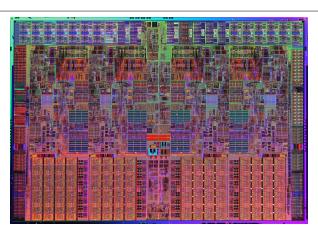
Algorithmen für Chip-Entwurfswerkzeuge Einführung

Vorlesung WS 2012/2013

Florian Stock, Andreas Koch

Eingebette Systeme und Anwendungen Technische Universität Darmstadt

Physikalischer Schaltkreis



Quelle: Intel

Hardwareentwicklungs-Flow

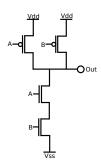
 $\cdots \rightarrow$ Entwurf \rightarrow Layoutsynthese \rightarrow Layoutverifikation \rightarrow Fertigung $\rightarrow \cdots$

Zentrum der Vorlesung:

Layoutsynthese \Rightarrow

- Partitionierung
- Floorplanning
- Platzierung
- Verdrahtung
- Kompaktierung

Sichten Schematisch und Transistorlayout

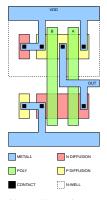


Bildquelle: Wikimedia Commons

Transistorlayout

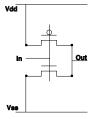
Schematisches Schaltsymbol

Sichten Physikalisches/Geometrisches/Masken Layout

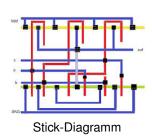


Bildquelle: Wikimedia Commons

Sichten Symbolisches Layout)



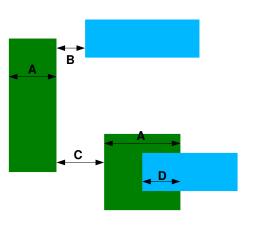
Symbolisches Layout



Kein vollständiges Layout

- Keine absoluten geometrischen Angaben
- Nicht notwendige physikalische Angaben fehlen komplett (z.B. n- und p-Wells)
- Symbole für Elemente wie Transistoren oder Kontakte
- Länge, Breite, Layer noch variabel

Entwurfsregeln



- Bei ASIC-Layouts
 - Grundlage für erfolgreiche Fertigbarkeit
 - Von Technologen erarbeitet
- ▶ Üblicherweise:
 - Minimale Breite (A)
 - Minimaler Abstand (B,C)
 - Minimale Überlappung (D)
 - Werte vielfaches von \(\lambda \)

Kompaktierung **Motivation**

- Komprimieren/Expandieren von Layouts
 - Unter Beachtung der Designregeln!
- Anwendungsgebiete:

Layout-Compilierung von symbolischen in geometrische Layouts Flächenminimierung von bestehenden Layouts Korrektur von Entwurfsregelverletzungen Skalierung der Technologie

Kompaktierung Vorgehensweise

Eindimensional (1D)

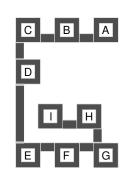
- Nur eine Richtung bearbeiten Operationen: Bewegen, Stauchen
- Oft abwechselnd in X, Y Richtungen
- Problem: Effizent, aber suboptimal

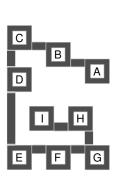
Zweidimensional (2D)

- Beide Richtungen simultan bearbeiten
- Problem: Optimal, aber NP-hart

Kompaktierung Graphisches Beispiel







Original

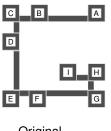
 \Rightarrow

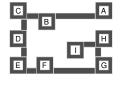
Horizontal kompaktiert

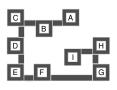
 \Rightarrow

Vertikal kompaktiert

Kompaktierung Graphisches Beispiel





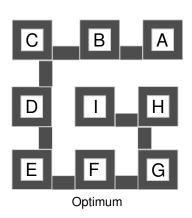


Original ⇒

Vertikal kompaktiert

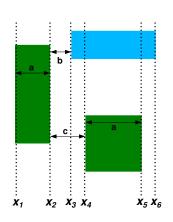
⇒ Horizonal kompaktiert

Kompaktierung **Optimum**



- 2D-Kompaktierung
 - Findet optimale Lösung
 - Problem: NP-Vollständig
- Tatsächliche Vorgehensweise
 - Mehrfache 1D-Kompaktierung
 - Abwechselnd horizontal, vertikal
 - Problem: Nicht optimal

