Algorithmen für Chip-Entwurfswerkzeuge Partitionierung

Vorlesung WS 2014/2015

Andreas Koch

Eingebette Systeme und Anwendungen Technische Universität Darmstadt

Partitionierung

- Aufteilung einer Schaltung in Teilschaltungen (Partitionen, Blöcke)
 - Aufteilung auf mehrere Chips (auch System/Board/Package-Level)
 - Verkleinerung der Problemgröße (Vorbereitung auf anderen Algorithmus)
- Optimierungsziele:
 - Minimierung der Verknüpfungen zwischen den Partitionen
 - Flächenziele
 - Gleichmäßige Größe
 - Erreichen vorgegebener Größen

Problem

Problem:

Gegeben: Graph mit 2*n* Knoten

Gesucht: Partitionierung in 2 Knotenmengen A, B,

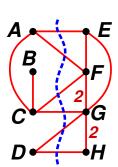
so dass ...

beide n Knoten enthalten und

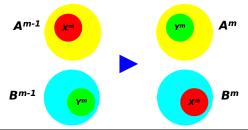
2. das Gewicht γ_{a_i,b_k} der geschnittenen

Kanten $\sum_{e_i=(a_i,b_k),\ a_i\in A,b_k\in B}e_i$ (Schnittkosten) minimal ist (Min-Cut)

- NP-vollständig
- Bewährte Heuristiken:
 - Kerninghan-Lin (KL)
 - Fediuccia-Mattheyses (FM)
 - SA

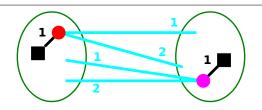


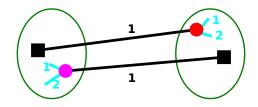
- 1970
- ► Idee:
 - 1. Anfangslösung mit beliebiger Startlösung A₀, B_o
 - 2. Isoliere Teilmenge $X_m \subset A_m$ und $Y_m \subset B_m$
 - 3. Tausche Teilmengen um A_{m+1} und B_{m+1} zu erzeugen
 - 4. Wiederhole bis keine Verbesserung mehr erreichbar
- Arbeitet auf 2-Pin Netzen (Cliquen-Modell)



- ▶ Optimum immer in einem Schritt erzielbar Bei geeignetem X_m und Y_m
- Problem: Wie X_m und Y_m wählen?
 - Schwer zu finden
- Suche Lösung in mehreren Schritten Solange bis keine Verbesserung mehr
 - ► Anzahl Schritte unabhängig von n In der Praxis ≤ 4

Kerninghan-Lin-Algorithmus Kostenidee





Kerninghan-Lin-Algorithmus Kosten

- ▶ Konstruktion von X_{m+1} und Y_{m+1}
- Externe Kosten

$$E(a) = \sum_{c \in B_m} \gamma_{a,c}, a \in A_m$$

Interne Kosten

$$I(a) = \sum_{c \in A_m} \gamma_{a,c}, a \in A_m$$

D-Kosten (Drang/Desirability) – Kosten falls Knoten wechselt

$$D(a) = E(a) - I(a)$$

- Groß, > 0 ⇒ Drang Partition zu wechseln
- ► Klein, < 0 ⇒ Drang in Partition zu bleiben</p>
- Analog für B

Kerninghan-Lin Beispiel Tauschkosten

- Verbesserung ∆ der Schnittkosten, falls a mit b ausgetauscht wird
- ▶ Bei Austausch von $a \in A_m$ und $b \in B_m$

$$\Delta = D(a) + D(b) - 2\gamma_{a,b}$$

Δ kann auch negativ sein!


```
Initialisierung
KernighanLin(V,E,\gamma): begin
      Init(A_0, B_0);
                                                           Startmengen A_0 und B_0 erzeugen
      m := 0:
      repeat
            foreach a \in A_m do Berechne D(a):
            foreach b \in B_m do Berechne D(b):
            for (i:=1; i < n; i++) do
                  Finde freies a_i \in A_m, b_i \in B_m mit \Delta_i := D(a_i) + D(b_i) - 2\gamma_{a_i,b_i} maximal;
                  Sperre a; und b; :
                  foreach freie x \in A_m do D(x) := D(x) + 2\gamma_{x,a_i} - 2\gamma_{x,b_i};
                  foreach freie x \in B_m do D(x) := D(x) - 2\gamma_{x,a_i} + 2\gamma_{x,b_i};
            Finde k mit G := \sum_{i=1}^{k} \Delta_i das maximal ist;
            if G > 0 then
                  X_{m+1} := a_1, ..., a_k
                  Y_{m+1} := b_1, \dots, b_k:
                  A_{m+1} := (A_m \setminus X_{m+1}) \cup X_{m+1}:
                  B_{m+1} := (B_m \setminus Y_{m+1}) \cup Y_{m+1};
                  Entsperre alle Knoten:
                  m := m+1:
      until G < 0;
```



```
Berechnung der D-Kosten
KernighanLin(V,E,\gamma): begin
     Init(A_0, B_0);
     m := 0:
                                                             Für alle Knoten
     repeat
            foreach a \in A_m do Berechne D(a):
                                                             ▶ Komplexität: O(n²)
            foreach b \in B_m do Berechne D(b);
           for (i:=1: i < n: i++) do
                 Finde freies a_i \in A_m, b_i \in B_m mit \Delta_i := D(a_i) + D(b_i) - 2\gamma_{a_i,b_i} maximal;
                 Sperre a; und b; :
                 foreach freie x \in A_m do D(x) := D(x) + 2\gamma_{x,a_i} - 2\gamma_{x,b_i};
                 foreach freie x \in B_m do D(x) := D(x) - 2\gamma_{x,a_i} + 2\gamma_{x,b_i};
            Finde k mit G := \sum_{i=1}^{k} \Delta_i das maximal ist;
           if G > 0 then
                 X_{m+1} := a_1, ..., a_k
                  Y_{m+1} := b_1, \dots, b_k:
                 A_{m+1} := (A_m \setminus X_{m+1}) \cup X_{m+1};
                 B_{m+1} := (B_m \setminus Y_{m+1}) \cup Y_{m+1};
                 Entsperre alle Knoten:
                 m := m+1:
     until G < 0;
```



```
Gewinn beim Tauschen
KernighanLin(V,E,\gamma): begin
     Init(A_0, B_0);
     m := 0:
                                                             ► Für alle Knotenpaare a<sub>i</sub> und b<sub>i</sub>
     repeat
                                                             ► Komplexität: \mathcal{O}(n^2)
           foreach a \in A_m do Berechne D(a):
           foreach b \in B_m do Berechne D(b):
                                                             ► Paar mit größtmöglichem Gewinn wählen
           for (i:=1: i < n: i++) do
                 Finde freies a_i \in A_m, b_i \in B_m mit \Delta_i := D(a_i) + D(b_i) - 2\gamma_{a_i,b_i} maximal;
                 Sperre a; und b; :
                 foreach freie x \in A_m do D(x) := D(x) + 2\gamma_{x,a_i} - 2\gamma_{x,b_i};
                 foreach freie x \in B_m do D(x) := D(x) - 2\gamma_{x,a_i} + 2\gamma_{x,b_i};
           Finde k mit G := \sum_{i=1}^{k} \Delta_i das maximal ist;
           if G > 0 then
                 X_{m+1} := a_1, ..., a_k
                  Y_{m+1} := b_1, \dots, b_k:
                 A_{m+1} := (A_m \setminus X_{m+1}) \cup X_{m+1}:
                 B_{m+1} := (B_m \setminus Y_{m+1}) \cup Y_{m+1};
                 Entsperre alle Knoten:
                 m := m+1:
```


