Algorithmen für Chip-Entwurfswerkzeuge Platzierungsverfahren

Vorlesung WS 2014/2015

Andreas Koch

Eingebette Systeme und Anwendungen Technische Universität Darmstadt

Platzierungsproblem allgemein **Design Stile**

- Design Stile:
 - Standardzellen
 - Gate Arrays
 - Makroblock
 - Mixed-Size
 - "UPP" Einfaches Beispielproblem
- Alle Gleich:
 - Platziere die zur Verfügung stehenden Module Überlappungsfrei!
- Unterschiedlich in Zielfunktionen und Randbedingungen

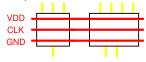
Design Stil Standarzellen-Design

- Semi-Custom
- Bibliothek mit Logikmodule mit einfachen Funktionen (AND, OR, Inverter, ...)
 - Alle Module haben die gleiche Höhe
 - Module habe variable Breite
- Es gibt für das Platzieren vordefinierte Reihen
- Sehr beliebter Design-Ansatz
- ⇒ Viele Algorithmen gehen von Standardzellen Design aus
- Platzierung überlappungsfrei innerhalb der Reihen

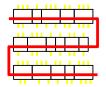
Design Stil Standarzellen-Design

Routing:

▶ Infrastruktur (V_{DD}, CLK, GND) durch alle Reihen



- Verdrahtung zwischen Reihen
- Ausnahmen:

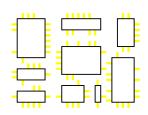


Angrenzende Verbindungen (abutment)

Durchleitungen (feedthroughs)

Design Stil Makroblock-Design

- Alle Module sind Makroblöcke (Building-Blocks) fester Größe, Form und Ausrichtung
 - Kann auch Full-Custom Teile enthalten
 - Automatisch generierte Blöcke (z.B. RAM)
- Verdrahtungskanäle an allen Seiten
- Alle sind überlappungsfrei zu platzieren
- Ähnlich zu Floorplanning (dort sind i.d.R. Form und Orientierung variabel).



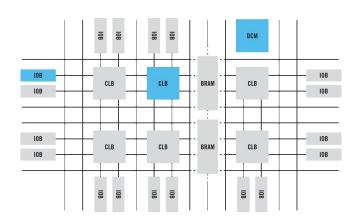
Design Stil Mixed-Size-Design

- Sehr häufig benutzt
- Vereint
 - Makroblöcke und
 - Standardzellen
- ► Makroblöcke ≫ Standardzellen
 - ⇒ Schwer Überlappungen zu vermeiden

Zielarchitektur MPGA/FPGA

- Gate Arrays
 - ► Field Programmable Gate Array (FPGA)
 Wird beim Anwender an Funktion angepasst ⇒ Programmierung
 - Mask Programmable Gate Array (MPGA)
 Andere Bezeichnung: Structured ASIC
 Wird beim Hersteller an Funktion angepasst ⇒ Metallagen Herstellung
- Reguläre Struktur mit fester Anordnung von
 - Programmierbarer Logik
 - Festen Funktionsblöcken
 - Speicher
 - Verdrahtung

Zielarchitektur MPGA/FPGA



[Quelle: Xilinx]

Zielarchitektur MPGA/FPGA

- Sehr ähnlich zu UPP
- Aber: Segmentierte Verbindungen
 - ⇒ Mehrere Verdrahtungslängen
- Verzögerung abhängig von
 - Anzahl durchlaufener Switch Boxes
 - Last (Fan-Out)
- Feste Verdrahtungskapazität
 - ⇒ Nicht jede Platzierung verdrahtbar
- Verdrahtbarkeit in Kostenfunktion

Platzierungsproblem

- Platzierungsproblem in nahezu allen Varianten NP-Vollständig
- Zur Lösung:
 - Heuristische Algorithmen Simulated Annealing
 - Analytische Algorithmen kräftebasiert, partionierungsbasiert, ...

Simulated Annealing TimberWolf (1985)

- Standard Cell-Placer
- Start mit T = 4.000.000
- ▶ Stop bei *T* < 0.1</p>
- Equilibrium abhängig von Problemgröße
 - 100 Züge pro Zelle bei 200 Zellen
 - 700 Züge pro Zelle bei 3000 Zellen
- Abkühlen
 - Anfangs mit $T_n = 0.8T$
 - Im Mittelbereich mit $T_n = 0.95T$
 - ▶ Gegen Ende mit $T_n = 0.8T$
 - ⇒ Cooling Schedule

