Algorithmen im Chip-Entwurf 5

Reale Algorithmen zur Partitionierung, Timing-Analyse und Platzierung

Andreas Koch FG Eingebettete Systeme und ihre Anwendungen TU Darmstadt

Übersicht

- Timing-Analyse
 - Mehrere kritische Pfade
- Platzierung
 - Annealing Mechanismus
 - Kostenfunktion
- Optional: Kernighan-Lin
 - Partitionierung via MinCut
- Zusammenfassung

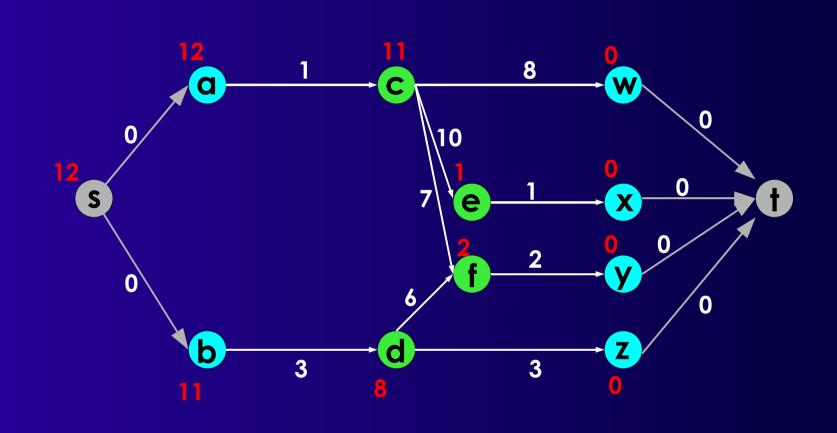
Timing-Analyse

- Kritischer Pfad
 - Einfach (slack=0)
 - Nächstkritischerer Pfad?
- Vorgehensweisen
 - Alle Pfade berechnen
 - Rechenzeit- und Speicherbedarf
 - k längste Pfade en Block berechnen
 - Wenig flexibel: k bei Start der Berechnung fest
 - Pfade inkrementell berechnen
 - Flexibel: Rechen- und Speicheraufwand reduziert
- Idee
 - Timing-Graph annotieren
 - Pfade aufzählen (enumerate)

Verfahren nach Ju und Saleh

- Design Automation Conference 1991
 - Paper auf Web-Seite
 - Details in Abschnitt 3
- Graphannotation
 - Längste Verzögerung bestimmen
 - Aber auch an jeder Abzweigung merken
 - Wieviel schneller würde die Alternative sein?
- Pfadaufzählung
 - Beginne mit längstem Pfad
 - Wähle minimal schnellere Abzweigung
 - Erzeuge von dort ausgehend längsten Pfad
- Vorteil
 - Erzeugung beliebig vieler/weniger Pfade
 - Exakt an Anforderungen anpassbar

Annotation des Timing-Graphen

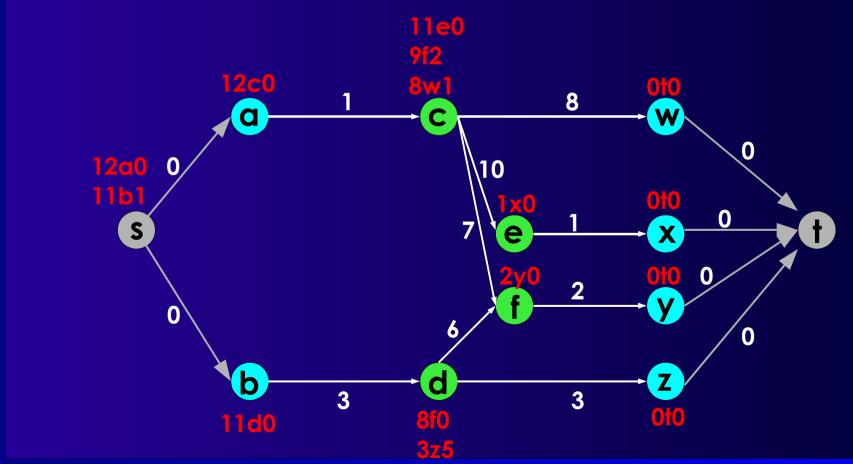


$$\mathbf{T}_{sink}(u) = Max \left(\mathbf{T}_{sink}(v) + \mathbf{w}(u, v) \right)$$

