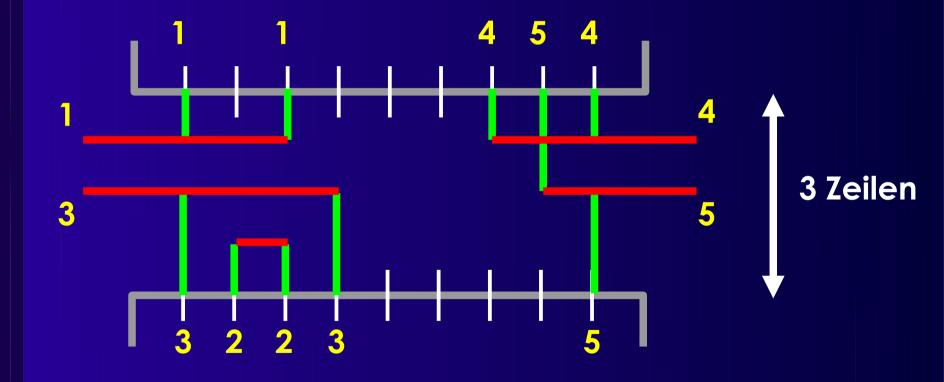
Verdrahtung von Netzen in rechteckigem Kanal



Ziel: min. Fläche, (min. Länge, min. Vias)

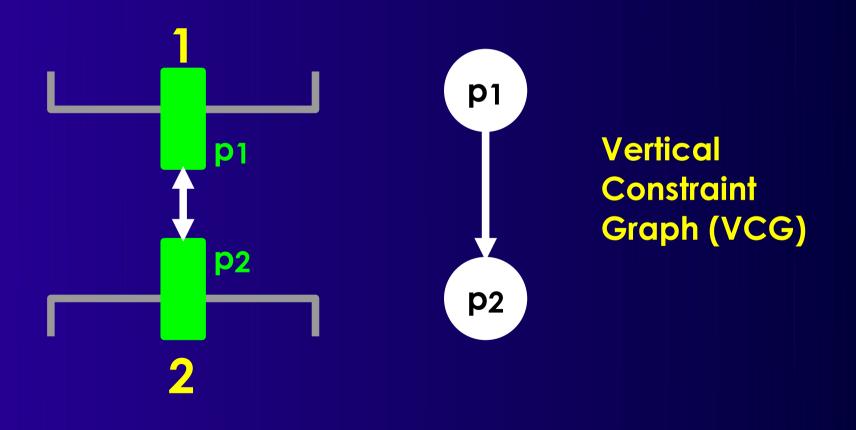
Kanalverdrahtung 2

Beispiel gelöst im klassischen Modell



Vertikale Einschränkungen

- Zwei gegenüberliegende Terminals
 - Oberes Segment in den Kanal muß über unterem Segment in den Kanal liegen
 - ◆ Sonst Kurzschluß



Horizontale Einschränkungen

- Im klassischen Modell
 - Keine Überlappung zwischen H-Segmenten verschiedener Netze in gleicher Zeile
 - Sonst Kurzschluß
- → Horizontale Einschränkung
- Falls keine vertikalen Einschränkungen
 - Keine gegenüberliegenden Terminals
 - Lösung durch Left-Edge Algorithmus (1971)
- Was tun bei H+V Einschränkungen?
 - NP-vollständig!

- Heuristik (Yoeli 1991)
- Algorithmus
 - Iteriert über alle Zeilen im Kanal
 - Verkleinert Problem mit jeder Iteration
 - Wechselt zwischen oberster / unterster Zeile
 - Arbeitet sich zur Kanalmitte vor
 - Zwei Phasen
 - Berechnen von Gewichten für Netze
 - Wie gut wäre aktuelle Zeile für Netz?
 - Selektion von Untermenge mit maximalem Gewicht
 - Heuristik bei Verletzung vertikaler Einschränkungen

- Berechnung der Gewichte wi für Netzi
 - Falls i Spalten der maximalen Dichte überspannt,

$$W_i += B$$
 (B groß)

- Hoffe auf Verringerung der max. Dichte, unabhängig von Seite (steepest descent)
- Falls i ein Terminal auf der <u>aktuellen</u> Seite (oben / unten) auf Spalte x hat,

$$Wi += cl(x)$$
 (für alle Spalten x)

- Bevorzuge Netze mit Terminals auf aktueller Seite
- Für alle Spalten x bei denen eine vertikale Einschränkung verletzt würde,

$$Wi = K d(x) \qquad (5 \le K \le 10)$$

Bestrafe verletzte Einschränkungen

- Regeln typisch für Heuristiken
- Robust
 - Unempfindlich gegen kleine Änderungen
- Nach Bestimmung der Gewichte
 - Finde Netz-Untermenge mit maximalem Gewicht, die in selbe Zeile passen
 - Ohne Verletzung horizontaler Einschränkungen
 - Verwendet Intervallgraph
 - Kante zwischen Knoten überlappender Intervalle

- Unabhängige Menge
 - Menge unverbundener Knoten
- Also gesucht:
 - Unabhängige Mengen maximalen Gewichts
 - Im allgemeinen NP-vollständig
 - Aber für Intervallgraphen in P!
- Vorgehensweise
 - Dynamic Programming
 - Konstruiere optimale Lösung aus Teillösungen
 - lacktriangle Komplexitätsparameter γ : $1 \le \gamma \le \text{Kanallänge}$

- - Betrachte nur Netze mit rechtem Ende ≤ c
- Beispiel
 - i₁=[1,4], i₂=[12,15], i₃=[7,13], i₄=[3,8], i₅=[5,10], i₆=[2,6], i₇=[9, 14]
 - y = 0, y = 1, y = 2, y = 3: \emptyset
 - y = 4, y = 5: {i1}
 - y = 6, y = 7: {i1, i6}
 - y = 8: {i1, i6, i4}
 - ...