- Versatile Place and Route
 - Betz und Marguardt, University of Toronto
 - Ab hier Auszüge aus Paper (auf Web-Seite)
- Platzierer
 - Simulated Annealing-basiert
 - Mit adaptivem cooling schedule
 - Optimiert gleichzeitig
 - Leitungslänge
 - Verzögerung

VPR Züge

- Paarweises Austauschen von Blöcken
 - N_{blocks} = Größe der Schaltung
- Aber nicht ganz zufällig: Beschränkung der Entfernung

VPR Starttemperatur

- Wird automatisch bestimmt passend für aktuelle Schaltung
- Idee:
 - Anfangs fast alle Züge akzeptieren
 - Wie hoch muß die Starttemperatur sein?
- Vorgehen:
 - N_{blocks} Blöcke paarweise austauschen
 - Beobachte Änderung der Kostenfunktion c (Standardabweichung)

$$s_c = \sqrt{\frac{1}{n-1}((\sum_i c_i^2) - n\bar{c}^2)}$$

Starttemperatur = $20 \cdot s_c$

Thermisches Gleichgewicht

Anzahl von Schritten pro Temperaturstufe:

$$10 \cdot N_{blocks}^{\frac{4}{3}}$$

▶ 10× schneller, aber nur ca. 10% schlechter:

$$N_{blocks}^{\frac{4}{3}}$$

- Beobachtung:
- Anfangs: T hoch, fast alle Züge akzeptiert
 - Im wesentlichen zufälliges Bewegen
 - Keine echte Verbesserung der Kosten
- Ende: T niedrig, kaum Züge akzeptiert
 - Fast keine Bewegung mehr
 - Wenig Veränderung in Kosten
- Idee:
 Meiste Optimierung passiert zwischen Anfangs- und Endphase
 - Bringe T schnell in den produktiven Bereich
 - ► Halte *T* möglichst lange im produktiven Bereich
- Vorgehen: Steuere T anhand der Akzeptanzrate R₂
 - Steuere T anhand der Akzeptanzrate R_a
 Akzeptanzrate R_a: Anteil der Züge die akzeptiert wurde (egal, ob verbesserend oder verschlechternd)

▶ Cooling Schedule $T_{new} = \alpha T_{old}$

Acceptance Rate R_a	α
$R_a > 0.96$	0.50
$0.80 < R_a \le 0.96$	0.90
$0.15 < R_a \le 0.80$	0.95
$R_a \le 0.15$	0.80

- Vorahnung
 - Gute Fortschritte bei $R_a \approx 0.5$
- Am effizientesten R_a = 0.44 Beste Fortschritte
- Idee
 - R_a möglichst auf diesem Wert halten, aber wie?
 - Nicht temperaturbasiert (kühle nur ab!)
 - Sondern: Auswirkungen der Züge beeinflussen
 - Beobachtung:
 - ► Weite Züge: Große Änderung der Kosten
 - Kurze Züge: Kleine Änderung der Kosten
- Vorgehen:
 - Variiere Zugweite R_{limit} , um $R_a \approx 0.44$ zu halten

R_{limit} klein

- Kleine Zugreichweite
- Kleine Änderungen der Kosten
- Kleine Verschlechterungen (Werden eher angenommen)
- R_a steigt

R_{limit} groß

- Große Zugreichweite
- Große Änderungen der Kosten
- Große Verschlechterungen (Werden eher abgelehnt)
- ► R_a sinkt

Anfangs:

$$R_{limit}$$
 = ganzer Chip L_{Chip}

Bei jedem Abkühlschritt:

$$R_{\mathit{limit}}^{\mathit{new}} = R_{\mathit{limit}}^{\mathit{old}} (1 + R_{\mathit{a}}^{\mathit{old}} - 0.44)$$
 mit $1 \leq R_{\mathit{limit}}^{\mathit{new}} \leq L_{\mathit{Chip}}$

- Zuviel akzeptiert: R_{limit} größer machen
- Zuwenig akzeptiert: R_{limit} kleiner machen

VPR Abbruchbedingung

- Wann Abkühlung beenden?
- ▶ Idee:
 - Stillstand erkennen
- Vorgehen:
 - Jeder Zug beeinflußt mindestens ein Netz
 - Bestimme die durchschnittlichen Kosten pro Netz
 - Wenn T kleiner als ein Bruchteil davon ...
 - Nur noch kleine Chance, dass Zug akzeptiert wird
 - ► *T* < 0.005 · *AvgCostPerNet*
 - Auch einfachere Realisierung möglich
 - Letzte k Züge ohne akzeptierten Zug
 - Letzte k Züge ohne Verbesserung von BSF