until G < 0;


```
Freie und gesperrte Knoten
KernighanLin(V,E,\gamma): begin
     Init(A_0, B_0);
     m := 0:

    Einmal zum Tausch ausgewählte Elemente

     repeat
                                                               werden gesperrt
           foreach a \in A_m do Berechne D(a):
           foreach b \in B_m do Berechne D(b):

    Erst nächste Iteration wieder verfügbar

           for (i:=1; i < n; i++) do
                 Finde freies a_i \in A_m, b_i \in B_m mit \Delta_i := D(a_i) + D(b_i) - 2\gamma_{a_i,b_i} maximal;
                 Sperre a; und b; :
                 foreach freie x \in A_m do D(x) := D(x) + 2\gamma_{x,a_i} - 2\gamma_{x,b_i};
                 foreach freie x \in B_m do D(x) := D(x) - 2\gamma_{x,a_i} + 2\gamma_{x,b_i};
           Finde k mit G := \sum_{i=1}^{k} \Delta_i das maximal ist;
           if G > 0 then
                 X_{m+1} := a_1, ..., a_k
                 Y_{m+1} := b_1, \dots, b_k:
                 A_{m+1} := (A_m \setminus X_{m+1}) \cup X_{m+1}:
                 B_{m+1} := (B_m \setminus Y_{m+1}) \cup Y_{m+1};
```


Entsperre alle Knoten: m := m+1:

until G < 0;


```
Update der D-Kosten
KernighanLin(V,E,\gamma): begin
     Init(A_0, B_0);
     m := 0:
                                                              \triangleright D(x) nicht mehr aktuell,
     repeat
                                                                  falls x mit a; oder b; verbunden
           foreach a \in A_m do Berechne D(a):
           foreach b \in B_m do Berechne D(b):
           for (i:=1: i < n: i++) do
                  Finde freies a_i \in A_m, b_i \in B_m mit \Delta_i := D(a_i) + D(b_i) - 2\gamma_{a_i,b_i} maximal;
                  Sperre a; und b; :
                  foreach freie x \in A_m do D(x) := D(x) + 2\gamma_{x,a} - 2\gamma_{x,b};
                  foreach freie x \in B_m do D(x) := D(x) - 2\gamma_{x,a_i} + 2\gamma_{x,b_i};
            Finde k mit G := \sum_{i=1}^{k} \Delta_i das maximal ist;
           if G > 0 then
                                                                            D(x) = E(x) - I(x)
                  X_{m+1} := a_1, \dots, a_k:
                  Y_{m+1} := b_1, \dots, b_k:
                                                                                    =E(x)^{old} + \gamma_{ax} - \gamma_{bx}
                  A_{m+1} := (A_m \setminus X_{m+1}) \cup X_{m+1}:
                  B_{m+1} := (B_m \setminus Y_{m+1}) \cup Y_{m+1};
                                                                                      (I(x)^{old} - \gamma_{ax} + \gamma_{bx})
                  Entsperre alle Knoten:
                  m := m+1 :
                                                                                    =D(x)^{old}+2\gamma_{ax}-2\gamma_{bx}
     until G < 0:
```



```
KernighanLin(V,E,\gamma): begin
      Init(A_0, B_0);
      m := 0:
      repeat
            foreach a \in A_m do Berechne D(a):
            foreach b \in B_m do Berechne D(b):
            for (i:=1; i < n; i++) do
                  Sperre a; und b; :
            Finde k mit G := \sum_{i=1}^k \Delta_i das maximal ist; \blacktriangleright \Delta_i kann negativ werden
            if G > 0 then
                  X_{m+1} := a_1, ..., a_k
                   Y_{m+1} := b_1, \dots, b_k:
                  A_{m+1} := (A_m \setminus X_{m+1}) \cup X_{m+1}:
                  B_{m+1} := (B_m \setminus Y_{m+1}) \cup Y_{m+1};
                  Entsperre alle Knoten:
                  m := m+1:
```

Auswahl der zu tauschenden Knoten

- n vorläufige Tauschpartner
- Greedy Verfahren um tatsächliche Austauschungen zu wählen

```
Finde freies a_i \in A_m, b_i \in B_m mit \Delta_i := D(a_i) + D(b_i) - 2\gamma_{a_i,b_i} maximal;
```

foreach freie $x \in A_m$ do $D(x) := D(x) + 2\gamma_{x,a_i} - 2\gamma_{x,b_i}$;

foreach freie $x \in B_m$ do $D(x) := D(x) - 2\gamma_{x,a_i} + 2\gamma_{x,b_i}$;

- $\triangleright \sum \Delta_i$ kann zeitweise auch negativ sein
 - Bei dicht verbundenen Teilmengen
 - Keine Verbesserung bei Austausch von Finzelknoten
 - Erst bei Tausch der gesamten Teilmenge

until G < 0:


```
Austausch
KernighanLin(V,E,\gamma): begin
     Init(A_0, B_0);
     m := 0:

    Wenn Gewinn gewählten Austausch

     repeat
                                                                 durchführen
           foreach a \in A_m do Berechne D(a):
           foreach b \in B_m do Berechne D(b):

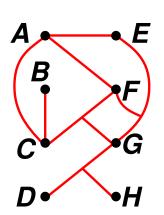
    Bis kein Gewinn mehr möglich

           for (i:=1; i < n; i++) do
                 Finde freies a_i \in A_m, b_i \in B_m mit \Delta_i := D(a_i) + D(b_i) - 2\gamma_{a_i,b_i} maximal;
                 Sperre a; und b; :
                 foreach freie x \in A_m do D(x) := D(x) + 2\gamma_{x,a_i} - 2\gamma_{x,b_i};
                 foreach freie x \in B_m do D(x) := D(x) - 2\gamma_{x,a_i} + 2\gamma_{x,b_i};
            Finde k mit G := \sum_{i=1}^{k} \Delta_i das maximal ist;
           if G > 0 then
                 X_{m+1} := a_1, \dots, a_{\nu}:
                  Y_{m+1} := b_1, \dots, b_k
                 A_{m+1} := (A_m \setminus X_{m+1}) \cup X_{m+1}:
                 B_{m+1} := (B_m \setminus Y_{m+1}) \cup Y_{m+1};
                 Entsperre alle Knoten:
```


until G < 0:

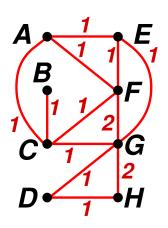
m := m+1:


```
KernighanLin(V,E,\gamma): begin
      Init(A_0, B_0);
      m := 0:
      repeat
            foreach a \in A_m do Berechne D(a):
            foreach b \in B_m do Berechne D(b):
            for (i:=1; i < n; i++) do
                   Finde freies a_i \in A_m, b_i \in B_m mit \Delta_i := D(a_i) + D(b_i) - 2\gamma_{a_i,b_i} maximal;
                   Sperre a; und b; :
                   foreach freie x \in A_m do D(x) := D(x) + 2\gamma_{x,a_i} - 2\gamma_{x,b_i};
                   foreach freie x \in B_m do D(x) := D(x) - 2\gamma_{x,a_i} + 2\gamma_{x,b_i};
             Finde k mit G := \sum_{i=1}^{k} \Delta_i das maximal ist;
            if G > 0 then
                   X_{m+1} := a_1, ..., a_k
                   Y_{m+1} := b_1, \dots, b_k:
                   A_{m+1} := (A_m \setminus X_{m+1}) \cup X_{m+1};
                   B_{m+1} := (B_m \setminus Y_{m+1}) \cup Y_{m+1};
                   Entsperre alle Knoten:
                   m := m+1:
      until G < 0;
```

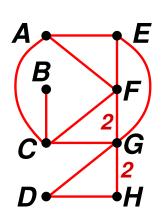
Beispielhypergraph

Einfachheit halber: Kantengewichte alle 1



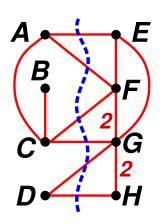
Beispielgraph

- Hyperkanten durch Cliquen ersetzt
- Falls bereits Kante vorhanden, werden Gewichte addiert



Beispielgraph

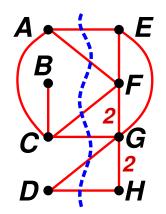
Nur Kantengewichte ≠ 1 annotiert

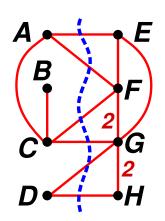


Beispielgraph

- Nur Kantengewichte \neq 1 annotiert
- Startpartitionen $A_0 = \{A, B, C, D\}, B_0 = \{E, F, G, H\}$
- Kosten: 6

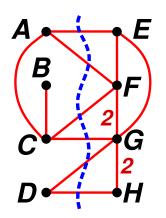
▶ 1. Durchlauf





- 1. Durchlauf
- Bestimmung der D(x)

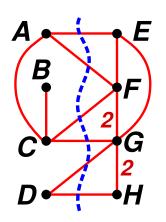
		В					G	
E(x)	2	0	2	2	1	2	2	1
E(x) I(x)	1	1	2	0	2	3	5	2
D(x)	1	-1	0	2	-1	-1	-3	-1



- ▶ 1. Durchlauf
- Bestimmung der D(x)

						F		
D(x)	1	-1	0	2	-1	-1	-3	-1

Bestimmung von Δ₁

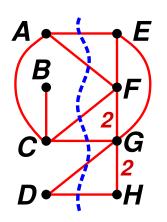


- 1. Durchlauf
- Bestimmung der D(x)

	A	В	C	D	E	F	G	Н
D(x)	1	-1	0	2	-1	-1	-3	-1

Bestimmung von Δ₁

	E	F	G	Н
Α	-2	-2	-2	0
В	-2	-2	-4	-2
С	-1	-3	-5	0
D	1	1	1	-1

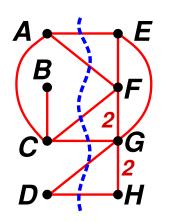


- 1. Durchlauf
- Bestimmung der D(x)

	A	В	C	D	Е	F	G	Н
D(x)	1	-1	0	2	-1	-1	-3	-1

Bestimmung von Δ₁

		F			$\Delta_1 = 1$	D↔E
Α	-2 -2 -1 1	-2	-2	0	$\Delta_1 - 1$	D
A B	-2	-2	-4	-2		
С	-1	-3	-5	0		
D	1	1	1	-1		



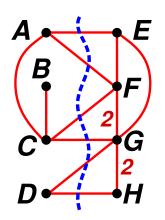
- 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-3	-3

Bestimmung von Δ₁

	E	F	G	Н	Λ 1	DASE
Α	-2	-2	-2	0	$\Delta_1 = 1$	D⇔L
В	-2	-2	-4	-2		
С	-1	-3	-5	0		
D	1	1	1	-1	Δ ₁ = 1	

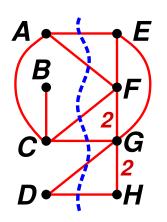
► Aktualisierung *D*(*x*)



- ▶ 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-3	-3

▶ Bestimmung von ∆₂

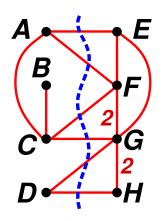


- ▶ 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-3	-3

Bestimmung von Δ₂

	E	F	G	Η
Α		-2	-4	-4
В		0	-4	-4
С		-1	-5	-3
D				

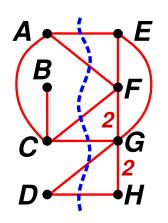


- ▶ 1. Durchlauf
- Bestimmung der D(x)

	Α .	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-3	-3

Bestimmung von Δ₂

	E	F	G	Η
Α		-2	-4	-4
В		0	-4	-4
С		-1	-5	-3
D				

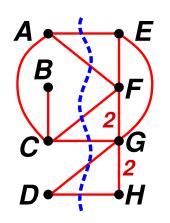


- 1. Durchlauf
- ▶ Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-3	-3

Bestimmung von Δ₂

	E	F	G	Н	$\Delta_1 = 1$	D↔E
Α		-2	-4	-4	$\Delta_1 = 1$ $\Delta_2 = 0$	B↔F
В		0	-4	-4	$\Delta_2 = 0$	D\ /I
С		-1	-5	-3		
D						