- Bestimme Lösung γ =c aus Lösung γ <c
 - Altes Maximalgewicht plus
 Netz n mit rechtem Ende in Spalte c
 - Es ex. max. zwei solcher Netze (Terminals oben & unten)
 - n Teil der optimalen Lösung, falls
 - Gewicht von n plus Gewicht bestehender Netze <u>ohne</u>
 <u>Überlappung</u> mit n >= max. Gewicht ohne n

- Für Spalte c ausgewähltes Netz merken
 - In selected_net[c]
 - Kann leer sein (=0, kein neues dazugekommen)
 - Letztes (=rechtes) Netz immer in Lösung
 - Dann nach links suchen
 - ◆ Nach <u>nicht-überlappendem</u> Netz
 - Wiederhole bis linker Rand erreicht!
- Beispiel: ..., i2=[5,9], i3=[4,6], ..., i7=[1,3], ...
 c= 1 2 3 4 5 6 7 8 9
 s_n[c]= 0 0 7 0 0 3 0 0
 - i2 in Lösung, überspringe i3, i7 in Lösung

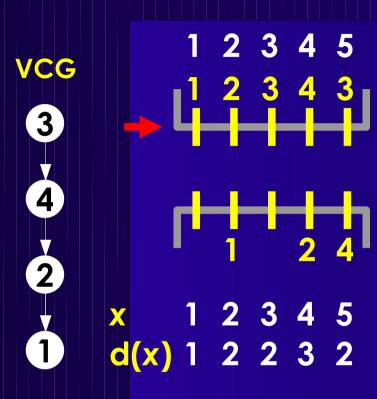
- Annahme: d_{max} Durchgänge reichen
 - Wäre dann optimale Lösung
- Iteration
 - Gewichtsberechnung
 - ◆ Konstruiere
 - Maximal-gewichtige unabhängige Menge
- Aber:
 - Nur Versuch der Vermeidung von V-Konflikten
 - Keine Garantie!

- Falls V-Konflikt unvermeidbar
 - Entferne ein oder mehrere Netze
 - Welche?
 - Heuristik!
 - Verdrahte Netz(e) mit Maze-Routing
 - Gute Umgebung: Viele Hindernisse!
 - Vorgehensweise genannt: Rip-up and Reroute
- Auch hier: Keine Garantie auf Lösung
- → Erneuter Durchlauf mit zusätzlicher Zeile
 - d_{max} war nur untere Schranke für Zeilenzahl
- Ggf. auch zusätzliche Spalte

```
robust router(placed netlist N) {
  set<int> row;
  seq<set<int>> S;
  int[channel width+1] totalwaht, selected net;
  bool top;
  int height, c, r, i;
  top := true;
  height := N.dmax();
  for (r := 1; r \le \text{height}; ++r) \{
    forall "Netze i in netlist N"
      wi := i.compute weight(N, top);
    totalwght[0] := 0;
    for (c:=1; c \le channel width; ++c) {
      selected net[c] := 0;
      totalwaht[c] := totalwaht[c-1];
      if (n = "Netz mit rechtem Term. oben in Spalte c") {
         if (w_n + totalwght[xn_{min}-1] > totalwght[c]) {
           totalwght[c] := w_n + totalwght[xn_{min}-1];
           selected net[c] := n;
      if (n = "Netz mit rechtem Term. unten in Spalte c") {
         if (wn + totalwght[xnmin-1] > totalwght[c]) {
           totalwant[c] := w_n + totalwant[x_nmin-1];
           selected net[c] := n;
```

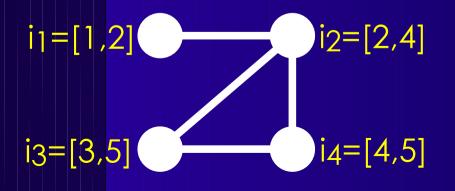
```
row := Ø;
c := channel_width;
while (c > 0)
   if (selected_net[c] != 0) {
        n := selected_net[c];
        row := row u {n};
        c := xnmin - 1;
    } else
        --C;
    S.append(row);
    top := !top;
    N := "N ohne Netze in row";
}
"Maze-Routing bei V-Konflikten"
```

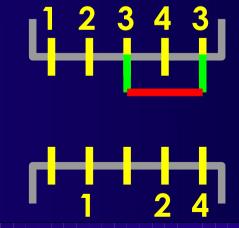
- Ggf. Wiederholung mit
 - * Erhöhter Breite
 - * Erhöhter Länge

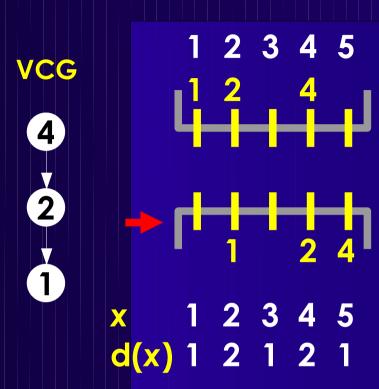


$$B = 1000, K = 5$$

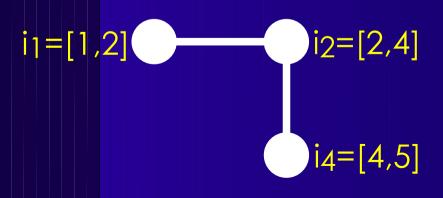
 $w_1 = (0) + (1) + (-5 \cdot 2) = -9$
 $w_2 = (1000) + (2) + (-5 \cdot (2+3)) = 977$
 $w_3 = (1000) + (2+2) + (-5 \cdot 0) = 1004$
 $w_4 = (1000) + (3) + (-5 \cdot 2) = 993$