VPR Kostenfunktion

- Gleichzeitiges optimieren von
 - Verdrahtungslänge
 - Zeitverhalten
- → Kombination von 2 Kostenfunktionen
 - 1. Korrigierter HPWL: $c_w = \sum_{n \in N} q(n_{pincount}) HPWL(n)$ Korrekturfaktor q_n um Unterschätzung vorzubeugen (q(1) = 1, ..., q(50) = 2.79, für Details siehe Paper auf Web-Seite [Cheng 1994])
 - Zeitverhaltensabschätzung c_t

VPR Optimierung HPWL

- Berechnung HPWL
 - ▶ Simpel: $\mathcal{O}(k)$, k Anzahl der Pins
 - ► Problem: *k* = 100 ... 1000 realistisch
 - Nach jedem Zug neu berechnen
- Besser:
 - Nach Möglichkeit nur bewegte Pins neu berechnen
 - Fin Pin ist nur in einem Netz
 - Ein Block hat aber mehrere Pins
 - Vorgehen:
 - Je Netz umspannendes Rechteck speichern: Position der Seiten: $(x_{min}, x_{max}, y_{min}, y_{max},)$ Anzahl der Pins direkt auf den Seiten: $(N_{xmin}, N_{xmax}, N_{vmin}, N_{vmax},)$

VPR Optimierung HPWL

- ► Als Beispiel nur linke Seite
- Bewege Terminal von x_{old} nach x_{new}
- Netz an Terminal: n

if $x_{new} \neq x_{old}$ then

if
$$x_{new} < n.xmin$$
 then

$$n.xmin := x_{new}$$
;

else if
$$x_{new} = n.xmin$$
 then

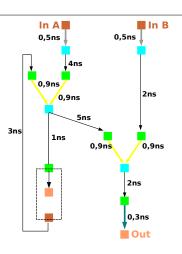
else if
$$x_{old} = n.xmin$$
 then

if
$$(n.Nxmin > 1)$$
 then

$$(x_{min}, x_{max}, y_{min}, y_{max},) = (2, 7, 3, 7)$$

 $(N_{xmin}, N_{xmax}, N_{ymin}, N_{ymax},) = (1, 2, 3, 1)$

VPR Kostenfunktion Zeitverhalten



- ► Betrachte Platzierungsabhängiges Zeitverhalten
- Punkt-zu-Punkt Verbindungen
- Von Netzquelle u
- Zu jeder Netzsenke v
- ► Sicht: Two-Terminal-Nets
- Zeitverhalten:
 - Bestimmt aus Slacks
 - Nicht auf Pfaden (langsam)

Kostenfunktion Zeitverhalten

- Wichtigkeit einer Verbindung
 - Punkt-zu-Punkt zwischen Terminals u und v

$$Criticality(u, v) = 1 - \frac{slack(u, v)}{D_{max}}$$

- ► (u, v) auf kritischem Pfad: $slack(u, v) = 0 \Leftrightarrow Criticality(u, v) = 1$
- ► (u, v) absolut unkritisch: $slack(u, v) = D_{max} \Leftrightarrow Criticality(u, v) = 0$
- Timing Cost: Delay(u, v) ist Schätzung! Noch kein echtes Routing!

$$C_t = \sum_{(u,v) \in E_{NetTiming}} Delay(u,v) \cdot Criticality(u,v)^{ce}$$

Kostenfunktion Zeitverhalten

- Criticality Exponent ce
 - Gewichtet kritischere Verbindungen h\u00f6her
 - Untergeweichtet unkritischere Verbindungen
- Idee:
 - Gegen Ende auf kritische Netze konzentrieren
- Vorgehen:
 - Steigern von ce_{start} = 1 auf ce_{final} = 8 (experimentell)

$$ce = \left(1 - \frac{R_{limit}^{now} - 1}{R_{limit}^{start} - 1}\right) \cdot (ce_{final} - ce_{start}) + ce_{start}$$

Kostenfunktion Zeitverhalten

- slack() ist platzierungsabhängig
 - Unkritische Netze k\u00f6nnen kritisch werden Zu lange Leitungsl\u00e4ngen
 - Kritische Netze können unkritisch werden Sehr kurze Leitungslängen
- Slack-Werte müssen (zeitaufwendig!) aktualisiert werden Timing-Analyse: T_a, T_r
- Wie oft?
 - Nach jedem Zug? Nach N Zügen?
 - N-mal pro Temperaturstufe?
 - Alle N Temperaturstufen?
- 1× pro Temperaturstufe

Gesamtkostenfunktion

Selbstnormierend:

$$\begin{split} & \Delta c_w = c_w(g) - c_w(f) \\ & \Delta c_t = c_t(g) - c_t(f) \\ & \Delta c = \lambda \frac{\Delta c_t}{c_t^{old}} + (1 - \lambda) \frac{\Delta c_w}{c_w^{old}} \end{split}$$

