Algorithmen für Chip-Entwurfswerkzeuge Timing-Analysen und Heuristiken

Vorlesung WS 2013/2014

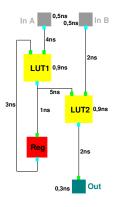
Florian Stock, Andreas Koch

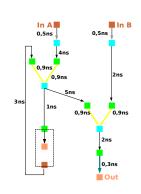
Eingebette Systeme und Anwendungen Technische Universität Darmstadt

Timing-Analyse Grundlagen

- ▶ Wozu?
 - Analysiere fertige Layouts
 - Analysiere einzelne Verbindungen während Layouterzeugung
 - Erkenne kritische Verbindungen
 - Behandle diese mit Vorrang
- Worauf?
 - Schaltungselement
 - Gatter, Werttabellen (LUT), Register, I/O-Blöcke, . . .
 - Bleiben konstant, exakte Verzögerungen bekannt
 - Netze
 - Nur nach Layouterzeugung bekannt
 - Vorher schätzen

Modellierung





- ► Auf 4-partitem Graph
 - Externe Eingänge
 - Externe Ausgänge
 - Eingangs-Ports
 - Ausgangs-Ports

Berechnung Ankunfszeit

Ankunftszeit (arrival) an Knoten v

$$T_a(v) = \max_{(u,v) \in E} (T_a(u) + w(u,v))$$

- Idee: BFS oder DAG LP
 - Beginne mit $T_a(v) = 0$ bei folgenden Knoten: Externer Eingänge, Registerausgänge
 - Bearbeite Knoten bei denen alle Vorgänger bearbeitet sind
 - ► Späteste Gesamtankunftszeit *D_{max}* = Taktperiode (an Externen Ausgängen, Registereingängen)

In Beispielschaltung

 $D_{max} = 13.6 \text{ ns}$

Spätestmögliche Ankunftszeit

- Wie unwichtig sind unkritische Netze?
 - Idee: Analog zu verschiebbaren Elementen bei Kompaktierung
 - Hier auf Zeitintervalle anwenden

Beantwortet die Frage

Wieviel langsamer kann ein Netz werden ohne das die gesamte Schaltung leidet?

- Berechung
 - Mittels spätestmöglicher Ankunftszeit
 - Required Time T_r(v) an Knoten v
 - Spätestmöglicher Ankunftszeitpunkt von Signalen
 - ⇒ Sonst Verlangsamung der gesamten Schaltung
 - Analog Kompaktierungsbeispiel: Rechtestmögliche Position ohne Breitenvergrößerung

Berechnung Spätestmögl. Ankunftszeit und Slack

- ▶ Beginne mit $T_r(u) = D_{max}$ bei folgenden Knoten: Externen Ausgänge, Registereingänge
- Nun BFS/LP Rückwärts
- ▶ Rückwärts ⇒ Graph mit umgedrehten Kanten
- Bearbeite Knoten
 - Nur mit komplett bearbeiteten Vorgängern
 - $T_r(u) = \min_{(u,v) \in E} (T_r(v) w(u,v))$
- ► Slack (Schlupf) einer Verbindung von u nach v slack $(u, v) = T_r(v) T_u(u) w(u, v)$
- Auf kritischem Pfad: slack = 0

Beispiel

Node: 4 INPAD_SOURCE Block #2 (s27_in_3_)
T_arr: 0 T_req: -3.88578e-16 Tdel: 5e-10

Node: 5 INPAD_OPIN Block #2 (s27_in_3_)
Pin: 0

T arr: 5e-10 T req: 5e-10 Tdel: 5e-09

T_arr: 5e-10 T_req: 5e-10 Tdel: 5e-09 Net to next node: #2 (s27_in_3_). Pins on net: 5.