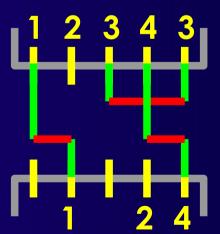






```
w_1 = (1000) + (2) + (-5 \cdot 0)
                               = 1002
w_2 = (1000) + (2) + (-5 \cdot 2) = 992
w_4 = (1000) + (1) + (-5 \cdot 2) = 991
totalwght[0]=0
totalwght[1]=0
totalwght[2]=max(0,0+1002)=1002
totalwght[3]=1002
totalwght[4]=max(1002,0+992)=1002
totalwght[5]=max(1002,1002+991)=1993 sel[5]=4
```





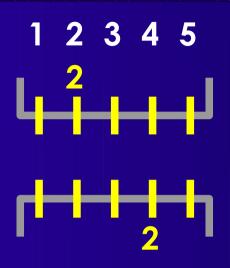
sel[0]=0

sel[1]=0

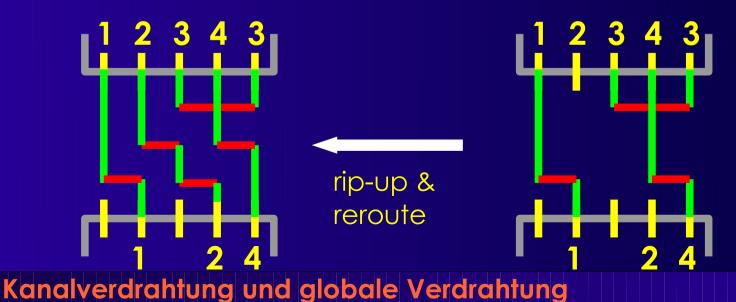
sel[2]=1

sel[3]=0

sel[4]=0



- Trivial: Netz 2 in Zeile 2
- Kombinierte Lösung
 - Anordnung mit V-Konflikt
 - ◆ 1. Zeile: Netz 3
 - ◆ 2. Zeile: Netz 2
 - ◆ 3. Zeile: Netz 1, Netz 4

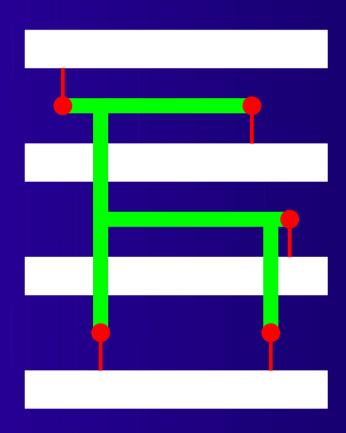


Überblick Globalverdrahtung

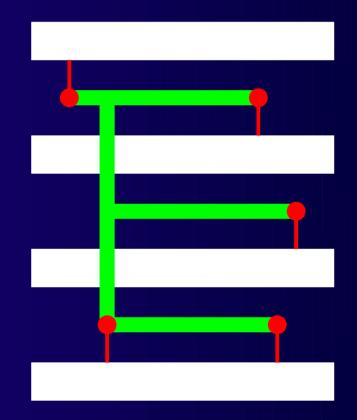
- Wo kommen die Terminalpositionen her?
- Globalverdrahtung
 - Problem
 - Modellierung
 - Vorgehensweisen
- Algorithmus
 - Für Standardzellen
 - Steiner-Bäume
 - Konstruktionsheuristik
 - Optimierung

- Im Entwurfsfluß
 - Nach Platzierung
 - Vor lokaler Verdrahtung
- Verteilt Signale auf Kanäle
 - Führung innerhalb der Kanäle bleibt offen
- Optimiert auf
 - Minimale Fläche
 - Einhalten der Zeitvorgaben
- Hängt von Zieltechnologie ab

- Hier: Im Standardzellen-Entwurf
- Alle Terminals eines Netzes an einem Kanal?
 - Falls ja: Nur lokale Verdrahtung erforderlich
- Sonst: Globale Verdrahtung
 - Trennt Netz auf einzelne Kanäle auf
 - Übergang zwischen Kanälen
 - Reservierte Verdrahtungsebenen
 - Feedthroughs einfügen (beeinflußt Platzierung)
 - Vorgegebene Feedthrough-Leitungen allozieren
 - Idee: Rechtwinkliger Minimaler Steiner Baum (RSMT)
 - Ggf. höhere Kosten für vertikale Segmente (feedthroughs)
 - Wenn begrenzte Ressource



Rechtwinkliger Steiner-Baum mit minimaler Länge



Rechtwinkliger Steiner-Baum mit minimalen Übergängen

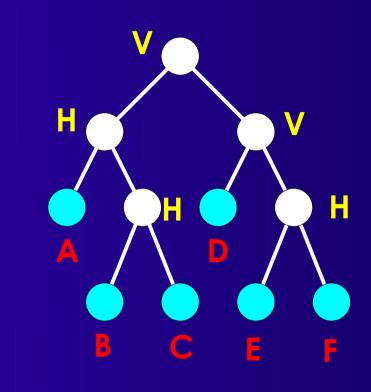
- RSMT nicht immer beste Lösung
 - Neben Länge zu berücksichtigen:
 - Begrenzte Anzahl von Feedthroughs
 - Zeitvorgaben (timing-driven)
 - Kritische Netze kurz halten
- Hier nur durch Gewichtung der Kosten möglich
 - Kann sehr ungenau werden