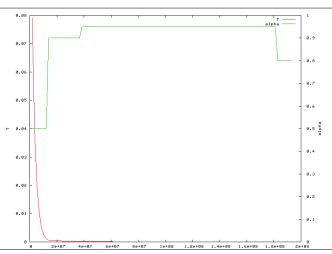
- $ightharpoonup \lambda$ gewichtet Zeit- gegenüber Längenoptimierung
 - Aber λ = 1 erzeugt nicht die schnellste Lösung
 - Netze wechselnd kritisch/unkritisch
 Nicht erkannt, da Timing-Analyse nur 1× pro Temperaturstufe
 - Besser λ = 0.5
 Längenmaß wirkt als Dämpfer für Oszillation

Gesamtalgorithmus


```
S := RandomPlacement():
T := InitialTemperature():
Rlimit := InitialRlimit():
CritExp := ComputeNewExponent(Rlimit);
repeat
     /* Bestimme Ta, Tr und slack()
                                                           /* eine Temperaturstufe:
     TimingAnalyze():
                                                          Snew := GenerateSwap(S, Rlimit);
     /* für Normalisierung der Kostenterme
                                                           \Delta timingCost := TimingCost(Snew) - TimingCost(S);
                                                           \DeltawiringCost := WiringCost(Snew) - WiringCost(S) :
     OldWiringCost := WiringCost(S):
                                                          \Delta C := \lambda (\Delta timingCost/OldTimingCost) +
     OldTimingCost := TimingCost(S);
                                                          (1-\lambda)(\Delta wiringCost/OldWiringCost):
     while !InnerLoopCriterion() do
                                                          if \Delta C < 0 then
                                                                S = Snew
                                                          else
          /* eine Temperaturstufe
                                                                if random(0,1) < exp(-\Delta C/T) then
                                                                     S = Snew
     T := UpdateTemp():
     Rlimit := UpdateRlimit():
     CritExp := ComputeNewExponent(Rlimit);
```

until ExitCriterion();

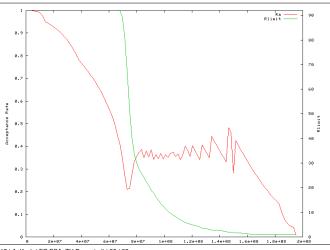
VPR Temperatur- und α -Graph



Vorlesung | WS 2014/2015 | A. Koch | FG ESA, TU Darmstadt | 31 / 33 ACE

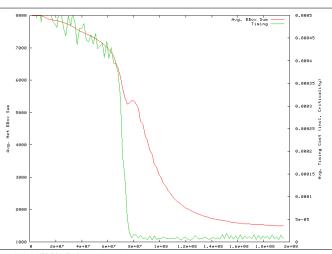
Einführung Heuristische Verfahren - Simulated Annealing

VPR R_a - und R_{limit} -Graph



Vorlesung | WS 2014/2015 | A. Koch | FG ESA, TU Darmstadt | 32 / 33 ACE Einführung Heuristische Verfahren - Simulated Annealing

VPR Kosten-Graphen



DAST STUN

- Weitere SA Verbesserung
- Dynamisch Adaptives STUN ⇒ DAST (Lin & Warzynek 2010)
- Idee: Verbessertes entkommen lokaler Minima
- Stochastisches Tunneln ⇒ STUN (Hamacher 1999)
- Zusätzlich:
 - Multimodale Bewegungen
 - Lokale Minima Detektion ⇒ Nur dann STUN benutzen

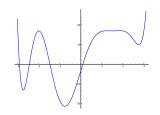
STUN

Stochastic Tunneling

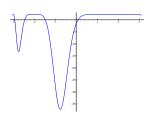
- SA kann immer noch in lokalen Minima stecken bleiben (Freezing Problem)
- Idee: Tunneln durch (lokales) Maximum
- ► Kostenfunktion wird modifiziert: $c'(x) = g(x) \circ c(x)$
 - Große Werte werden geglättet
 - Kleine werden hervorgehoben
 - ightharpoonup Klein und groß relativ zu der bisher besten Lösung mit Kosten c_{BSF}
 - Mehere Funktionen möglich (γ Tunnel Parameter der die Stärke des Glättens steuert): $1 e^{-\gamma(c c_{BSF})}$, $\frac{1 sgn(c c_{BSF})}{2}c$, $\tanh(-\gamma(c c_{BSF}))$, $\sinh(-\gamma(c c_{BSF}))$, ...
 - Empirisch festgestellt:
 - Funktion beeinflußt Ergebnis bis zu 20%
 - ightharpoonup Für das Platzierungsproblem am besten: 1 $-e^{-\gamma(c-c_{BSF})}$
 - $\gamma \in [\mathsf{0}, \dots, \mathsf{5}] \text{ beeinflußt Ergebnis bis zu 30\%} \\ \text{Wird manuell angepaßt}$
- Veränderung der Kostenfunktion