Node: 12 CLB_IPIN Block #6 (s27_out) Pin: 0 T_arr: 5.5e-09 T_req: 5.5e-09 Tdel: 0

Node: 17 SUBBLK_IPIN Block #6 (s27_out)
Pin: 0 Subblock #0
T arr: 5.5e-09 T reg: 5.5e-09 Tdel: 9e-10

Node: 21 SUBBLK_OPIN Block #6 (s27_out) Pin: 4 Subblock #0 T arr: 6.4e-09 T reg: 6.4e-09 Tdel: 0 Node: 16 CLB_OPIN Block #6 (s27_out)
Pin: 4
T_arr: 6.4e-09 T_req: 6.4e-09 Tdel: 1e-09
Net to next node: #5 (s27_out). Pins on net: 2.

Node: 10 OUTPAD_IPIN Block #5 (out:s27_out) Pin: 0 T_arr: 7.4e-09 T_req: 7.4e-09 Tdel: 3e-10

Node: 11 OUTPAD_SINK Block #5 (out:s27_out)
T arr: 7.7e-09 T reg: 7.7e-09

Thodes on crit. path: 8 Non-global nets on crit. path: 2. Global nets on crit. path: 0. Total logic delay: 1.78-09 (s) Total net delay: 6e-09 (s)

Beispielanwendung **Unit-Size Placement Problem (UPP)**

Eingabe

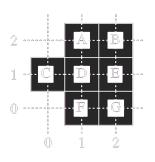
- ▶ 1 × 1 Zellen
- Netzliste

Platziere Zellen

- Auf 1 × 1 Raster
- Überlappungsfrei

Minimiere Fläche

Platz für Verdrahtung



n₁: A, B, F, G

 n_2 : B, E

 n_3 : D, E

n₄: A, C, D

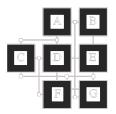
n₅: C, D, F

 n_6 : C, E, F, G

 n_7 : D, F

n₈: F. G

UPP



Gute Platzierung mit Verdrahtung

Schlechte Platzierung Mehr Verdrahtungsspuren

Problem: Bestimmung der Qualität

- Komplette Verdrahtung dauert zu lange
- Abschätzen

Art der Problem

- Viele Probleme im Bereich VLSI CAD sind
 - NP-vollständig
 - NP-hart (mindestens so aufwendig wie NP-vollständig)
- Exakt lösbar nur für kleine Problemgrößen
- Falls suboptimale Lösungen aktzeptabel:
 - Näherungsverfahren, Approximationen
 - Garantieren eine bestimmte Lösungsqualität
 - Nicht allgemein formulierbar
 - Heuristiken
 - Schwankende Lösungsqualität

Darstellung einer Lösung

- Problemspezifisch
- Algorithmenspezifisch
- Grundsätzlich unterscheidbar
 - Vollständige Lösung
 - Alle Unbekannten haben gültige Werte
 - Algorithmus könnte beliebig beendet werden
 - Unvollständige Lösung
 - Einige/Alle Unbekannte sind noch unbestimmt oder ungültig
 - Algorithmus muß weiterrechnen

Lösungsdefintion

- Probleminstanz I = (F, c)
 - ► Lösungsraum F
 - ▶ Kostenfuntion $c : F \mapsto \mathbf{R}$
- ▶ Lösung $\vec{f} \in F : \vec{f} = [f_1, ... f_n]^T$
 - Explizite Einschränkungen: Wertebereiche der fi
 - Implitizite Einschränkunge: Abhängigkeiten
- ▶ Teillösung \vec{f}
 - Einige f_i undefiniert
 - Spannt Unterraum von F auf

Nachbarsuche Idee

- Starte mit einer vollständigen Lösung
- Bestimme Nachbarn der Lösung
 - Andere Lösungen nahe an existierender
 - ▶ Definition von *Nähe* ist problemspezifisch
- Wähle besseren Nachbarn aus
- Wiederhole

Nachbarsuche Formal

- Problem I = (F, c)
- ▶ Lösung $\vec{f} \in F$
- Nachbarschaft $N: F \mapsto 2^F$ (2^F Potenzmenge = Menge aller Teilmengen von F)
- ▶ Nachbar $\vec{g} \in N(\vec{f})$

Beispiel UPP

- ▶ \vec{g} ist Nachbar von \vec{t} : \Leftrightarrow \vec{g} ergibt sich durch Vertauschung von 2 Zellen von \vec{t} .
- ▶ n Zellen, n-1 Tauschpartner $\Rightarrow |N(\vec{t})| = \frac{n(n-1)}{2}$
- ▶ Komplexere Züge möglich z.B. tausche 3 Zellen, tausche Regionen, . . .