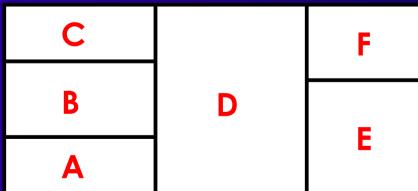
- Bessere Verzögerungsmodelle
 - Nur Verdrahtungslänge ungenau
 - Hier Widerstand und Kapazität zusammengeworfen
 - Besser:
 - R, C getrennt f
 ür einzelne Segmente
 - ◆ Bewährt: Elmore-Modell
 - Auch in VPR verwendet
- Dann andere Routing-Verfahren verwenden
 - Multicommodity Flow
 - Pattern-based
 - Hierarchical

- Annahme hier: Unidirektionale Sicht
 - 1 Quelle / n Senken
- Mögliche Teiloptimierungsziele
 - Kurzer Weg zu kritischer Senke
 - Gleich lange Wege (kleiner skew)
 - Verdrahtung von Takt-Leitungen (H-Trees)
- Gesamtziel
 - Minimiere Verdrahtungsfläche
 - Schätze Kanalbreiten ab

- Nun: Building-Block Layout
- Komplizierter!
- Irreguläre Freiflächen zwischen Zellen
 - Was sind überhaupt die Kanäle?
- Wie Flächen in Kanäle aufteilen?
 - Channel Definition Problem (CDP)
- Kanäle in welcher Reihenfolge verdrahten?
 - Channel Ordering Problem (COP)

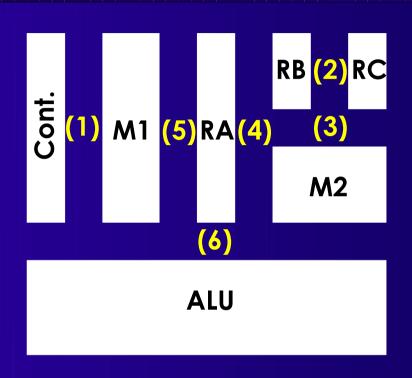
Exkurs Slicing Floorplans

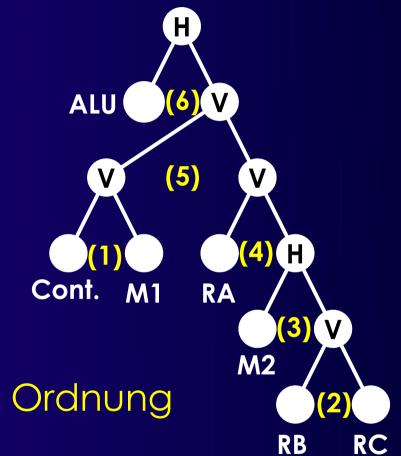




- Darstellung durch Slicing Tree
 - Knoten sind Schnitte oder Blattzellen
 - Schnitte nach Richtung getrennt
 - V: Linker Unterbaum LINKS von rechtem
 - H: Linker Unterbaum UNTER rechtem
- Wird erzeugt z.B. bei Platzierung mit MinCut
 - Hier aber allgemeiner!

- Für Slicing Floorplan: Einfach zu lösen
- CDP
 - Schnittlinien sind Kanäle
 - Kanalform abhängig von Reihenfolge
 - Festgelegt im Channel Ordering Problem
- COP
 - Grundlage ist Slicing Tree
 - DFS mit Post-Order Traversal
 - Numeriere bearbeitete Knoten aufsteigend
 - V-Schnitt: V-Kanal, Länge=Ober/Unterkante der Zellen
 - H-Schnitt: H-Kanal, Länge=linke/rechte Seite der Zellen





- CDP via Schnittrichtung, Ordnung
- COP via Slicing Tree
 - Post-Order DFS
 - Reihenfolge f
 ür Kanalverdrahtung

- Bei Non-Slicing Floorplans
 - Reine Kanalverdrahtung nicht ausreichend
 - Braucht
 - Switchbox Router
 - Dreiseitige Kanal-Router
 - Nur eine Kanalseite hat bewegliche Terminals
 - Verdrahtungsfläche ist fest (ähnl. Switchbox)
- Nach Lösung des CDP: Steiner-Baum
 - Bei Building Blocks der Regel keine Feedthroughs
 - Verdrahtung nur innerhalb der Kanäle
 - Sehe Kanäle als Kanten in Graph an
 - Löse Graphen-Version des minimalen Steiner-Baumes

Zwischenstand

Kanalverdrahtung

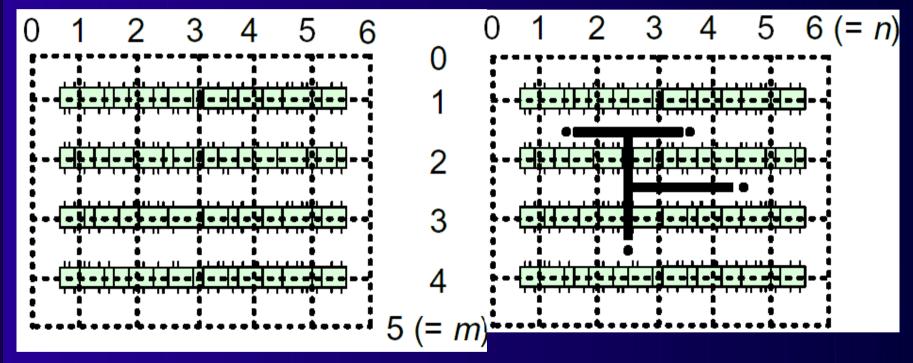
- Alle Terminals angrenzend an einem Kanal
- Nun auch mit H- und V- Einschränkungen
- Leitungsführung auf Zeilenebene in Kanal

Globalverdrahtung

- Terminals an verschiedenen Kanälen
 - Standardzellen
- Leitungsführung auf Kanalebene
- Nicht auf Zeilenebene
- Teilweise erforderlich (building block layout)
 - Festlegen von Kanälen überhaupt (CDP)
 - Festlegen der Bearbeitungsreihenfolge (COP)
 - Einfach machbar bei Slicing Layouts