STUN Glättungsfunktion

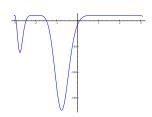
$$c_{STUN}(x) = 1 - e^{-\gamma(c(x) - c_{BSF})}$$



1-D Kostenfunktion

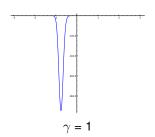


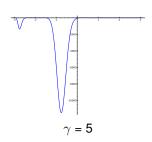
Kostenfunktion mit Glättung, BSF bei $x_{BSF} = 2.76$

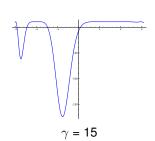


Kostenfunktion mit Glättung, BSF bei $x_{BSF} = -2.73$

Glättungsfunktion Einfluß γ







In DAST: Adapativ, so dass $\frac{c-c_{\mathit{BSF}}}{\gamma} \approx 0.05$

DAST Multimodale Bewegungen

- Verallgemeinerung von VPRs R_{limit}
- Es gibt verschiedene Arten von Zügen (z.B. Züge mit maximalen Reichweiten: ²/₃L, ⁴/₃L, 2L)
- Akzeptanzrate a_i für jede Zugart m_i mitprotokollieren
- Gibbs-Sampling (spez. Metropolis-Hastings-Algorithmus)
 - Anfänglich werden Züge mit gleicher Wahrscheinlichkeit gewählt
 - Später mit Wahrscheinlichkeit $p(m_i) = \frac{a_i}{\sum_{i=0}^{n} a_i}$

Für Details: Siehe Paper

DAST Lokale Minima Erkennung

- STUN besonders gut wenn in lokalem Minimum
- Permanentes stochastisches Tunneln negativ:
 - Golfkurs-Effekt (Ebene mit einem Loch)
 - Lokale Züge sind weniger effektiv
- ⇒ Versuche Minima zu erkennen und nur wenn nötig STUN zu benutzen
 - DAST: Nutzt jede 10000. Iteration DFA (Detrended Fluctuation Analysis)
 - Für Details: Siehe Paper
 - Alternativen möglich: z.B. Ableitung

DAST Zusammenfassung

- Stochastisches Tunneln
- Multimodale Züge
- Minima Erkennung
- Vergleich mit VPR5: Verbesserung von ...

Laufzeit: $\approx 30\%$

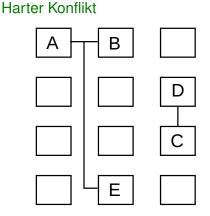
Verzögerung: (kritischer Pfad) \approx 12%

Verdrahtbarkeit: (min. Tracks) 3%

SPA Structured Parallel Annealer

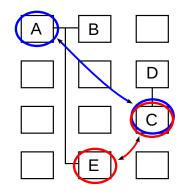
- Zug basiert immer auf (Nicht-)Akzeptanz des Vorhergenden
- ⇒ SA sehr sequentiell, schlecht parallelisierbar
- Verbessertes SA: SPA von Fobel, et al., 2014 FPL
- Nutzt Star+ Metrik
- Geschickte Wahl der Züge erlaubt Parallelisierung

- Angenommen 2 Züge parallel:
 - Thread Blau
 - Thread Rot
- Harter Konflikt:
 - Beide wählen zufällig gleichen Block für Zug aus
 - Kritisch, Folgezustand wäre fehlerhaft
- SPA vermeidet Harte Konflikte



- Angenommen 2 Züge parallel:
 - Thread Blau
 - Thread Rot
- Harter Konflikt:
 - Beide wählen zufällig gleichen Block für Zug aus
 - Kritisch, Folgezustand wäre fehlerhaft
- SPA vermeidet Harte Konflikte

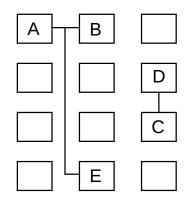
Harter Konflikt



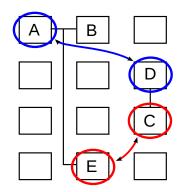
- Angenommen 2 Züge parallel:
 - Thread Blau
 - Thread Rot
- Harter Konflikt:
 - Beide wählen zufällig gleichen Block für Zug aus
 - Kritisch, Folgezustand wäre fehlerhaft
- SPA vermeidet Harte Konflikte