Nachbarsuche Kandidatenwahl

- ▶ Welches $\vec{g} \in N(\vec{f})$ wählen?
- Ziel: Kostenreduzierung bezüglich c
- Also wähle \vec{g} mit $c(\vec{g}) < c(\vec{f})$
- ▶ Ende mit \vec{f} falls $\forall \vec{g} \in N(\vec{f}) : c(\vec{g}) \geq c(\vec{f})$

Nachbarsuche Algorithmus


```
Local_search(): begin

Feasible_solution f;

Set<Feasible_solution> G;

f := Initial_solution();

repeat

G := \{g | g \in N(f) \land c(g) < c(f)\};

if G \neq \emptyset then

f := G.pickany()

until G = \emptyset;

report(f);
```

- ▶ Initialisierung: Initial_solution? Zufällig, triviale Lösung
- Strategien: pickany? Erste Verbesserung, Steilster Abstieg

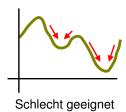
Nachbarsuche Probleme

Form der Kostenfunktion:



Gut geeignet

- Steckenbleiben in lokalen Minima
- Mögliche Lösungen:
 - Mehrere Läufe mit anderen Startlösungen
 - Größere Nachbarschaft
 - Adaptiere Größe der Nachbarschaft



Simulated Annealing Idee

- Aktzeptiere verschlechternde Züge Aber bessere Strategie als reiner Zufall
- Simulated Annealing
 - Simuliertes Erstarren von Metallen
 - Inspirriert von physikalischen Erstarrungsprozessen
 - Schnelles Erstarren (Schockfrosten)
 Hohe innere Spannung = hohe innere Energie
 - Langsames Abkühlen Niedrige innere Spannung = niedrige innere Energie

Simulated Annealing Physikalischer Hintergrund

- Hohe Anfangstemperatur (flüssiges Material)
- Moleküle können sich frei anordnen
- Langsames Abkühlen
- Bewegungsfreiheit wird schrittweise weiter eingeschränkt
- Moleküle ordnen sich in Konfiguration niedrigster Energie an
- Am besten bei sehr langsamer Abkühlung

Simulated Annealing für die Optimierung

- Energie entspricht Kostenfunktion
- Bewegung der Moleküle entspricht Zügen
- Temperatur entspricht Kontrollparameter T
 - Wie frei dürfen sich Moleküle bewegen? = Welche Züge sind noch akzeptabel?
 - Niedrigere Energie/Kosten: Immer akzeptiert $c(\vec{q}) < c(f)$
 - Höhere Energie/Kosten: Akzeptiert mit Wahrscheinlichkeit $e^{-\Delta c}$ mit $\Delta c = c(\vec{q}) - c(\vec{t})$

Simulated Annealing Temperatur

$$e^{\frac{-\Delta c}{T}} = \frac{1}{e^{\frac{\Delta c}{T}}}$$

- Hohe Temperaturen
 Akzeptiere fast alle schlechten Züge
- Niedrige Temperaturen
 Akzeptiere fast keine schlechten Züge mehr
- Physik: Boltzmann-Verteilung Statistische Mechanik