Erweiterung

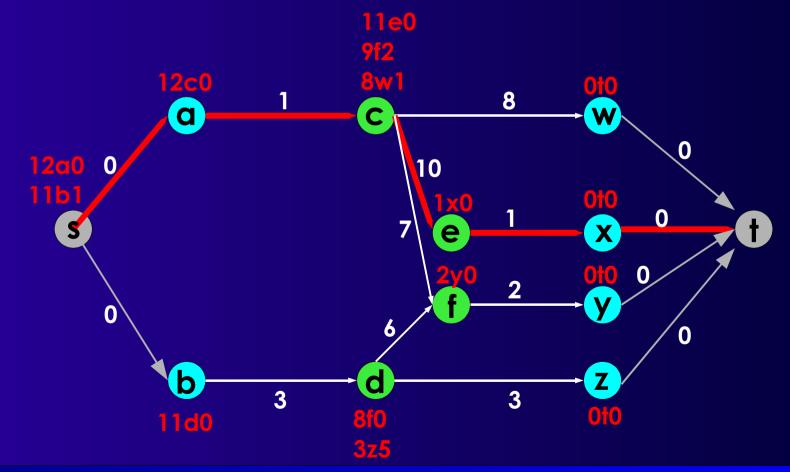
Aber zusätzlich je u

- T_{sink} + w((u,v)) von allen direkten Nachbarn v absteigend sortiert merken
- benachbarte Differenzen berechnen: branch slacks



Längster Pfad

- Beginn bei s
- Dann jeweils Kante mit maximaler T_{sink}
 - Bis t erreicht



Datenstruktur

```
ordered<branch, decreasing Tsink> succ(v)
struct branch {
      edge
                  e;
      unsigned int slack;
struct path {
      list<vertex>
                                                  vertices;
      unsigned int
                                                  delay;
      ordered<branch,increasing branch.slack>
                                                  branches;
      unsigned int
                                                  nextdelay;
             po=(<sacext>, 12, <(sb,1), (cf,2)>, 11)
```