Harter Konflikt

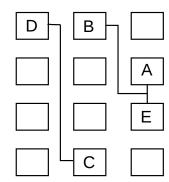
- Angenommen 2 Züge parallel:
 - Thread Blau
 - Thread Rot
- Sanfter/Weicher Konflikt:
 - Beide wählen zufälligen Block aus, der an gleichem Netz hängt
 - Unkritisch, Nur geschätzte Kosten wären leicht fehlerhaft
- Zulassen von Weichen keine negativen Auswirkungen



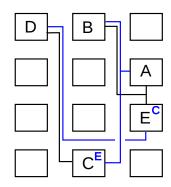
- Angenommen 2 Züge parallel:
 - Thread Blau
 - Thread Rot
- Sanfter/Weicher Konflikt:
 - Beide wählen zufälligen Block aus, der an gleichem Netz hängt
 - Unkritisch, Nur geschätzte Kosten wären leicht fehlerhaft
- Zulassen von Weichen keine negativen Auswirkungen



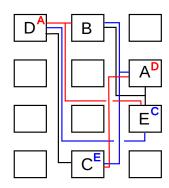
- Angenommen 2 Züge parallel:
 - Thread Blau
 - Thread Rot
- Sanfter/Weicher Konflikt:
 - Beide wählen zufälligen Block aus, der an gleichem Netz hängt
 - Unkritisch, Nur geschätzte Kosten wären leicht fehlerhaft
- Zulassen von Weichen keine negativen Auswirkungen



- Angenommen 2 Züge parallel:
 - Thread Blau
 - Thread Rot
- Sanfter/Weicher Konflikt:
 - Beide wählen zufälligen Block aus, der an gleichem Netz hängt
 - Unkritisch, Nur geschätzte Kosten wären leicht fehlerhaft
- Zulassen von Weichen keine negativen Auswirkungen



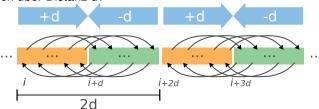
- Angenommen 2 Züge parallel:
 - Thread Blau
 - Thread Rot
- Sanfter/Weicher Konflikt:
 - Beide wählen zufälligen Block aus, der an gleichem Netz hängt
 - Unkritisch, Nur geschätzte Kosten wären leicht fehlerhaft
- Zulassen von Weichen keine negativen Auswirkungen



SPA

Konfliktvermeidung

- ▶ Idee:
 - Alle Threads/Blöcke machen den gleichen Tausch
- Generierung von Mengen von Tauschpaaren,
- Zum Tausch über Distanz d:



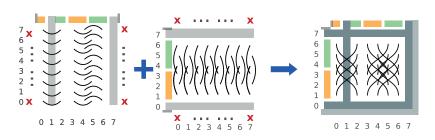
[Quelle: Fobel et al.]

 Garantiert, dass nie 2 verschiedene Blöcke auf die gleiche Position getauscht werden

SPA

Konfliktvermeidung 2-Dimensional

Verallgemeinerung auf 2-D: Jeweils für jede Dimension und zusammenführen



[Quelle: Fobel et al.]

SPA Algorithmus

- Übernimmt alles von VPR (inkl. Temperatur, Coolding-Schedule und r_{lim})
- Statt S_t sequentiell auf einer Temperaturstufe
- parallele Züge bis S_t erreicht
- Ablauf einer parallelen Iteration:
 - 1. Parallel: Kosten aller Kanten (Knoten-Netz-Paare)
 - 2. Parallel: Züge bestimmen
 - 3. Parallel: Delta-Kosten für alle Züge

(Nur von Tauschpartner mit größerem Index)

- 4. Parallel: (Nicht) aktzeptieren
- 5. Ergebnis verteilen

SPA Ergebnisse

- Skaliert hervorragend
- Funktioniert mit einfachen Parallelprogrammierungs-Direktiven
 - ⇒ Sehr einfach umzusetzen (GPGPU/SSE/...)
- Gute Lösungsqualität (5% besser als VPR (HPWL) im fast-Modus)
- Durchschnittlich 19× schneller als VPR (fast)
- Für mehr Details: Siehe Paper

Zusammenfassung

- Allgemeines Platzierungsproblem
 - Design-Stile & Zielarchitekturen
 - Standardzellen
 - Makro-/Buildingblock
 - FPGA/MPGA
 - Mixed-Mode
- VPR
 - Adaptives Simulated Annealing
 - Kostenfunktion (timingbasiert, selbstnormalisierend)
 - Gesamtalgorithmus
- DAST
- STUN
- SPA
 - Paralleles SA, durch geschickte Zug-Generierung