Simulated Annealing Algorithmus


```
Simulated annealing(): begin
   Feasible solution f, g, bsf;
                                            int Accept(Feasible solution f, g):
   float T:
                                            begin
   T := Initial temperature();
                                                float DeltaC:
   f := Initial solution();
                                                DeltaC := c(g) - c(f);
   bsf := f :
                                                if DeltaC < 0 then
   repeat
                                                    if c(q) < c(bsf) then bsf := q:
       repeat
                                                    return (1);
           g := N(f).pickany();
                                                else
           if Accept(f, g) then f := g;
                                                    return (exp(-DeltaC/T) >
       until Thermal equilibrium(T);
                                                    random(1))
       T := New temperature(T);
   until Stop():
   report(bsf);
```


Simulated Annealing Zusätzliche Funktionen

Initial temperature()

Bestimmt ausreichend hohe Starttemperatur

Initial solution()

- Bestimmt Startlösung
- Zufällige, aber gültige Lösung OK!

Thermal equilibrium()

Gleichgewicht auf einer Temperaturstufe

New temperature()

Bestimmt nächsten Temperaturschritt

Stop()

Abbruchkriterium

BSF: Best so far

- Beste bisherige Lösung
- Letzte Lösung ist nicht immer die beste!

Simulated Annealing TimberWolf (1985)

- Standard Cell-Placer
- ► Start mit T = 4.000.000
- ▶ Stop bei *T* < 0.1</p>
- Equilibrium abhängig von Problemgröße
 - 100 Züge pro Zelle bei 200 Zellen
 - 700 Züge pro Zelle bei 3000 Zellen
- Abkühlen
 - Anfangs mit $T_n = 0.8T$
 - ► Im Mittelbereich mit $T_n = 0.95T$
 - Gegen Ende mit T_n = 0.8T
 - → Cooling Schedule

Simulated Annealing

- Bei geeigneter Cooling Schedule
 - SA findet immer die optimale Lösung
 - Praktisch aber nicht relevant (zu langsam)
- Viele Variationsmöglichkeiten
 - stop() abhängig von accept()
 - Adaptive Cooling Schedules
- Bibliotheken: ASA, EBSA
- SA ist allgemein verwendbar
- Aber: Spezialisierte Lösungen sind besser

Tabu-Suche

- Simulated Annealing
 - Verschlechternde Züge zu Beginn akzeptiert
- ▶ Tabu-Suche (TS)
 - Verschlechternde Züge werden immer akzeptiert
 - ► Gehe immer zu $\vec{g} \in N(\vec{f})$ mit $c(\vec{g}) = \min_{\vec{h} \in N(\vec{f})} c(\vec{h})$
 - Auch wenn $c(\vec{g}) > c(\vec{f})!$
 - Problem: Zyklen
 - Ständige Wiederholung der letzten Züge
- Lösung: Verbiete letzten k Lösungen
 - Lösungen sind als tabu markiert
 - Vermeidet Zyklen bis zu der Länge k
 - Realsierung: FIFO mit Lösungen der Länge k

Tabu-Suche Algorithmus


```
Tabu _search(): begin
    Feasible solution f, g, bsf;
    Set<Feasible solution> G:
    FIFO<Feasible solution,k> Q:
    f := Initial solution(); bsf := f; Q := \emptyset;
    repeat
        G := \{ s | s \in N(f) \land s \notin Q \} ;
        if G \neq \emptyset then
             g := G.findmin(c);
             Q.shiftin(g);
             f := q;
             if c(f) < c(bsf) then bsf := f;
    until (G \neq \emptyset) or Stop():
    report(bsf);
```

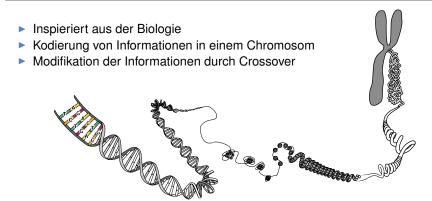

Tabu-Suche

stop() Keine Verbesserung in den letzten k Zügen

UPP-Beispiel

- 10.000 Zellen Lösung beschreibt 10.000 Koordinatenpaare
- Sehr große Tabu-Liste
- Abhilfe: Setze nur einzelne Züge Tabu
- Aber: Einschränkung des Lösungsraumes
- Viele Variationsmöglichkeiten
 - Kein theoretischer Hintergrund Erreichen des Optimums?
 - Wie stop() oder k wählen?