Modellierung Abstände → Ungleichungen



$$x_2 - x_1 \ge a$$

$$x_3 - x_2 \ge b$$

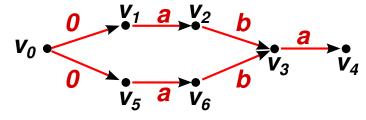
$$x_5 - x_4 \ge a$$

$$x_j - x_i \ge d_{ij}$$

Modellierung Einschränkungsgraph

Eingschrängungsgraph G(V, E)

- ► Gerichtet von (*v_i*, *v_j*)
- Zyklenfrei
- Längster Pfad von v_0 zu v_j = Minimale Koordinate von x_i
- ightharpoonup Modelliere x_n durch v_n



Modellierung Maximale Abstände

- Bisher nur miminmale Abstände
- Maximale Abstände mathematisch: $|x_c x_w| \le d$
- $ightharpoonup x_j x_i \le c_{ij}$ und $x_i x_j \le c_{ij}$, $c_{ij} \ge 0$
- Passende Form für unseren Einschränkungsgraph Achtung: Jetzt sind aber Zyklen möglich
- Lösung: Berechnung des Längesten Pfades in Graphen mit Zyklen Genauer: Einfacher Pfad (d.h. jede Kante max. einmal)

Längster Pfad

Algorithmus abhängig vom Graphen:

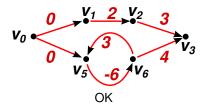
Zyklenfreier Graph: OK, ähnlich zu BFS

Graph mit Zyklen: Unterscheidung nach Zyklusart

Mit positivem Zyklus

v_0 v_1 v_2 v_3 v_5 v_6 v_6 Undefiniert!

Mit negativem Zyklus



Längster Weg Zyklenfreie Graphen


```
\begin \\ \begin \\ \begin \\ \begin \\ \begin \\ \begin{tabular}{l} \textbf{for each } 0 \leq i < n \ \textbf{do} \\ \begin{tabular}{l} \begin{tabular}{l} \textbf{x}_i \coloneqq 0 \\ \begin{tabular}{l} \begin{tabular}
```

Vorraussetzung:

Graph ist ein DAG (Directed Acyclic Graph)!

```
longestPath(G):
begin
    foreach v_i in V do
         p_i := v_i.inDegree()
    Set Q := \{v_0\};
    while (Q \neq \emptyset) do
         v_i := Q.pickany();
         Q := Q \setminus \{v_i\};
         foreach (v_i, v_i) \in E do
              x_i := max(x_i, x_i + d_{ii});
              p_i := p_i - 1;
              if p_i \leq 0 then
               | Q := Q \cup \{v_i\}
```


Längster Pfad DAG Beispiel



Q	p_1	p_2	p_3	p_4	p_5	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅
Init	1	2	1	2	1	0	0	0	0	0
$\{v_0\}$	0	1	1	2	1	1	5	0	0	0
$\{v_1\}$	0	0	1	2	0	1	5	0	0	3
$\{v_2, v_5\}$	0	0	0	1	0	1	5	6	6	3
$\{v_3, v_5\}$	0	0	0	1	0	1	5	6	6	3
$\{v_5\}$	0	0	0	0	0	1	5	6	7	3
$\{v_4\}$	0	0	0	0	0	1	5	6	7	3

Graphen mit Zyklen

- Nur mit negativen Zyklen
- Erkenne positive Zyklen ⇒ Überbeschränkte Layouts
- Aber lokalisere sie nicht