Modellierung 1

- Für Standardzelltechnologie
- Modellierung der Baum-Geometrie



m x n Matrix V-Abstand variabel Eingebetteter Baum Verschmolzene Terminals

Modellierung 2

- Lokale vertikale Dichte $d_{v}(i,j)$
 - Leitungen durch V-Segment i-1,i in Spalte j
- Lokale horizontale Dichte $d_n(i,j)$
 - Leitungen durch H-Segment j-1,j in Zeile i
- Kanaldichte

$$D_{v}(i) = \max_{j=1}^{n} \mathbf{X} d_{v}(i, j)$$

Gesamtkanaldichte

$$\mathbf{D}_T = \sum_{i=1}^m \mathbf{D}_v(i)$$

- Ziel: Minimiere D_{T} mit $d_{h}(i,j) \leq M_{ij}$
 - ♦ M_{ii}: Verfügbare vertikale Feedthroughs

im H-Segment j-1,j in Zeile i

Mögliche Vorgehensweisen 1

- Variante von Lees Algorithmus
 - Erhöhe Überquerungskosten je Segment
 - Nach jedem Netz
 - Probleme
 - Versagt bei Auswahl aus vielen gleich guten Routen
 - Qualität abhängig von Netzreihenfolge

Mögliche Vorgehensweisen 2

- Sequentieller Aufbau von RSMT je Netz
 - Bestimme Kantenkosten aus d_v, d_h
 - Umgehung von verstopften Gebieten während des Routings
 - Gute einzelne Routing-Ergebnisse
 - Qualität noch abhängig von Reihenfolge

Mögliche Vorgehensweisen 3

- Pseudo-simultanes Routing
 - Konstruiere unabhängigen RSMT je Netz
 - ◆ Immer optimale Route, unabhängig von Reihenfolge
 - Korrigiere Verstopfung (congestion) später

Variante

- Hierarchische Vorgehensweise
 - Beginne mit 2x2 Raster über gesamten Chip
 - Löse globales Verdrahtungsproblem
- Für jeden der Quadranten
 - Unteraufteilung in eigenes 2x2 Raster
 - Löse globales Verdrahtungsproblem erneut
- Divide-and-Conquer Vorgehen

Variante

- Im Extremfall: Bis hin zu einzelnen Terminals
 - Erledigt komplette Verdrahtung
 - Inklusive Kanalverdrahtung
- Optimalitätsprinzip gilt aber nicht!
 - Leitungen aus Partition hinaus beeinflussen Unterentscheidungen

RSMT Problem

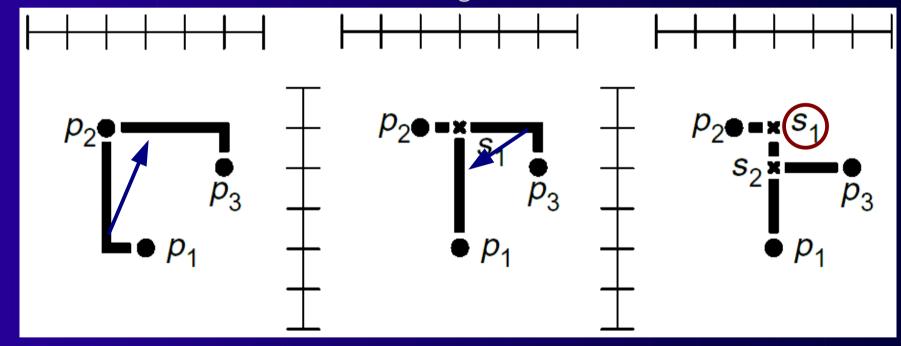
- Rechtwinklige minimale Steiner-Bäume
 - Nützlich zur Lösung von glob. Verdrahtungsproblemen
- Gegeben
 - $P = \{p1, p2, ...\}$: Punktmenge in der Ebene (2-D)
 - Distanzmetrik: $|x_i-x_j| + |y_i-y_j|$ (=Manhattan-Distanz)
- Gesucht
 - Finde verbindenden Baum für Punkte in P
 - Mit minimaler Gesamlänge!
 - Erlaube zusätzliche Punkte im Baum
 - Wenn sie zu kürzerer Gesamtlänge führen
 - Sogenannte "Steiner-Punkte"
- Hier vernachlässigt
 - Timing, Übersprechen

Lösung

- Exakt: NP-vollständig
- Approximieren durch MRST
 - Minimaler rechtwinkliger aufspannender Baum
 - Prims Algorithmus: $O(n^2)$
 - Maximal 1.5x länger als echter Steiner-Baum
 - Idee: Hinterher Ergebnis verbessern
- Ausblick: Neuere Heuristiken
 - Verbesserter MRST max. 11/8x länger als RSMT
 - ◆ Fössmeier et al. 1997

MRST Optimierung

- Beispiel: Lokales Umlegen von L-Stücken
 - Führt zu Steiner Punkten
 - Ziel: Verschmelzen von Segmenten
 - Reduktion der Gesamtlänge



- Steiner-Punkte haben Grad ≥ 3
 - s1 verschwindet (kein Steiner-Punkt mehr)