Genetische Algorithmen Idee



Basiert auf einem Bild der NIH

Genetische Algorithmen Idee

- ▶ Bisher: Algorithmen arbeiten auf einer vollständigen Lösung
- Nun: Gleichzeitig auf mehreren Lösungen
 - Menge P von Lösungen: Population
 - Iterationszähler k: Generation
 - Ersetze $P^{(k)}$ durch $P^{(k+1)}$ während Optimierung
- ▶ Bestimmung von $\vec{f}^{(k+1)} \in P^{(k+1)}$ mittels
 - ▶ Crossover von zwei Eltern $\vec{f}^{(k)}$, $\vec{g}^{(k)} \in P^{(k)}$ Vererbung von Eigenschaften von $\vec{f}^{(k)}$ und $\vec{g}^{(k)}$
 - Ggf. Mutation von $\vec{f}^{(k+1)}$

Genetische Algorithmen Darstellung

 Kodierung für Chromosom Bitfolge für Lösungsvektor

UPP Kodierung

- ▶ 100 Zellen, 10 × 10 Raster
 - 4 Bit pro Koordinate
 - 8 Bit pro Koordinatenpaar
 - ► 100 × 8 Bit = 800 Bit lange Bitfolge als Chromosom
 - L Länge des Chromosoms in Bit
- Wichtige Unterscheidung zwischen

Lösung Biologie: Phänotyp

Kodierung der Lösung Biologie: Genotyp

Hier im Beispiel äquivalent benutzt

Genetische Algorithmen Vererbung mit dem Crossover-Operator

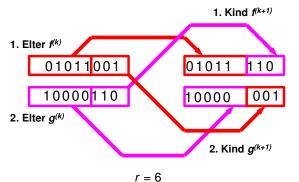
- Kombiniere die Bitfolgen der Eltern
- Verschiedene Realisierungen möglich

Beispiel

- 1. Wähle zufällig Crossover-Position $1 \le r \le L$
- 2. Kopiere Bits 1 ... (r-1) aus $\vec{f}^{(k)}$ nach $\vec{f}^{(k+1)}$
- 3. Kopiere Bits $r \dots L$ and $\vec{g}^{(k)}$ nach $\vec{f}^{(k+1)}$
- 4. Ggf. erzeuge 2. Kind $\vec{g}^{(k+1)}$ mit vertauschten Rollen

Genetische Algorithmen Beispiel UPP

10 × 10 Raster, platziere einzelne Zelle



Genetische Algorithmen Problem

- Crossover erzeugt ungültige Lösungen
- ⇒ Abhilfe: Mehr Struktur als einfache Bitfolge

Bei UPP-Beispiel

- Folgen von 4-bit Koordinaten
- Nun zwar intern konsistente Koordinaten
- Reicht im allgemeinen Fall aber nicht aus!
- ⇒ Problemspezifisches Crossover

Genetische Algorithmen Optimierung

- Bisher noch keine Optimierung
 Nur neue Lösungen erzeugt
- Bevorzuge gute Lösungen vor schlechten
 - Wähle gute Eltern aus: Niedrige Kosten
 - Kombiniere gute Eigenschaften in Nachwuchs
 - Aber: Auch Gegenteil möglich (Crossoverposition r zufällig)
 - Vererbung schlechter Eigenschaften
 - Idee: Schlechte Nachkommen sterben in n\u00e4chster Generation

Genetische Algorithmen Algorithmus


```
Genetic Algorithm(int popsize): begin
   Set<chromosome> pop, newpop;
   Chromosome parent1, parent2, child;
   pop := \emptyset;
   for i:=1 \dots popsize do pop := pop \cup {Chromosom einer zufälligen Lösung };
   repeat
       newpop := \emptyset;
       for i:=1... popsize do
           parent1 := pop.select(); parent2 := pop.select();
           child := crossover(parent1, parent2);
           newpop : = newpop \cup { child };
       pop := newpop;
   until Stop();
   report(pop.findmin(c));
```