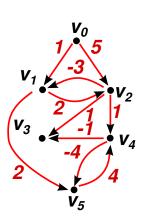
Längster Pfad Liao-Wong


```
foreach 0 < i < n do
 X_i := -\infty
x_0 := 0; loop count = 0;
repeat
    is modified := false;
    longestPath(G<sub>f</sub>);
    foreach (v_i, v_i) \in E_b do
        if x_i < (x_i + d_{ii}) then
            x_i := x_i + d_{ii};
            is_modified := true ;
    if + + loop count > |E_b| && is_modified) then
        error(positive cycle!");
until! is modified;
```

Idee: Zyklen auftrennen

- Kanten E_f: min. Distanz
- Kanten E_b: max. Distanz
- \Rightarrow Teilgraph $G_f(V, E_f)$
 - ► Löse LongestPath(*G_f*)
 - ▶ Korrigiere für entfernte E_b (Zyklen schließen)
 - ▶ Jedes $e_b \in E_b$ max. 1× im Pfad
 - \Rightarrow stabilisert sich in $|E_b|$
 - Wenn nicht
 - ⇒ überbeschränkt

Längster Pfad Liao-Wong Beispiel



Schritt	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅
Init	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
Vor 1	1	5	6	7	3
Zurück 2	2	5	6	7	3
Vor 2	2	5	6	8	4
Zurück 2	2	5	7	8	4
Vor 3	2	5	7	8	4
Zurück 3	2	5	7	8	4

- Verbesserung: longestPath(G_f) bemerkt Änderung
- $\mathcal{O}(|E_f| \times |E_b|)$ d.h. besonders gut, falls $|E_b| \ll |E_f|$

Längster Pfad Bellman-Ford

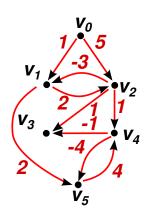

```
foreach 0 < i < n do
 X_i := -\infty
x_0 := 0; loop count = 0;
S_1 := \{v_0\} ; S_2 := \emptyset ;
while loop count < n \&\& S_1 \neq \emptyset do
    foreach v_i \in S_1 do
         foreach (v_i, v_i) \in E do
              if x_i < (x_i + d_{ii}) then
               \mid x_j := x_i + d_{ij} ;
                  S_2 := S_2 \cup \{v_i\};
    S_1 := S_2 : S_2 := \emptyset :
    ++ loop count;
```

ldee: Zwei Wellenfronten

- S₁ aktuelle
- S₂ nächste Iteration
- Vergleichbar azyklischem LP
- aber mehrere Durchläufe
 In k-ter Iteration
 LP durch k − 1 Knoten
- ⇒ Zyklendetektion LP > n Knoten ⇒ Zyklus!
- \triangleright $\mathcal{O}(n^3)$, avg. $\mathcal{O}(n^{1.5})$

if *loop count* > *n* **then** error(positive cycle!");

Längster Pfad Bellman-Ford Beispiel



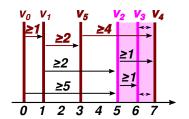
S_1	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅
_	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
$\{v_0\}$	1	5	$-\infty$	$-\infty$	$-\infty$
$\{v_1, v_2\}$	2	5	6	6	3
$\{v_1, v_3, v_4, v_5\}$	2	5	6	7	4
$\{v_4, v_5\}$	2	5	6	8	4
$\{v_4\}$	2	5	7	8	4
$\{v_3\}$	2	5	7	8	4

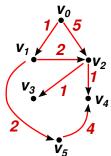
Pfadalgorithmen Übersicht

- LP ↔ SP bei Multiplikation der Gewichte mit −1
- Gerichtete zyklenfreie Graphen (DAG) SP und LP lösbar in linearer Zeit
- Gerichtete Graphen mit Zyklen
 - Alle Gewichte positiv
 - ⇒ SP in P, LP ist NP-vollständig
 - Alle Gewichte negativ
 - ⇒ LP in P, SP ist NP-vollständig
 - Keine positiven Zyklen: LP in P
 - Keine negativen Zyklen: SP in P
 - Sonst: NP-Vollständig