Besser: MRST-Erweiterung

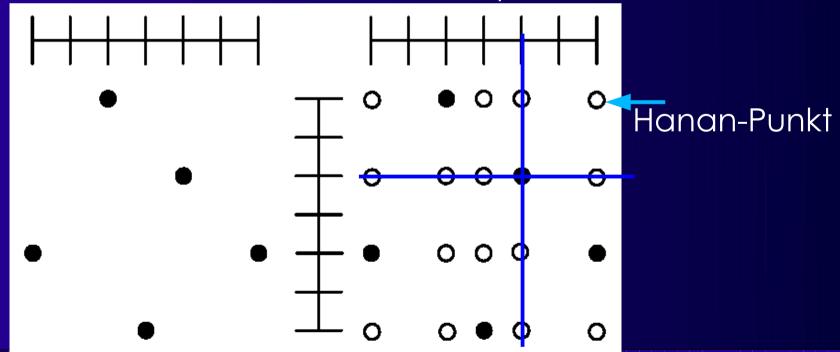
- Vorteil: Nicht schlechter als 4/3x RSMT
 - Auch wenn MRST schlechtestes Ergebnis liefert
 - \bullet Wenn MRST = 1.5x RSMT, verbesserter MRST \leq 1.33x RSMT
- Beginnt mit MRST nach Prim
- Verfeinert dann schrittweise
 - Nimmt jeweils einzelnen Punkt s zu P hinzu
 - s ist also Steiner-Punkt
 - Wählt s dabei so, dass MRST (P ∪ {s}) minimal
 - Wird "1-Steiner-Baum-Problem" genannt
- Wiederhole!
- Liefert beweisbar gute Ergebnisse
 - Kann aber keine optimale Lösung garantieren

Algorithmus steiner

```
pair<set<vertex>,set<edge>>
steiner(set<vertex> P) {
     set<vertex> T:
     set<edge> E, F;
     int gain; // Längenverkürzung
     E = P.primMRST();
     (T,F,gain) = oneSteiner(P, E);
     while (gain > 0) {
          P = T;
          E = F;
          (T,F,gain) = oneSteiner(P, E);
     return (P,E);
```

1-Steiner-Baum Konstruktion 1

- Wie den Punkt s bestimmen?
 - Alle Punkte ausserhalb von P ausprobieren
 - ... geht aber besser!
- Auf Hanan-Punkte beschränken (1966)
 - Hanan-Punkte liegen auf vorbesetzten Rasterlinien
 - Erlaubt trotzdem Finden des Optimums



1-Steiner-Baum Konstruktion 2

- Für Auswahl des besten Punktes s
 - Immer wieder MRST ($P \cup \{s\}$) via Prim bestimmen
 - Punkt mit kürzestem Baum wird genommen
 - Geht auch besser ...
- Inkrementelle Berechnung des MRST
 - Aus MRST (P) hin zu MRST (P ∪ {s})
 - ◆ In linearer Zeit O(n), mit n = |P|
- Idee
 - Punkte im Baum haben max. Grad 4
 - s muss an Baum für P angeschlossen werden
 - Lage des s nächstgelegenen Punktes im Baum für P
 - ◆ In einer der Regionen N,E,S,W um s
 - N,S: $|d_x| \le |d_y|$, E,W: $|d_y| \le |d_x|$

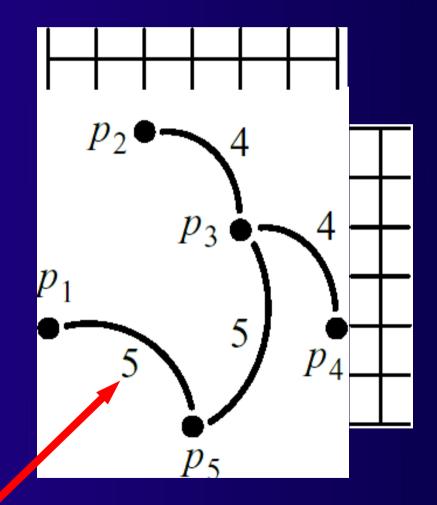
Algorithmus oneSteiner

```
triple<set<vertex>,set<edge>,int>
oneSteiner(set<vertex> V, set<edge> E) {
     int maxgain; vertex maxpoint;
     int gain;
     set<vertex> W; set<edge> F;
     maxgain = 0;
     foreach s \in ,,Hanan-Punkte von V" do {
           (W,F,gain) = spanningUpdate(V,E,s);
           if (gain > maxgain) {
                 maxgain = gain;
                 maxpoint = s;
     if (maxgain > 0) {
           (W,F,gain) = spanningUpdate(V,E,maxpoint);
           return (W,F,gain);
     } else
           return (V,E,0);
```

Algorithmus spanningUpdate

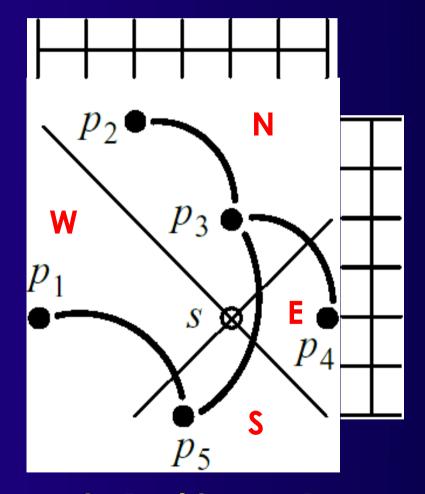
```
triple<set<vertex>,set<edge>,int>
spanningUpdate(set<vertex> V, set<edge> E, vertex s) {
                   delta;
                                 // Längen<u>verkürzung</u>
      int
      vertex
                  U, V, W;
      delta = 0;
      V = V \cup \{s\};
      foreach dir ∈ {NORTH, EAST, SOUTH, WEST} do {
            u = s.closestPointInTree(V, dir);
             E = E \cup \{(s, u)\}; // s an <u>alle</u> Partner anschliessen
             delta = delta - distance(s,u); // Hier Verlängerung!
            if (hasCycle(V, E)) {
                   (v,w) = findLongestCycleSegment(V, E);
                   E = E \setminus \{(\vee, \vee)\};
                   delta = delta + distance(v,w); // wieder verkürzen
      return (V, E, delta);
```