Genetische Algorithmen

- ► Stop()
 - ► Keine Verbesserung in den letzten *m* Iterationen
 - m problemspezifischer Parameter
- Mutation
 - Modelliert in Natur aufkommende Fehler beim Kopieren/durch Fremdeinwirkungen
 - Vermeidet Steckenbleiben in lokalen Minima
- Sehr viele Variationsmöglichkeiten
 - ► Komplexere Crossover (mehrer *r*,...)
 - Zusätzliche Funktionen: Mutation, Inversion
 - Mehere Generationen gleichzeitig
 - Elite-Selektion
 - Meta-Genetische Algorithmen

Genetische Algorithmen Genie (1987)

Stop(): 10.000 Generationen ohne Verbesserung der BSF-Lösung

Initiale Population: Anzahl: Hunderte

25% Zufällig, 75% sequentiell angeordnet

.select(): Zufällig mit Gewichtung auf *fitness* ($< \emptyset$ nie)

Resultat: Ähnlich gut wie TimberWolf

(Tendenziell bessere Ergebnisse auf Kosten der Laufzeit)

Ameisenalgorithmus Idee

- Inspiriert von Ameisenpfaden
- Ameisen hinterlassen beim marschieren Pheromone
- ► Kurze Wege akkumulieren stärkere Pheromonkonzentration
- ⇒ werden entsprechend attraktiver f
 ür andere Ameisen
- Agentenbasierter Ansatz: Finden von besten Wegen im Graph

Ameisenalgorithmus Anwendung

Oft benutzt bei TSP (Travelling-Salesman-Problem) oder QAP

QAP (Quadratic-Assignment-Problem)

Gegeben:

 $f \in F$ Einrichtungen

 $l \in L$ Orte

 $d(l_1, l_2)$ Distanz zwischen zwei Orten $(d: L \times L \mapsto R)$

 $w(f_1, f_2)$ Fluß zwischen zwei Einrichtungen ($w: F \times F \mapsto R$)

Gesucht: Zuordnung $a: F \mapsto L$ bei der $\sum_{f_1, f_2 \in F} w(f_1, f_2) \cdot d(a(f_1), a(f_2))$ minimal wird

- Lösung wird iterativ in jedem Agenten (Ameise) aufgebaut
 - Jede Ameise läuft zufälligen Weg Wahrscheinlichkeit bei Weg mit vielen Pheromonen höher
- Nach Konstruktion des Wege, entsprechend der Kosten Pheromongehalt der Wege aller Ameisen aktualisieren

Ameisenalgorithmus UPP-Beispiel

- ➤ Zellen → Einrichtungen
- ▶ Orte → Positionen im Raster
- Fluß → Anzahl der adjazenten Zellen
- ▶ Distanz → Distanz

Ameisenalgorithmus Algorithmus


```
Ant colony optimization:
                                           Ant.generate solution():
begin
                                           begin
   Init heuristics();
                                              for NumberCells do
   repeat
                                                  Select cell();
       forall the Ants i do
                                                  Assign cell to location()
           Ant i.generate solution()
                                               Improve solution();
       Update pheromons();
                                              if solution < bsf then
                                                  bsf := solution
   until Stop();
             Stop(): Abbruchkriterium: Anzahl Iterationen abhängig von
```

Problemgröße, keine Änderung der BSF, ...