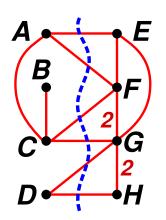
- 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-3	-1	0	2	-1	1	-7	-3

Bestimmung von Δ₂

	E	F	G	Н	$\Delta_1 = 1$	DAE
Α		-2	-4	-4	$\Delta_1 = 1$ $\Delta_2 = 0$	
В		0	-4	-4	$\Delta_2 = 0$	D\ /I
С		-1	-5	-3		
D						

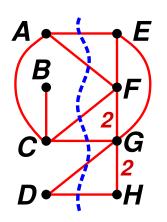
► Aktualisierung *D*(*x*)



- ▶ 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-3	-1	0	2	-1	1	-7	-3

Bestimmung von Δ₃

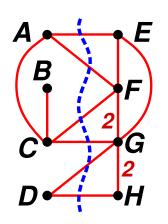


- 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-3	-1	0	2	-1	1	-7	-3

Bestimmung von Δ₃

	E	F	G	Η
Α			-10	-6
В				
С			-9	-3
D				

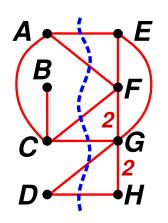


- ▶ 1. Durchlauf
- Bestimmung der D(x)

		A	В	Ċ	D	E	F	G	Н
$\overline{\mathcal{L}}$	O(x)	-3	-1	0	2	-1	1	-7	-3

Bestimmung von Δ₃

	E	F	G	H	$\Delta_1 = 1$	D↔E
Α			-10	-6	$\Delta_1 = 1$ $\Delta_2 = 0$	B↔F
В					$\Delta_2 = 0$ $\Delta_3 = -3$	C↔H
С			-9	-3	$\Delta 3 = 0$	0\/11
\Box						



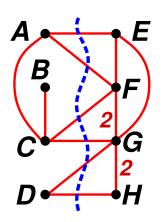
- 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-5	-3

Bestimmung von Δ₃

	E	F	G	Н	$\Delta_1 = 1$	$D \leftrightarrow E$
Α			-10	-6	$\Delta_1 = 1$ $\Delta_2 = 0$	B⇔F
В					$\Delta_2 = 0$ $\Delta_3 = -3$	C↔H
С			-9	-3	$\Delta_3 = 0$	0\/11
D				İ		

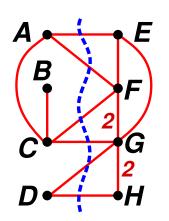
► Aktualisierung *D*(*x*)



- ▶ 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-5	-3

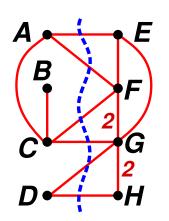
Bestimmung von Δ₄



- ▶ 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-5	-3

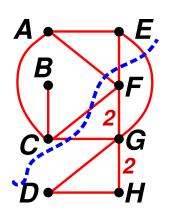
	E	F	G	Н	$\Delta_1 = 1$	D↔E
Α			-6		$\Delta_1 = 1$ $\Delta_2 = 0$	B↔F
В					_	
С					$\Delta_3 = -3$	
Ď					$\Delta_4 = -6$	A↔G



- ▶ 1. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-5	-3

	E	F	G	Н	$\Delta_1 = 1$	D↔E
Α			-6		$\Delta_1 = 1$ $\Delta_2 = 0$	B↔F
В					_	
С					$\Delta_3 = -3$	
Ď					$\Delta_4 = -6$	A↔G

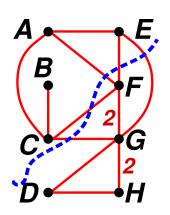


- 1. Durchlauf
- Bestimmung der D(x)

	_ A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	-5	-3

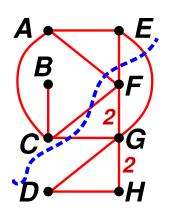
	E	F	G	Н	$\Delta_1 = 1$	D↔E
Α			-6		$\Delta_1 = 1$ $\Delta_2 = 0$	B↔F
В					-	
С					$\Delta_3 = -3$	
D					$\Delta_4 = -6$	A↔G

- $\sum_{i=1}^{k} \Delta_{i} \text{ wird maximal bei } k = 1$
 - \Rightarrow Nur D und E austauschen



- 2. Durchlauf
 - Bestimmung der D(x)

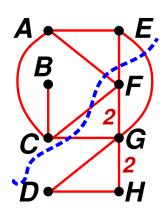
	Α	В	C	D	E	F	G	Н
D(x)	-1	-1	0	-2	1	1	-5	-3



- 2. Durchlauf
- Bestimmung der D(x)

	A	В	Č	D	E	F	G	Н
D(x)	-1	-1	0	-2	1	1	-5	-3

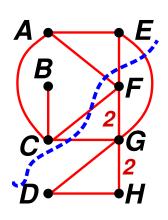
▶ Bestimmung von ∆₁



- 2. Durchlauf
- ▶ Bestimmung der D(x)

	A	В	C	D	Е	F	G	Н
D(x)	-1	-1	0	-2	1	1	-5	-3

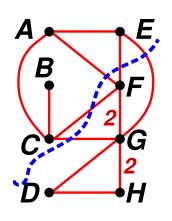
	D	F	G	Н
Α	-3	-2	-5	-4
В	-3	0	-5	-4
С	-2	-1	-6	-3
Ε	-1	0	-5	-2



- 2. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	Е	F	G	Н
D(x)	-1	-1	0	-2	1	1	-5	-3

			G		$\Delta_1 = 0$	R 🗸 F
Α	-3	-2	-5	-4	$\Delta_1 = 0$	וליאט
В	-3	0	-5	-4		
С	-2	-1	-6	-3		
Е	-3 -3 -2 -1	0	-5	-2		



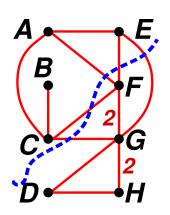
- 2. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-3	-1	0	-2	-1	1	1	-3

Bestimmung von Δ₁

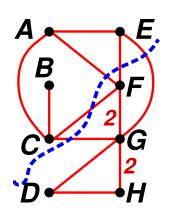
	D	F	G	Н	Λ. – 0	B∠F
Α	-3	-2	-5	-4	$\Delta_1 = 0$	וקקט
В	-3	0	-5	-4		
С	-2	-1	-6	-3		
Е	-1	0	-5	-2	$\Delta_1 = 0$	

► Aktualisierung *D*(*x*)



- 2. Durchlauf
- Bestimmung der D(x)