Kompaktierung Kritische vs. Unkritische Element

- Kritische Elemente sind die Knoten entläng des Längsten Pfades
- Unkritisch alle anderen
- Layout-Breite hängt nur von kritischen Elementen ab
- Unkritische Elemente, verschiebbar Beeinflussen aber weitere Iterationen

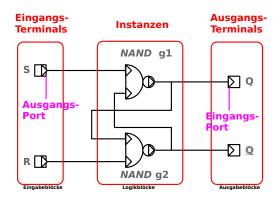




Kompaktierung Weitergehende Details

- Freie Layoutelemente
 Optimale Lösung ist 2D-Kompaktierung
- Einfügen von Jogs Knicke in den Leitungen
- Berechnen der Einschränkungen
 Einfacher n²-Ansatz: Redundanzen enthalten
- Hierarchisches Vorgehen

Darstellungen von Schaltungen



Zelle und Master-Zelle


```
class cell master {
   String name;
   truth table func;
   Rect extent:
   set<port master> ins, outs;
   . . .
class cell {
   cell master master;
   String name:
   set<port> ins, outs;
   . . .
```


Port und Portmaster


```
class port master {
   String name;
   Point location:
class port {
   port master master;
   String id;
   cell parent;
   net connects;
   . . .
```

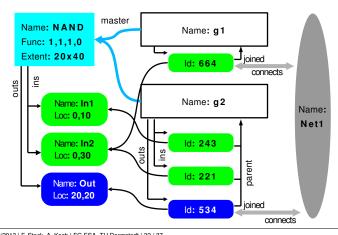

Netz


```
class net {
   String name;
   set<port> joined;
}
```

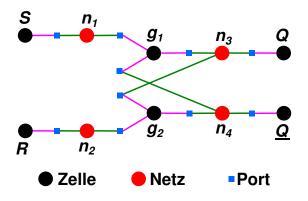

Schaltungsdarstellung Objektzusammenfassung

- ► Fin Auftreten einer Master-Zelle Instanz oder Zelle
 - Speichert instanzspezifische Eigenschaften
 - Master-Zelle Speichert Eigenschaften aller Instanzen
 - Netz Verbindung von mehreren Ports
 - Port Anschlusspunkt von Leitung an Zelle
 - Ld.R nicht untereinander austauschbar
 - Hierarchie: Terminals werden zu Ports

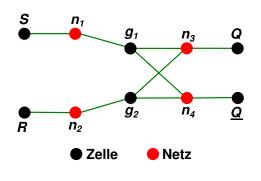
Schaltungsdarstellung Beispiel



Schaltungsdarstellung – Graphmodellierung Tripartiter Graph

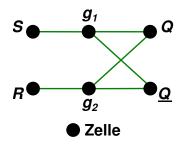


Schaltungsdarstellung - Graphmodellierung **Bipartiter Graph**



- Weniger Details
- Verschmelzt Ports mit Zellen
- Äguivalent zu Hypergraph

Schaltungsdarstellung Graphmodellierung



- Netze nicht mehr explizit modelliert
- Zellen an Netzen bilden jetzt Clique

Schaltungsdarstellungen Übersicht

- Zelle-Port-Netz-Modell
- Tripartiter Graph
- Bipartiter Graph
- Clique-Modell

Für Problem passendes Modell wählen

Mehr Daten nicht immer besser

Konvertierungsroutinen bereitstellen

- Nur in ungenauere Darstellung möglich
- Buchführung über Herkunft von Daten

Zusammenfassung

- Kompaktierung
- Berechnung der Längsten Pfade
 - Mit und ohne Zyklen
- Modellierung von Schaltungen
 - Graphbasiert
 - Hierarchisch