Improve solution(): Lokale Suche zum verbessern des Ergebnisses

Select cell(): Zufällig, feste Reihenfolge

(z.B. sortiert nach Summe der inzidenten Flüße)

Ameisenalgorithmus Initialisierung

Heuristische Information

$$\eta_{ij} = \frac{1}{f_i \cdot d_i}$$

- *f_i Flußpotenial* der Zelle (Anzahl verbundener Zellen)
- di Distanzpotial einer Position

(Summe der Distanzen zu allen anderen Positionen)

- Setzen sonstiger Parameter:
 - k Anzahl Ameisen
 - Wert der Pheromonerhöhung (abhängig von Zielfunktion)
 - $\alpha,\beta>$ 0 Gewichtung der Pheromone (α) und heuristischen Information (β)
 - ρ Persistenz der Pheromone
 - au_{ij} Pheromone, Initialisierung mit Wert > 0

Ameisenalgorithmus Zuweisung Zelle → Position

Wahrscheinlichkeit das Zelle *i* Position *j* zugewiesen wird (in Iteration *t* der Ameise *k*):

$$p_{ij}^{k} = \frac{\tau_{ij}(t)^{\alpha} \cdot \eta_{ij}^{\beta}}{\sum_{l \in N_{i}^{k}} \tau_{il}(t)^{\alpha} \cdot \eta_{il}^{\beta}}$$

- N_i^k ist die Nachbarschaft von Knoten i
- ightharpoonup Pheromonwerte, η_{ij} heuristische Information

Ameisenalgorithm Update

$$\tau_{ij}(t+1) = \rho \cdot \tau_{ij}(t) + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

Mit

$$\Delta \tau_{ij}^{k} = \begin{cases} Q/cost(solution) & \text{Zelle } i \text{ ist Position } j \text{ zugeordnet} \\ 0 & \text{sonst} \end{cases}$$

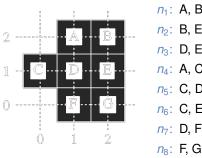
Q Menge der Pheromone einer Ameise

$$0<
ho<1$$
 Persistenz der Pheromone ((1 $-
ho$) Evaporation) Modelliert verdampfen von Pheromonen (gegen lokale Minima)

Ameisenalgorithmus Zusammenfassung

- Schlechte Konvergenz in der N\u00e4he des Optimums, da kaum ein Unterschied im Pheremonlevel
- Schlechte Skalierung
- Qualität und Laufzeit vergleichbar mit Simulated Annealing
- Änlich zu SA: Theoretisch optimal
- Kann dynamisch auf Graphänderungen reagieren
- Viele Varianten: AS, ANTS, MAX-MIN, FANT, HAS-QAP, ... Hauptunterschied sind andere ...
 - heuristische Informationen
 - Pheromon Updates
 - Wahrscheinlichkeitsfunktion

Ameisenalgorithmus Beispiel UPP



$$n_1$$
: A, B, F, G
 n_2 : B, E
 n_3 : D, E
 n_4 : A, C, D
 n_5 : C, D, F
 n_6 : C, E, F, G
 n_7 : D, F
 n_7 : D, F
 n_8 : A, B, F, G
 n_8 : C, B, E
 n_8 : C and $n_$

Zellen sortiert nach Flußpotenial: F, C, G, D, A, E, B

Ameisenalgorithmus Beispiel UPP – Init

$$\eta = \begin{pmatrix} 0.0111 & 0.0139 & 0.0079 & 0.0093 & 0.0111 & 0.0056 & 0.0079 \\ 0.0133 & 0.0167 & 0.0095 & 0.0111 & 0.0133 & 0.0067 & 0.0095 \\ 0.0111 & 0.0139 & 0.0079 & 0.0093 & 0.0111 & 0.0056 & 0.0079 \\ 0.0133 & 0.0167 & 0.0095 & 0.0111 & 0.0133 & 0.0067 & 0.0095 \\ 0.0167 & 0.0208 & 0.0119 & 0.0139 & 0.0167 & 0.0083 & 0.0119 \\ 0.0133 & 0.0167 & 0.0095 & 0.0111 & 0.0133 & 0.0067 & 0.0095 \\ 0.0111 & 0.0139 & 0.0079 & 0.0093 & 0.0111 & 0.0056 & 0.0079 \\ 0.0133 & 0.0167 & 0.0095 & 0.0111 & 0.0133 & 0.0067 & 0.0095 \\ 0.0111 & 0.0139 & 0.0079 & 0.0093 & 0.0111 & 0.0056 & 0.0079 \end{pmatrix}$$