Eingabe: MRST, z.B. via Prims Algorithmus



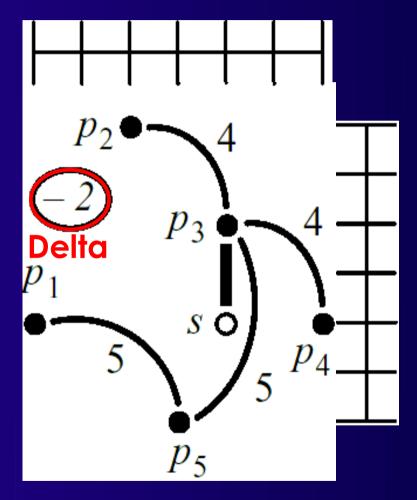
Bögen geben nur Distanz an, noch keine genaue Führung

Hinzunahme eines ersten Hanan-Punktes s



s nahegelegenste Punkte aus P: p₃, p₄, p₅, p₁

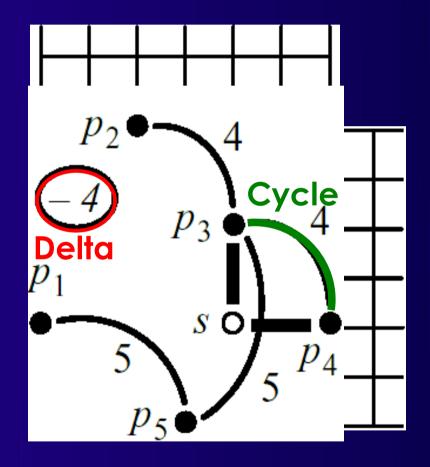
Anbinden an den ersten s benachbarten Punkt p, im N



Nun festgelegte kürzeste Führung, Erhöhung der Länge

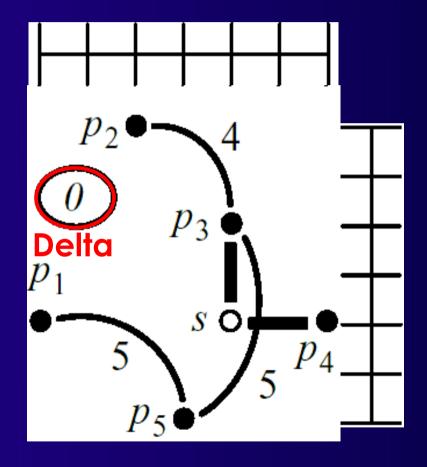
- Feste Verbindung für Punkte auf derselben Rasterlinie

Anbinden an den zweiten s benachbarten Punkt p, im E



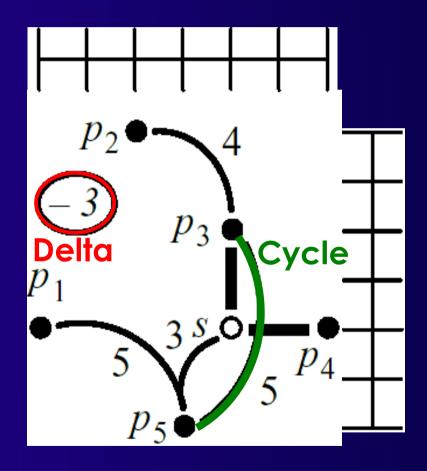
Auch festgelegte Führung und Erhöhung der Länge, Zyklus

Entferne längste Kante $d({p_4,p_3})=4$ aus Zyklus



Gesamtlänge verkürzt sich nun um 4

Anbinden an den dritten s benachbarten Punkt p_s im S

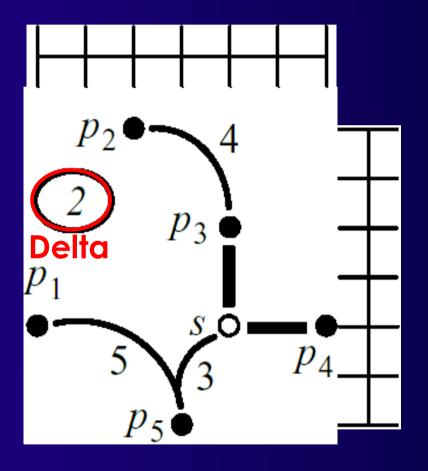


Noch keine feste Führung, Gesamtlänge erhöht sich, Zyklus

- s und p5 nicht auf derselben Rasterlinie

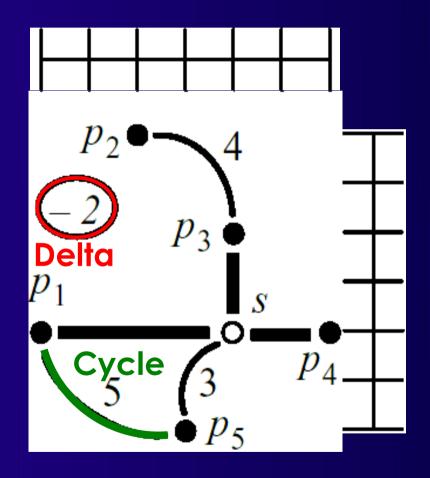
Kanalverdrahtung und globale Verdrahtung