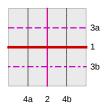
Partionierungsbasierte Platzierer Idee

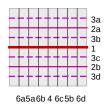
- Ansatz:
 - 1. Verfügbarer Platz wird halbiert
 - Schaltung wird partitioniert (mittels FM, KL, ...)
 - 3. Halbe Schaltung wird auf jeweils die hälfte platziert
 - Rekursiv bis auf das kleinste Element runter
- Anzahl Netze über die Schnittlinien wird minimiert, darum auch Min-Cut-Platzierung
- Problematisch: Partitionsübergreifende Verbindungen
 - ⇒ Terminal propagation (Dunlop, 1995):
 - Fixierte Dummy Terminals werden eingefügt

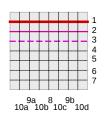
Partionierungsbasierte Platzierer Rekursion

Verschiedene Ansätze für die Rekursion möglich:

Quadratur-Platzierung (Quadrature placement) Halbierungs-Platzierung (Bisection placement) Reihen-/ Halbierungs-**Platzierung** (Slice/bisection placement)







Partionierungsbasierte Platzierer Übersicht

- Sehr schnell
- ► Hierarchisch ⇒ sehr gut für große Schaltungen und parallelisierbar
- Unterhalb bestimmter Größen wird oft herkömmlicher Platzierer verwendet
- Optimierung immer nur bzgl. einer Schnittlinie
- Waren in 90ern nicht annähernd so gut wie SA oder analytische Platzierer
- Stark verbessert mit den Multilevel Partitionierern
 2 Akademische Platzierer: Capo (Caldwell, 2000), Fengshui (Yildiz, 2001)

Kräftebasierte Placer

Zielkostenfunktion: Quadratische Verdrahtungslänge

Vorteil: Im Gegensatz zu HPWL stetig

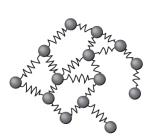
differenzierbar

Nachteil: Lange Netze gegenüber kurzer

übergewichtet

 Entspricht physikalisch einer Anordnung von Objekten die mittels Federn verbunden sind
 Kräftebasierte (Force-Driven) Platzierung

- Optimum entspricht Kräftegleichgewicht (Überlappung erstmal ignoriert)
- Optimum finden durch lösen eines LGS
 ⇒ sehr einfach ⇒ sehr beliebt
- Für zusätzliche Ziele zusätzliche Kräfte möglich



Kräftebasierte Placer

- Überlappungsfreiheit herstellen
 - Erst ignorieren, hinterher legaliserien (z.B. Tetris Legalisierung)
 - Zustäzliche Kräfte die für Verteilung wirken hinzufügen (Schwerpunkte oder andere explizite Kräfte)
 Iterativ wiederholen bis keine Überlappung
- Implementierungen Kräftebasierter Platzierer:
 - GORDIAN (Kleinhans, 1991)
 - BonnPlace (Brenner, 2005)
 - hATP (Nam, 2006)

Analytische Placer StarPlace

- StarPlace(Xu, Grewal, Areibi 2010)
- Star+-Netzmodel
- Benutzt CG- oder SOR-(Successive Over-Relaxation)-Löser
- Zur Vermeidung von Triviallösungen:
 ShrubPlace (vorplatziert alle I/O-Logik am Außenrand)

StarPlace Star+ Performance

- In VPR: Star+ vs. HPWL
 - Benutzt mit empirisch ermittelten Werten

$$\gamma = 1.59 \\
\phi = 1.0$$

Ergebnisse

Verdrahtbarkeit: Ähnlich gut Verdrahtungsressourcen: Ähnlich gut

(2.4% besser als VPR-fast)

Kritischer Pfad: 6% – 9%

Laufzeit: Kaum ein Unterschied

StarPlace Algorithmus


```
APlace()
begin

Convert_Graph_Star+();
PrePlace();
repeat

CG_Iteration();
Legalize();
until Max Anzahl Iterationen:
```

- 1. Graph mittels Star+ konvertieren
- Vorplatzieren mit shrubPlace (I/O am Rand, Blöcke mit viel I/O nahe beieinander)
- 3. Konjugiertes Gradientenverfahren
- In jeder Iteration Lösung legalisieren (Partitionsbasierter Ansatz)

StarPlace Zusammenfassung

- ▶ Benutzt zur Vorplatzierung shrubPlace ⇒
 - 1.5% besseres Ergebnis bei Vedrahtungsressourcen gegenüber zufälliger Vorplatzierung
 - Benötigt 5% der Laufzeit von StarPlace
- Benutzt CG-Löser
 2% besserer kritischer Pfad, 4% mehr Verdrahtungsressourcen bei 56% längerer Laufzeit
- Besserer Löser: SOR (Successive Over-Relaxation)
 (CG schwächelt bei nichtquadratischen Funktionen)
 9% besserer kritischer Pfad bei 1% mehr Verdrahtungsressourcen bei 78% weniger Laufzeit