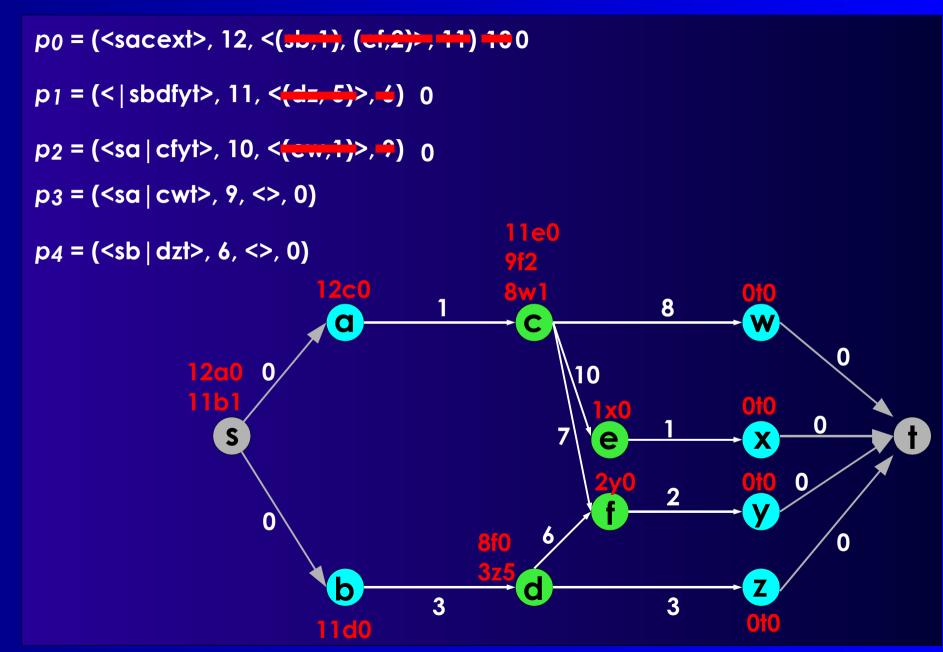
Vorgehen 1

- longest_path(list<vertex> head)
 - Verlängert head zu längstmöglichem Pfad
 - ◆ Wählt dazu jeweils Nachbar mit max. Tsink
 - Merkt sich Nachbarn mit nächstkleinerer Tsink
 - Also: Den mit kleinstem branch slack
 - Berechnet aktuelles und n\u00e4chstkleineres Delay
- branch_path(path p)
 - Zweigt an Stelle v mit min. branch slack von p ab
 - Markiert Abzweigung in p als "genommen"
 - Berechne nächstkleineres Delay von p neu
 - Berechnet nun longest_path(p.vertices+<v>)

Vorgehen 2

- Kernalgorithmus
 - Annotiere Graph mit T_{sink} und branch slacks
 - Berechne l\u00e4ngsten Pfad \u00b20=longest_path(<s>)
 - Merkt sich po in P
 - Wiederholt, bis genug Pfade oder Delay=0:
 - ◆ Finde p aus P mit nächstkleinerem Delay = Max > 0
 - Generiere neuen Pfad p' = branch_path(p)
 - Verwende langsamste Abzweigung (min. branch slack)
 - ♦ Nimm p'in P auf
- P enthält danach die gesuchten Pfade

Beispiel



VPR

- Versatile Place and Route
 - Betz und Marquardt, U Toronto
- Platzierer
 - Simulated Annealing-basiert
 - Adaptive Annealing Schedule
 - Optimiert gleichzeitig
 - **♦** Leitungslänge
 - Verzögerung

- Paarweises Austauschen von Blöcken
 - N_{blocks} = Größe der Schaltung
- Aber nicht ganz wahllos
 - Beschränkung der Entfernung

Starttemperatur

- Wird automatisch bestimmt
 - Für aktuelle Schaltung passend
- Idee:
 - Anfangs fast alle Züge akzeptieren
 - Wie hoch muss die Starttemperatur sein?
- Vorgehen
 - N_{blocks} paarweise Austausche
 - Beobachte Änderung der Kostenfunktion x
 - Standardabweichung

$$s_x = \sqrt{\frac{1}{n-1}} \left(\sum_i x_i^2 - n \, \bar{x}^2 \right)$$

• Starttemperatur = $20 \times s_x$

Thermal Equilibrium

Anzahl von Schritten pro Temperaturstufe:

$$10\,N_{blocks}^{4/3}$$

10x schneller, aber ca. 10% schlechter:

$$N_{\it blocks}^{\rm 4/3}$$

Beobachtung

- Anfangs: T hoch, fast alle Züge akzeptiert
 - ◆ Im wesentlichen zufälliges Bewegen
 - Keine echte Verbesserung der Kostenfunktion
- Ende: T niedrig, kaum Züge akzeptiert
 - Fast keine Bewegung mehr
 - Wenig Veränderung in Kostenfunktion

Idee

- Meiste Optimierung passiert dazwischen
- Bringe T schnell in den produktiven Bereich
- Halte T lange im produktiven Bereich
- Vorgehen
 - Steuere T anhand der Akzeptanzrate

$$\begin{array}{c|c} \blacksquare \ \ T_{\text{new}} = \alpha \ T_{\text{old}} \\ \hline \\ \alpha & Acceptance \ Rate \\ \hline R_{\alpha} \\ \hline \\ 0.50 & R_{\alpha} > 0.96 \\ \hline 0.90 & 0.80 < R_{\alpha} \leq 0.96 \\ \hline 0.95 & 0.15 < R_{\alpha} \leq 0.80 \\ \hline 0.80 & R_{\alpha} \leq 0.15 \\ \hline \end{array}$$

- Vorahnung
 - Gute Fortschritte bei $R_a \approx 0.5$
- Am effizientesten $R_a = 0.44$
 - Beste Fortschritte
- Idee
 - R_a möglichst auf diesem Wert halten
 - Nicht temperaturbasiert (kühlt nur ab!)
 - Sondern: Auswirkungen der Züge beeinflussen
 - Beobachtung
 - ♦ Weite Züge: Grosse Änderung der Kostenfunktion
 - Kurze Züge: Kleine Änderung der Kostenfunktion
- Vorgehen
 - Variiere Zugweite D_{limit} , um $R_{\text{a}} \approx 0.44$ zu halten