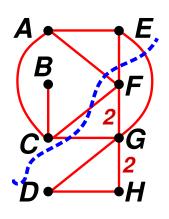
	A	В	Ċ	D	E	F	G	Н
D(x)	-3	-1	0	-2	-1	1	1	-3



- 2. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-3	-1	0	-2	-1	1	1	-3

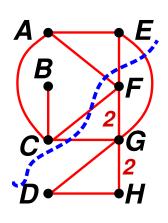
	D	F	G	Н
Α	-5		-3	-6
В				
С	-2		-1	-3
Ε	-3		-2	-4



- 2. Durchlauf
- Bestimmung der D(x)

	Α	В	С	D	E	F	G	Н
D(x)	-3	-1	0	-2	-1	1	1	-3

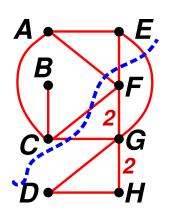
	D	F	G	Н
Α	-5		-3	-6
В				
С	-2		-1	-3
Е	-3		-2	-4



- 2. Durchlauf
 - Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-3	-1	0	-2	-1	1	1	-3

	D	F	G	Н	$\Delta_1 = 0$	B↔F
Α	-5		-3	-6	$\Delta_1 = 0$ $\Delta_2 = -1$	C↔G
В					$\Delta_2 - 1$	0\ /G
С	-2		-1	-3		
F	-3		-2	-4		



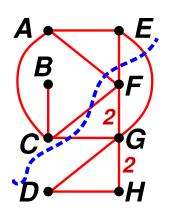
- 2. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	0	-3	1	1	1

Bestimmung von Δ₂

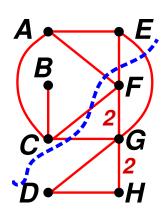
	D	F	G	Н	$\Delta_1 = 0$	B↔F
Α	-5		-3	-6	$\Delta_1 = 0$ $\Delta_2 = -1$	C↔G
В					$\Delta_2 - 1$	0\ 7 u
С	-2		-1	-3		
Ε	-3		-2	-4		

Aktualisierung D(x)



- 2. Durchlauf
- Bestimmung der D(x)

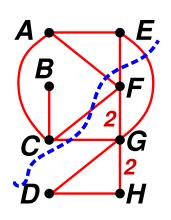
	Α	В	C	D	E	F	G	Н
D(x)	-1	-1	0	0	-3	1	1	1



- 2. Durchlauf
- Bestimmung der D(x)

	Α	В	C	D	E	F	G	Н
D(x)	-1	-1	0	0	-3	1	1	1

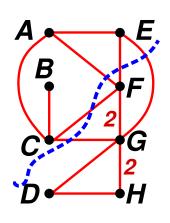
	D	F	G	Н
Α	-1			0
В				
C E				
Е	-3			-2



- 2. Durchlauf
- ▶ Bestimmung der D(x)

	A	В	C	D	E	F	G	Н
D(x)	-1	-1	0	0	-3	1	1	1

	D	F	G	Н	$\Delta_1 = 0$	$B \leftrightarrow F$
Α	-1			0	$\Delta_1 = 0$ $\Delta_2 = -1$	C⇔G
В					$\Delta_2 = -1$ $\Delta_3 = 0$	A⇔H
С					$\Delta_3 = 0$	A7711
Ε	-3			-2		



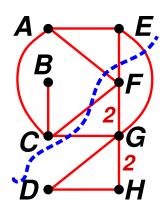
- 2. Durchlauf
- Bestimmung der D(x)

	A	В	C	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	1	1

Bestimmung von Δ₃

	D	F	G	Н	$\Delta_1 = 0$	B↔F
Α	-1			0	$\Delta_1 = 0$ $\Delta_2 = -1$	C⇔G
В					$\Delta_2 = -1$ $\Delta_3 = 0$	A↔H
С					$\Delta_3 = 0$	A7711
F	-3			-2		

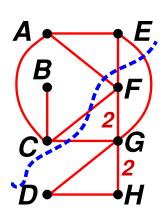
Aktualisierung D(x)



- 2. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	1	1

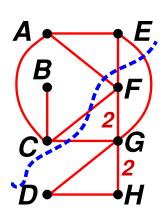
	E	F	G	H
Α				
В				
С				
D	1			



- 2. Durchlauf
- Bestimmung der D(x)

	A	В	C	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	1	1

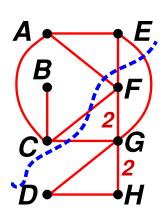
	E	F	G	Н	$\Delta_1 = 0$	B↔F
Α					$\Delta_1 = 0$ $\Delta_2 = -1$	C↔G
В					$\Delta_2 = -1$ $\Delta_3 = 0$	A↔H
С					$\Delta_3 = 0$ $\Delta_4 = -1$	E⇔D
D	1				$\Delta_4 = -1$	⊏↔∪



- 2. Durchlauf
- Bestimmung der D(x)

	A	В	C	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	1	1

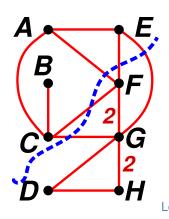
	E	F	G	Н	$\Delta_1 = 0$	B↔F
Α					$\Delta_1 = 0$ $\Delta_2 = -1$	C↔G
В					$\Delta_2 = -1$ $\Delta_3 = 0$	A↔H
С					$\Delta_3 = 0$ $\Delta_4 = -1$	E⇔D
D	1				$\Delta_4 = -1$	⊏↔∪



- 2. Durchlauf
- Bestimmung der D(x)

	A	В	C	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	1	1

	E	F	G	Н	$\Delta_1 = 0$	B↔F
Α					$\Delta_1 = 0$ $\Delta_2 = -1$	C↔G
В					$\Delta_2 = -1$ $\Delta_3 = 0$	A↔H
С					$\Delta_3 = 0$ $\Delta_4 = -1$	E⇔D
D	1				$\Delta_4 = -1$	⊏↔∪



- 2. Durchlauf
- Bestimmung der D(x)

	A	В	Ċ	D	E	F	G	Н
D(x)	-1	-1	0	2	-1	1	1	1

Bestimmung von

	E	F	G	Н	$\Delta_1 = 0$	B↔F
Α					$\Delta_1 = 0$ $\Delta_2 = -1$	C↔G
В					$\Delta_2 = -1$ $\Delta_3 = 0$	A↔H
С						E⇔D
D	1				$\Delta_4 = -1$	⊏↔ט

- ▶ Maximale $\sum_{i}^{k} \Delta_{i} \leq 0$
 - \Rightarrow Keine weitere Verbesserung möglich