Entferne längste Kante $d(\{p_5, p_3\})=5$ aus Zyklus



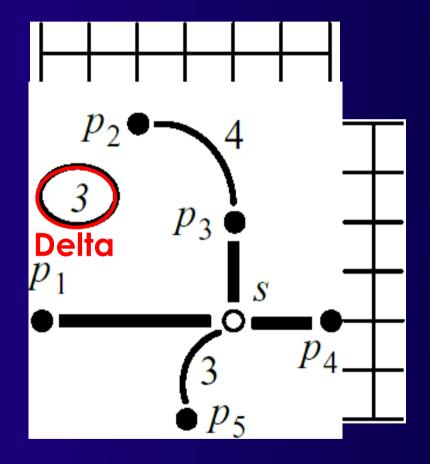
Gesamtlänge verkürzt sich nun um 5

Anbinden an den vierten s benachbarten Punkt p, im W



Feste Führung, Gesamtlänge erhöht sich, Zyklus

Entferne längste Kante $d(\{p_5, p_1\})=5$ aus Zyklus



Gesamtlänge verkürzt sich nun um 5, Gesamtgewinn ist 3

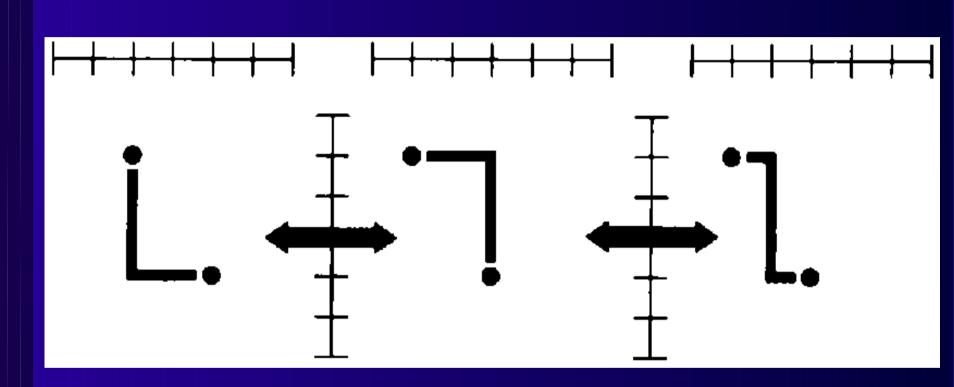
Komplexität

- spanningUpdate()
 - 4x closestPoint(): O(n)
 - hasCycle(): DFS mit History, O(n)
 - findLongestCycleSegment(): History, O(n)
 - \Diamond Gesamt: O(n)
- Anzahl Hanan-Punkte: O(n²)
- oneSteiner() Gesamt: O(n³)
- steiner() Gesamt: $O(n^5)$
- Im Durchschnitt aber besser
 - z.B. oneSteiner() nur 2x aufgerufen bei n=40
 - \Diamond O(n^3)

Beseitigen von Verstopfungen

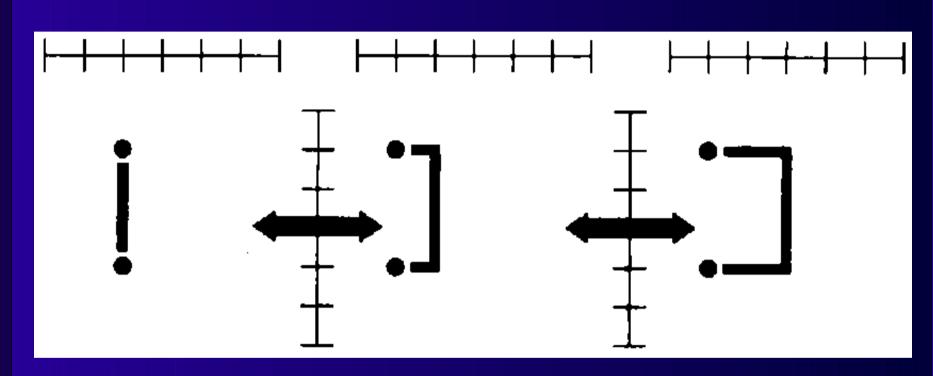
- Bisher unabhängige RSMTs: Einer je Netz
 - Ähnlich dem ersten Durchgang bei PathFinder
- Nachfrage nach V-Feedthroughs
 - Bestimmen
 - Stark verstopfte Stellen entlasten
- Wie? Lokale Transformation der einzelnen RSMTs
 - Kontrolliert durch eigene Optimierung
 - Z.B. Simulated Annealing oder Nachbarsuche

Lokale Transformation 1



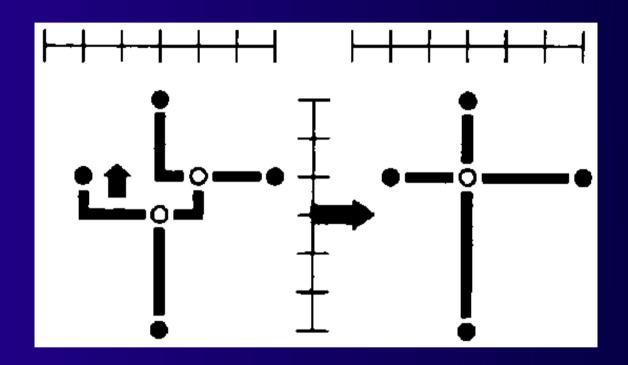
- Variiere konkrete Führung einer Kante
- Länge bleibt gleich

Lokale Transformation 2



- Länge erhöht sich
 - Kann aber Gesamtkosten senken

Lokale Transformation 3



- Kompliziertere Verschiebung
 - Vollständiges Entfernen von Steiner-Punkten
- Im Notfall: Maze-Routing
- Nun bessere Umgebung
 Kanalverdrahtung und globale Verdrahtung

Zusammenfassung

- Yoeli's Robuster Router
 - Beispiel für komplexere Heuristik
 - ◆ Regeln
 - Ausführliches Beispiel
- Globalverdrahtung
 - Abhängig von Zieltechnologien
- Steiner-Bäume
 - Optimierungsziele
- Routing in Slicing-Floorplans
 - ◆ CDP, COP
- Globale Verdrahtung für Standardzellen
 - Konstruktion von Steiner-Bäumen
 - Lokale Optimierung