D klein

- Kleine Zugreichweite
- Kleine Änderungen der Kostenfunktion
- Kleine Verschlechterungen
 - Werden eher angenommen
- R_a steigt

D_{limit} gross

- Grosse Zugreichweite
- Grosse Änderungen der Kostenfunktion
- Große Verschlechterungen
 - Werden eher abgelehnt
- R_g sinkt

- Anfangs: D_{limit} = ganzer Chip L_{Chip}
- Bei jedem Abkühlschritt:

$$D_{limit}^{new} = D_{limit}^{old} (1 + R_a^{old} - 0.44), 1 \le D_{limit}^{new} \le L_{Chip}$$

- Zuviel akzeptiert: D_{limit} grösser machen
- Zuwenig akzeptiert: D_{limit} kleiner machen

Abbruchbedingung

- Wann Abkühlung beenden?
- Idee
 - Erkennung von Stillstand
- Vorgehen
 - Jeder Zug beeinflusst mindestens ein Netz
 - Bestimme die durchschnittlichen Kosten pro Netz
 - Wenn T kleiner als Bruchteil davon ...
 - Nur noch kleine Chance, dass Zug akzeptiert wird
 - ◆ T < 0.005 Cost/#Nets

Kostenfunktion

- Gleichzeitig optimieren
 - Zeitverhalten
 - Verdrahtungslänge
- Verdrahtungslänge
 - Bestimmt als korrigierter halber Netzumfang

$$c_w = \sum_{n \in N} q(n_{pincount})[bb_x(n) + bb_y(n)]$$

$$q(i) = 1 \text{ für } i=1..3, =2.79 \text{ für } i=50$$
 (Cheng 1994)

Web-Seite: Paper, Datei mit Korrekturfaktoren q(i)

Inkrementelle Berechnung 1

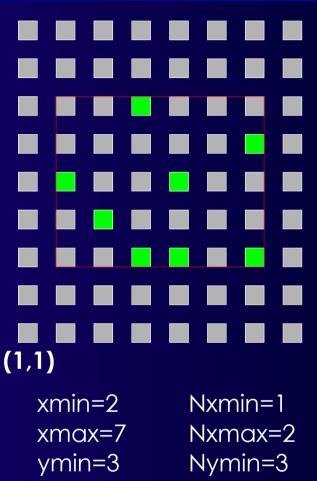
- Berechnung des Netzumfangs
 - Simpel: O(k), k Anzahl der Pins
 - Problem: k = 100 ... 1000 realistisch
 - Nach jedem Zug neu berechnen
- Besser:
 - Nach Möglichkeit nur bewegte Pins neu berechnen
 - ◆ Ein Pin ist nur in einem Netz
 - Ein Block hat aber mehrere Pins
- Vorgehen
 - Je Netz umspannendes Rechteck speichern
 - ♦ (X_{min}, X_{max}, Y_{min}, Y_{max})
 - Position der Seiten
 - ◆ (N_{xmin}, N_{xmax}, N_{ymin}, N_{ymax})
 - * Anzahl Pins direkt auf den Seiten

Inkrementelle Berechnung 2

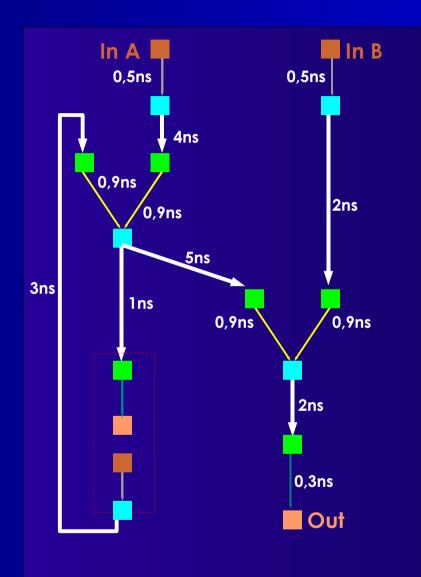
Betrachtet nur linke Seite (xmin)