Lösung: Partitionierung zu Beginn des Durchlaufes

Kerninghan-Lin Zusammenfassung

- Lokale Suche mit variabler Nachbarschaft
- ► Komplexität: $\mathcal{O}(n^3)$ pro Durchlauf
- Nachteile:
 - Kein Hypergraph
 - Exakte Bisektion
 - ⇒ Partitionen müssen gleich groß sein ggf. Dummy-Knoten einfügen
 - Unterstützt keine Knotengewichte
- Allgemeiner: k-Wege Partitionierung (bisher k = 2)
 - 1. Partitionieren des Graph in *k* gleich große Mengen
 - 2. KL auf jedes Teilmengenpaar anwenden

- 1982
- Arbeitet mit Hypergraphen (Multi-Pin-Netze)
 - ⇒ Reduziert Netzkosten, nicht Kantenkosten
- Partitionen k\u00f6nnen verschieden Gr\u00f6\u00dfe haben
 Nur eine ca.-Verh\u00e4ltnisvorgabe f\u00fcr die beiden Partitionen
- Immer nur eine Zelle auf einmal bewegen (d.h. kein Austausch)
- Sehr schnell

Fiduccia-Mattheyses-Algorithmus Notation

- ► Gegeben: Netze 1, ..., N, Zellen 1, ..., C
 - n(i): Anzahl Zellen von Netz i
 - s(i): Größe von Zelle i $|x_1, x_2, ...| := \sum_i x_i$

$$|x_1, x_2, ...| := \sum_i x_i$$

 $S_{max} := max_i s(i)$

- p(i): Anzahl Pins von Zelle i
 - $P := \sum_{i} p(i)$ Anzahl aller Pins
- ▶ Zu gegebenen Verhältnis 0 < r < 1, partitioniert FM den Graph G = (V, E) in Knotensets A und B, so dass . . .
 - die Schnittkosten minimiert werden
 - $ightharpoonup \frac{|A|}{|A|+|B|} \approx r$

- Schnittkosten: Kosten der Netze in der Schnittmenge (Menge der Netze die beide Partitionen verbinden)
- ➤ Zellgewinnwert (gain) g(v) einer Zelle v: Veränderung der Schnittkosten beim Wechsel der Zelle
- $-p(v) \leq g(v) \leq p(v)$
- Nur eine Zelle bewegen
- Versuchen balanciert zu bleiben (inkl. etwas Spiel) ⇒ max. Partitionsgröße

$$r|V|-S_{max} \leq |A| \leq r|V| + S_{max}$$


```
Initialisierung
FiducciaMattheyses() (V,E,r,n,s,): begin
     Init(A_0, B_0);
                                                   Startmengen A_0 und B_0 erzeugen
     m := 0:
     repeat
                                                   (zufällig)
          Entsperre alle Knoten:
          for (i:=1; i \le |V|; i++) do
               Finde freies v_i \in A_m \cup B_m mit
                 maximalem Gain, dass die Größen-
                 bedingungen nicht verletzt ;
               g_i := gain(v_i);
               WechselVorläufig(vi);
               Sperre vi:
          Finde k mit G := \sum_{i=1}^{k} g_i das maximal ist;
          if G > 0 then
               MacheWechselPermanent(v_1, ..., v_k);
               VerwerfeWechsel(v_{k+1}, ..., v_{|V|});
               m := m+1;
     until G < 0:
```


FiducciaMattheyses() (V,E,r,n,s,): begin $Init(A_0, B_0)$; m := 0: repeat Entsperre alle Knoten: for (i:=1; i < |V|; i++) do Finde freies $v_i \in A_m \cup B_m$ mit maximalem Gain, dass die Größenbedingungen nicht verletzt ; $g_i := gain(v_i)$; WechselVorläufig(vi); Sperre v_i: Finde k mit $G := \sum_{i=1}^{k} g_i$ das maximal ist; if G > 0 then MacheWechselPermanent $(v_1, ..., v_k)$; VerwerfeWechsel($v_{k+1}, ..., v_{|V|}$); m := m+1;

Freie und gesperrte Knoten

- Einmal zum Wechsel ausgewählte Zellen werden gesperrt
- Erst n\u00e4chste Iteration (Pass) wieder verf\u00fcgbar

until G < 0:

FiducciaMattheyses() (V,E,r,n,s,): begin $Init(A_0, B_0)$; m := 0: repeat Entsperre alle Knoten: for $(i:=1; i \le |V|; i++)$ do Finde freies $v_i \in A_m \cup B_m$ mit maximalem Gain, dass die Größenbedingungen nicht verletzt: $g_i := gain(v_i)$; WechselVorläufiq (v_i) ; Sperre vi: Finde k mit $G := \sum_{i=1}^{k} g_i$ das maximal ist; if G > 0 then MacheWechselPermanent $(v_1, ..., v_k)$;

VerwerfeWechsel($v_{k+1}, ..., v_{|V|}$);

Wechselkandiaten auswählen

- ► Zelle *v* so wählen, dass
 - v nicht gesperrt ist
 - ► Ein Wechsel von *v* die Größenbedingung nicht verletzt
 - Zellgewinnwert von v maximal ist
- Wechsel nur vorläufig

m := m+1;

until G < 0:

FiducciaMattheyses() (V,E,r,n,s,): begin $Init(A_0, B_0)$; m := 0: repeat Entsperre alle Knoten: for $(i:=1; i \le |V|; i++)$ do Finde freies $v_i \in A_m \cup B_m$ mit maximalem Gain, dass die Größenbedingungen nicht verletzt ; $g_i := gain(v_i)$; WechselVorläufig(vi); Sperre vi: Finde k mit $G := \sum_{i=1}^{k} g_i$ das maximal ist; if G > 0 then MacheWechselPermanent $(v_1, ..., v_k)$; VerwerfeWechsel($v_{k+1}, ..., v_{|V|}$); m := m+1; until G < 0:

Auswahl der zu wechselnden Knoten

- Greedy Verfahren um tatsächliche Wechsel zu wählen
- ► g_i kann negativ werden
- $ightharpoonup \sum g_i$ kann zeitweise auch negativ sein
 - ► Bei dicht verbundenen Teilmengen
 - Keine Verbesserung beim Wechsel von Einzelknoten
 - ► Erst bei Wechsel der gesamten Teilmenge

FiducciaMattheyses() (V,E,r,n,s,): begin $Init(A_0, B_0)$; m := 0: repeat Entsperre alle Knoten: for $(i:=1; i \le |V|; i++)$ do Finde freies $v_i \in A_m \cup B_m$ mit maximalem Gain, dass die Größenbedingungen nicht verletzt ; $g_i := gain(v_i)$; WechselVorläufig(vi); Sperre vi: Finde k mit $G := \sum_{i=1}^{k} g_i$ das maximal ist; if G > 0 then MacheWechselPermanent($v_1, ..., v_k$); VerwerfeWechsel($v_{k+1}, ..., v_{|V|}$);