$$Q = 2, \alpha = \beta = 1, \rho = 0.8$$

Ameisenalgorithmus Beispiel UPP – Init

$$T = \begin{pmatrix} 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \end{pmatrix}$$

$$Q = 2, \alpha = \beta = 1, \rho = 0.8$$

Ameisenalgorithmus Beispiel UPP – Auswahl

$$\rho_{ij} = \frac{\tau_{ij} \cdot \eta_{ij}}{\sum_{l \in N_i^k} \tau_{il} \cdot \eta_{il}}$$

Platziere Zelle F

$ au_{\mathit{Fi}} \ \eta_{\mathit{Fi}} \ au_{\mathit{Fi}} \cdot \eta_{\mathit{Fi}}$	0.0056 0.1 0.00056	0.0067 0.1 0.00067	0.0056 0.1 0.00056	0.0067 0.1 0.00067	0.0083 0.1 0.00083	0.0067 0.1 0.00067	0.0056 0.1 0.00056	0.0067 0.1 0.00067	0.0056 0.1 0.00056
\(\sum_{=} 0.00575									
DEi	0.0973	0.1165	0.0973	0.1165	0.1443	0.1165	0.0973	0.1165	0.0973

Ameisenalgorithmus Beispiel UPP – Auswahl

$$p_{ij} = \frac{\tau_{ij} \cdot \eta_{ij}}{\sum_{l \in N_i^k} \tau_{il} \cdot \eta_{il}}$$

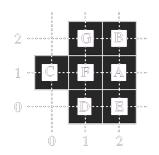
Platziere Zelle C

$ au_{Fi}$	0.0079	0.0095	0.0079	0.0095	0/.0/1/1/9	0.0095	0.0079	0.0095	0.0079
η_{Fi}	0.1	0.1	0.1	0.1	Ø/1	0.1	0.1	0.1	0.1
$ au_{\mathit{Fi}} \cdot \eta_{\mathit{Fi}}$	0.00079	0.00095	0.00079	0.00095		0.00095	0.00079	0.00095	0.00079
\(\sum_{=} 0.00696									
DFi	0.1135	0.1365	0.1135	0.1365		0.1365	0.1135	0.1365	0.1135

Vorlesung | WS 2013/2014 | F. Stock, A. Koch | FG ESA, TU Darmstadt | 50 / 53
ACE Immg-Analyse Heuristiken
UPP Nachbarsuche Simulated Annealing Tabu-Suche Genetische Alcorithmen Ameisenalgorithmus

Ameisenalgorithmus Beispiel UPP

Analog G, D, A, E, B



- Kosten (HPWL): 24
- Nächster Schritt: Pheromone aktualisieren

Ameisenalgorithmus Beispiel UPP – Update

$$\tau = \begin{pmatrix} 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \end{pmatrix}$$

Ameisenalgorithmus Beispiel UPP – Update

$$\tau = \begin{pmatrix} 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \end{pmatrix}$$

 ρ = 0.8 Evaporation

Ameisenalgorithmus Beispiel UPP – Update

τ =	0.08 0.08 0.08 0.163 0.08	0.08 0.163 0.08 0.08 0.08 0.08	0.08 0.08 0.08 0.0163 0.08 0.08 0.08 0.08 0.08	0.08 0.08 0.08 0.08 0.08 0.08	0.08 0.08 0.08 0.08 0.08	0.08 0.08 0.163 0.08	0.08 0.08 0.08 0.08 0.08
-----	---------------------------------------	---	--	--	--------------------------------------	-------------------------------	--------------------------------------

 $\frac{2}{24}$ auf genommenen Pfad hinzufügen

Zusammenfassung

- Timinganalyse
- UPP
- Allgemeine Heuristiken
 - Nachbarsuche
 - Simulated Annealing
 - Tabu-Suche
 - Genetische Algorithmen
 - Ameisenalgorithmus