Analytische Placer APlace

- Khang & Wang, 2005
- Zufällige Startplatzierung
- LSE-Zielkosten
- Zusätzliche Kosten/Kräfte zur Vermeidung von Überlappung
- Top-Down hierarchisches Vorgehen
- CG-Löser

APlace Kostenfunktion

- LSE-Zielkosten
- ▶ Verteilung der Zellen (Reduzierung der Überlappung): Aufteilung der vorhandenen Fläche in Gitter g

$$\textit{DichteStrafe} := \sum_{\text{Gitterelemente } g} (\text{GesamtZellFläche}(g) - \text{DurchschnittZellenFläche})^2$$

- Ziel: Möglichst gleichmäßige Verteilung aller Zellen über gesamte Fläche
- Nicht differenzierbar, darum Potenialfunktion

$$Potenial(c, g) := K_c \cdot p(Zelle_x - Gitter_x) \cdot p(Zelle_y - Gitter_y)$$

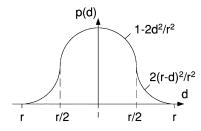
 K_c Normierungsfaktor, so dass $\sum_{g} Potenial(c, g) = A_c \text{ mit } A_c \text{ Fläche der Zelle } c$

APlace Glockenfunktion p

- Naylor et al., 2001
- Glockenfunktion

$$p(d) = \begin{cases} 1 - 2d^2/r^2 & 0 \le d \le r/2\\ 2(d - r)^2/r^2 & r/2 \le d \le r\\ 0 & \text{sonst} \end{cases}$$

ightharpoonup r ist der Einflußradius (empirisch r = 4)



[Quelle: Kahng]

APlace Kostenfunktion

Differenzierbare Straffunktion:

$$\textit{DichteStrafe} \coloneqq \sum_{\text{Gitterelemente } g} \left(\left(\sum_{\text{Zellen c}} \textit{Potenial}(c,g) \right) - \textit{ExpPotenial}(g) \right)^2$$

Erwartetes Potenial von Gitterelement g:

$$ExpPotenial(g) := \frac{GesamtZellFläche}{AnzahlGitterelemente}$$

Kombination von Verdrahtungslänge und Dichte:

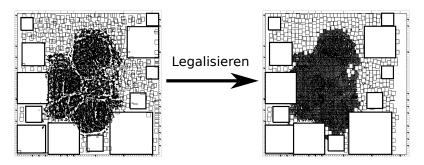
$$Gewicht_{WL} \cdot c_{LSE} + Gewicht_{Dichte} \cdot DichteStrafe$$

APlace Zusammenfassung

- LSF-Kosten
- Dichtefunktion zur Überlappungsreduzierung
- Ergebnisse bis zu 10% besser als bei anderen Placern
- ▶ Laufzeit −5% bis +1300% höher
- Varianten:
 - Auch andere Verdrahtungslängenfunktionen
 - Timing-Driven
 - Congestion-Driven
 - Mixed-Size-Design

Legalisierung

- Legalisierung von Platzierungen mit Überlappungen
- Weit verbreitet bei analytischen Platzierern
 - Erst Problem ohne Nebenbedingungen optimieren
 - Hinterher gefundene Lösung legalisieren



Legalisierung Tetris-Algorithmus

- ▶ Hill, 2002 f
 ür Standardzellen, verwendet z.B. bei APlace
- Greedy-Algorithmus:
 - Module in absteigender x-Koordinate sortieren (Breitere bei unentschieden) → Abarbeitungsreihenfolge
 - Für jedes Modul: Mögliche Kandidatenposition, ist die am weitesten links liegende Position in jeder Reihe ⇒ die mit kleinstem Kosten (d.h. Abstand) wird Zielposition
- Sehr schnell
- Funktioniert auch gut bei Mixed-Size-Designs
- Varianten:
 - ► Erleichterte vertikale Bewegung ⇒ Ausgeglichenere Reihen
 - Diffusionsbasierter Ansatz
 - ⇒ Ergebnis näher an Ausgangslösung

Legalisierung Partionsbasierter Ansatz

- Verwendung u.a. bei StarPlace oder GORDIAN
- Rekursiv abwechselnded horizontal und vertikal unterteilen
- Solange bis nur noch eine Zelle in einer Partition Diese eine Zelle legalisieren
- Details später bei Partitionierer

Zusammenfassung

- Analytische Placer
 - Kräftebasiertes Platzieren
 - StarPlace
 - APlace
- Legalisierung