Wechsel

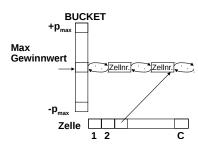
- Wenn Gewinn gewählten Wechsel durchführen
- Bis kein Gewinn mehr möglich

m := m+1;

until G < 0:

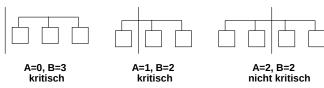
FM-Implementierungsdetails Datenstrukturen

- Zwei Bucket-List Strukturen, für jede Partition eine
- ▶ Erlaubt in $\mathcal{O}(1)$:
 - Zelle mit maximalem Gewinnwert finden
 - Aktualisieren des max. Gewinnwert-Zeigers
 - Zelle v löschen
 - Zelle v einfügen
 - ▶ Ändern von g(v)



FM-Implementierungsdetails Kritische Netze

- ▶ Neuberechnung aller Zellgewinnwerte $\mathcal{O}(C^2)$
- Besser:
 - ▶ Nur bewegte Zellen und mit ihr verbundene neuberechnen!
 - Noch Besser: Dies nur für kritische Netze tun!
- Kritische Netze: Netze deren Schnittzustand (d.h. geschnitten oder nicht) sich beim Zellbewegen ändert
- Zellgewinnwert hängt nur von kritischen Netzen ab.
- Bestimmung ob ein Netz kritisch ist:
 - Netz i ist kritisch, gdw. Anzahl Zellen am Netz in einer Partition 0 oder 1 ist.



FM-Implementierungsdetails Berechnung Zellgewinnwerte

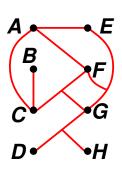

```
InitGain(Zelle z) begin
z.gain := 0;
F := FromPartition(z);
T := ToPartition(z);
foreach Netz n verbunden mit z do
if #Pins von n in F = 1 then
z.gain++;
if #Pins von n in T = 0 then
z.gain--;
```

Komplexität: $\mathcal{O}(P)$

```
UpdateGain(Zelle z) begin
     F := FromPartition(z);
     T := ToPartition(z):
     foreach Netz n verbunden mit z do
          if #Pins von n in T = 0 then
               foreach Freie Zelle a verbunden mit z do
                     a.gain++;
          if #Pins von n in T = 1 & delta die Zelle a ist frei then
               a.gain - -;
          #Pins von n in T++: #Pins von n in F-:
          if #Pins von n in F = 0 then
               foreach Freie Zelle a verbunden mit z do
                     a.qain - -:
          if #Pins von n in F = 1.88 die Zelle a ist frei then
               a.gain++;
```

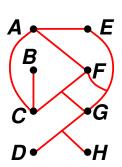
Komplexität: $\mathcal{O}(P)$ für einen FM-Durchlauf

Fiduccia-Mattheyses-Algorithmus Beispiel

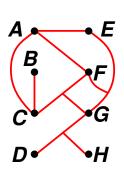


- $r = \frac{4}{8} = 0.5$
- Zur Vereinfachung im Beispiel:
 - Alle Zellen Einheitsgröße s = 1
 - Keine besonderen Datenstrukturen
- Zufällige Startpartionen
 ({A, B, C, D}, {E, F, G, H})
 ⇒ Schnittkosten = 4

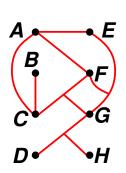
Fiduccia-Mattheyses-Algorithmus Beispiel



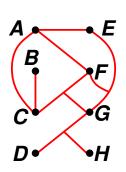
Durchlauf 1 *Gewinnwerte*:



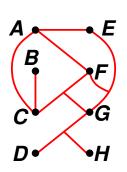
i	Α	В	C	D	E	F	G	Н	gi	$\sum g_i$
1	1	-1	-1	-1	0	0	-1	0	1	1



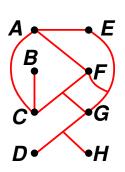
i	Α	В	С	D	E	F	G	Н	g_i	$\begin{array}{c c} \sum g_i \\ 1 \\ 1 \end{array}$
1	1	-1	-1	-1	0	0	-1	0	1	1
2		-1	1	1	-2	-1	-1	0	0	1
	İ									



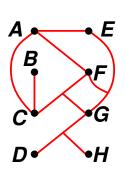
i	Α	В	C	D	E	F	G	Н	g_i	$\begin{array}{c c} \sum g_i \\ 1 \\ 1 \\ 2 \end{array}$
1	1	-1	-1	-1	0	0	-1	0	1	1
2		-1	1	1	-2	-1	-1	0	0	1
3		0	1	0	-2	-1	-1		1	2
						•	•			



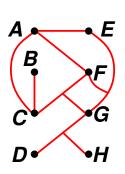
i	Α	В	С	D	E	F	G	Н	gi	$\sum g_i$
1	1	-1	-1	-1	0	0	-1	0	1	1
2		-1	1	1	-2	-1	-1	0	0	1
3		0	1	0	-2	-1	-1		1	2
4		1		0	-2	-3	-1		-1	1 1 2 1
	· '		'	'	'	'	•	'	'	'



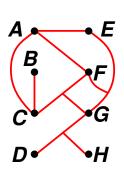
i	Α	В	С	D	E	F	G	Н	g _i	$\sum g_i$
1	1	-1	-1	-1	0	0	-1	0	1	1
2		-1	1	1	-2	-1	-1	0	0	1
3		0	1	0	-2	-1	-1		1	2
4		1		0	-2	-3	-1		-1	1
4 5		1		-1	-1	-1			1	1 1 2 1 2
		'			'	'	1	' '	'	'



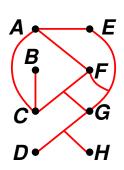
i	Α	В	С	D	E	F	G	Н	g _i	$\sum g_i$
1	1	-1	-1	-1	0	0	-1	0	1	1
2		-1	1	1	-2	-1	-1	0	0	1
2		0	1	0	0 -2 -2	-1	-1		1	2
4		1		0	-2	-3	-1		-1	1
5		1		-1	-1	-1			1	2 1
6				-1	-1 -1	-1			-1	1
l		'	'	'	'	'	'	' '	'	



i	Α	В	С	D	E	F	G	Н	g _i	$\sum g_i$
1	1	-1	-1	-1	0	0	-1	0	1	1
2		-1	1	1	-2	-1	-1	0	0	1
3		0	1	0	-2	-1	-1		1	2
4		1		0	-2	-3	-1		-1	1
5		1		-1	-1	-1			1	2
6				-1	-1	-1			-1	1
7				-1		0			0	1
	'	'	'	'	'	'	'	' '		