- Bewege Terminal von xold nach xnew
- Netz an Terminal: n

```
If (xnew!= xold) { // horiz. bewegt
       if (x_{new} < n.x_{min}) {
               n.xmin = x_{new};
               n.Nxmin = 1;
       } else if (x_{new} == n.xmin) {
               n.Nxmin++;
       \} else if (x_{Old} == n.xmin) {
               if (n.Nxmin > 1) {
                      n.Nxmin--;
               } else {
                      BruteForce(n);
```



```
ymax=7
          Nymax=1
```



- Betrachte
 - Platzierungs-abhängiges
 Zeitverhalten
- Punkt-zu-Punkt Verbind.
- Von
 - Netzquelle u
- Zu
 - Jeder Netzsenke v
- Sicht: Two-Terminal-Nets
 - ENetTiming

 ETiming
- Zeitverhalten
 - Bestimmt aus Slacks
 - Nicht auf Pfaden (langsam)

- "Wichtigkeit" einer Verbindung
 - Punkt-zu-Punkt zwischen Terminals u und v

Criticality
$$(u, v) = 1 - \frac{\operatorname{slack}(u, v)}{D_{max}}$$

- (u,v) auf kritischem Pfad
 - ♦ $slack(u,v) = 0 \Leftrightarrow Criticality(u,v) = 1$
- (u,v) absolut unkritisch
 - ♦ $slack(u,v) = D_{max} \Leftrightarrow Criticality(u,v) = 0$
- Timing Cost: Delay(u,v) ist Schätzung!
 - Noch kein "echtes" Routing

$$c_t = \sum_{(u,v) \in E_{NetTiming}} Delay(u,v) Criticality(u,v)^{CriticalityExponen}$$

- Criticality Exponent
 - Gewichtet kritischere Verbindungen h\u00f6her
 - ♦ Wenige kritische Verbindungen dominieren c₊
 - Untergewichtet unkritischere Verbindungen
 - ◆ Fallen fast ganz aus c, Berechnung heraus
- Idee
 - Gegen Ende auf kritische Netze konzentrieren
- Vorgehen:
 - Steigern von ce_{start}=1 auf ce_{final}=8 (experimentell)

CritExp=
$$1 - \frac{R_{limit}^{now} - 1}{R_{limit}^{start} - 1} \cdot (ce_{final} - ce_{start}) + ce_{start}$$

- slack() ist platzierungsabhängig
 - Unkritische Netz können kritisch werden
 - ◆ Zu lange Leitungslängen
 - Kritische Netze können unkritisch werden
 - Sehr kurze Leitungslängen
- Slack-Werte müssen aktualisiert werden
 - Timing-Analyse: Ta, Tr
- Wie oft?
 - Nach jedem Zug? Nach N Zügen?
 - N-mal pro Temperaturstufe?
 - Alle N Temperaturstufen?
- Bewährt:
 - 1x pro Temperaturstufe

Gesamtkostenfunktion

Selbstnormalisierend

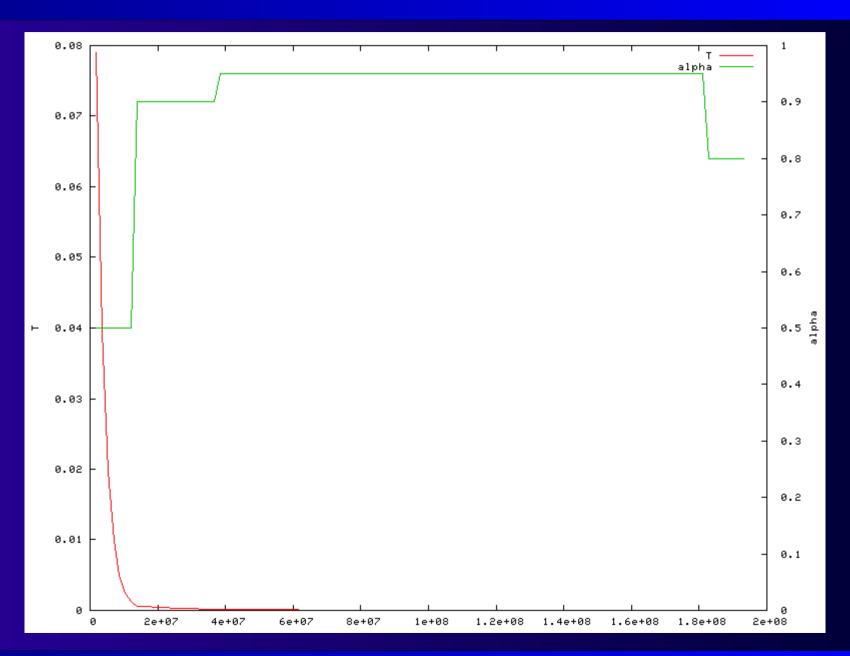
$$\Delta c = \lambda \frac{\Delta c_t}{c_t^{old}} + (1 - \lambda) \frac{\Delta c_w}{c_w^{old}}$$