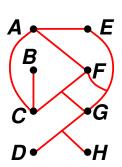
i	A	В	C	D	E	F	G	Н	gi	$\sum g_i$
1	1	-1	-1	-1	0	0	-1	0	1	1
2		-1	1	1	-2	-1	-1	0	0	1
3		0	1	0	-2	-1	-1		1	2
4		1		0	-2	-3	-1		-1	1
5		1		-1	-1	-1			1	2
6				-1	-1	-1			-1	1
7				-1		0			0	1
8				-1					-1	0

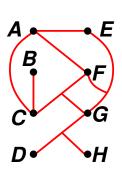


Durchlauf 1 Gewinnwerte:

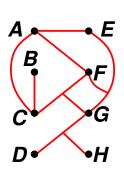
i	Α	В	С	D	E	F	G	Н	gi	$\sum g_i$
1	1	-1	-1	-1	0	0	-1	0	1	1
2		-1	1	1	-2	-1	-1	0	0	1
3		0	1	0	-2	-1	-1		1	2
4		1		0	-2	-3	-1		-1	1
5		1		-1	-1	-1			1	2
6				-1	-1	-1			-1	1
7				-1		0			0	1
8				-1					-1	0

 \sum maximal bei i = 3 \Rightarrow Zellen A, H, C Wechseln

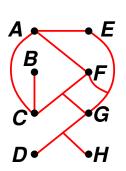




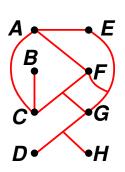
i	Α	В	С	D	E	F	G	H	gi	$\sum g_i$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1



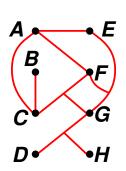
i	Α	В	С	D	E	F	G	H	gi	$\begin{array}{c c} \sum g_i \\ -1 \\ -1 \end{array}$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1
2	-1	-1		0	-2	-3	-1	0	0	-1
ı		'	'		'					'



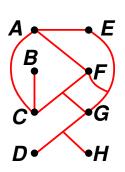
i	Α	В	С	D	E	F	G	H	g_i	$\sum g_i$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1
2	-1	-1		0	-2	-3	-1	0	0	-1
3	-1	-1			-2	-3	-1	1	-1	-1 -1 -2



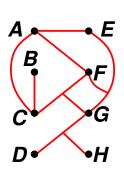
i	Α	В	С	D	E	F	G	H	g_i	$\sum g_i$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1
2	-1	-1		0	-2	-3	-1	0	0	-1
3	-1	-1			-2	-3	-1	1	-1	-2
4		-1			0	0	-1	1	1	-1 -1 -2 -1
- 1	i									



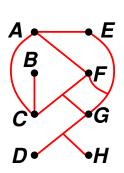
i	Α	В	С	D	E	F	G	Н	g _i	$\sum g_i$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1
2	-1	-1		0	-2	-3	-1	0	0	-1
3	-1	-1			-2	-3	-1	1	-1	-2
4		-1			0	0	-1	1	1	-1
5		-1			0	0	-2		0	-1 -1 -2 -1 -1
l		'	'	'	'	'	'	'		'



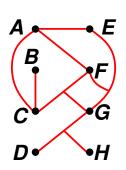
i	Α	В	С	D	Е	F	G	H	g _i	$\sum g_i$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1
2	-1	-1		0	-2	-3 -3	-1	0	0	-1
3	-1	-1			-2	-3	-1		-1	-2
4		-1			0	0	-1	1	1	-1
5		-1			0	0	-2 -2		0	-1
6		-1				1	-2		1	0
ı	İ	'	'		'	'	'	' '		'



i	Α	В	С	D	E	F	G	Н	gi	$\sum g_i$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1
2	-1	-1		0	-2	-3	-1	0	0	-1
3	-1	-1			-2	-3	-1	1	-1	-2
4		-1			0	0	-1	1	1	-1
5		-1			0	0	-2		0	-1
6		-1				1	-2		1	0
7		-1					1		-1	-1
		'						'	'	'



i	A	В	С	D	E	F	G	H	gi	$\sum g_i$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1
2	-1	-1		0	-2	-3	-1	0	0	-1
3	-1	-1			-2	-3	-1	1	-1	-2
4		-1			0	0	-1	1	1	-1
5		-1			0	0	-2		0	-1
6		-1				1	-2		1	0
7		-1					1		-1	-1
8							1		1	0



Durchlauf 2 *Gewinnwerte*:

i	Α	В	С	D	E	F	G	H	g_i	$\sum g_i$
1	-3	1	-1	0	-2	-3	-1	0	-1	-1
2	-1	-1		0	-2	-3	-1	0	0	-1
3	-1	-1			-2	-3	-1	1	-1	-2
4		-1			0	0	-1	1	1	-1
5		-1			0	0	-2		0	-1
6		-1				1	-2		1	0
7		-1					1		-1	-1
8							1		1	0

 \sum maximal = 0 \Rightarrow kein Wechsel, FM fertig Finale Schnittkosten = 2

FM-Algorithmus Zusammenfassung

- ► Komplexität: $\mathcal{O}(P)$ pro Durchlauf $\Rightarrow \mathcal{O}(PlogP)$
- Sehr schnell durch geschickte Wahl der Datenstrukturen
- Nicht optimal, aber relativ gute Qualität

Multilevel Partitionierer

- Multilevel Partitionierer
- Ablauf:

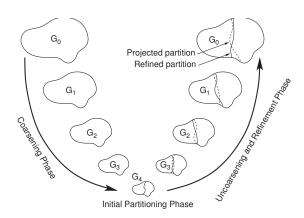
Vergröbern: Rekursiv Knoten zusammengruppieren

(Basierend auf einer Konnektivitätsmetrik) bis Anzahl Knoten einer Gruppe kleiner als kleiner Wert c (Größenordnung c = 100)

Verfeinern:

- ► Ergebnis einer gröberen Stufe nehmen und auf feinere projezieren
- Jedesmal Partionierungsalgorithmus benutzen, um Qualität schrittweise zu verbessern
- Beispiel:
 - hMetis (Karypis, 1997)
 - Benutzt zufällige Initiale Partitionierung
 - Für die Verfeinerung FM
 - Insgesamt sehr gute Lösungsqualität

Multilevel Partitionierer



Quelle: Y.-W. Chang

Zusammenfassung

- Partitionierung
- ► KL
- ► FM
 - Schneller als KL, aber schlechtere Lösungsqualität
- Multilevel Partitionierung
- Andere akademische Ansätze: Spektral Methode, Netzwerkfluß, ILP, Hybrid-Varianten, . . .