- λ gewichtet Zeit ./. Längenoptimierung
 - Aber $\lambda = 1$ erzeugt <u>nicht</u> die schnellste Lösung
 - Netze wechselnd kritisch/unkritisch
 - Nicht erkannt, da Timing-Analyse nur 1x pro Temp.
 - Besser $\lambda = 0.5$
 - Längenmaß wirkt als Dämpfer für Oszillation

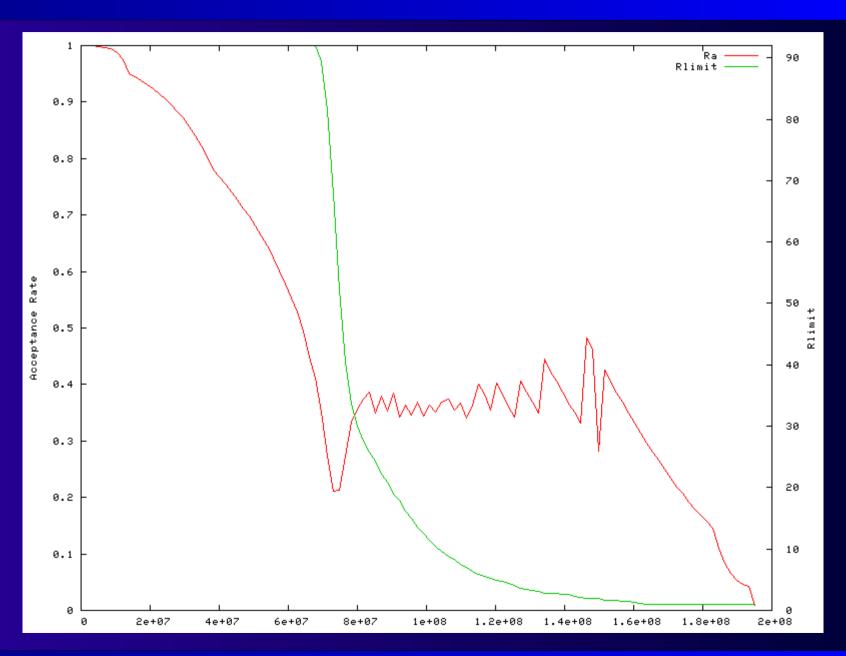
Gesamtalgorithmus

```
S = RandomPlacement();
T = InitialTemperature();
Rlimit = InitialRlimit();
CritExp = ComputeNewExponent(Rlimit);
while (!ExitCriterion()) {
    TimingAnalyze();
                                  // Bestimme T_a, T_r und slack()
    OldWiringCost = WiringCost(S); // für Normalisierung der Kostenterme
    OldTimingCost = TimingCost(S);
    while (InnerLoopCriterion()) {      // eine Temperaturstufe
       Snew = GenerateSwap(S, Rlimit);
       ΔtimingCost = TimingCost(Snew) - TimingCost(S);
       ΔwiringCost = WiringCost(Snew) - WiringCost(S);
       \Delta C = \lambda \left(\Delta timingCost/OldTimingCost\right) + (1-\lambda) \left(\Delta wiringCost/OldWiringCost\right);
       if (\Delta C < 0)
           S = Snew:
       else
           if (random(0,1) < exp(-\Delta C/T))
                S = Snew
    T = UpdateTemp();
    Rlimit = UpdateRlimit();
    CritExp = ComputeNewExponent(Rlimit);
```

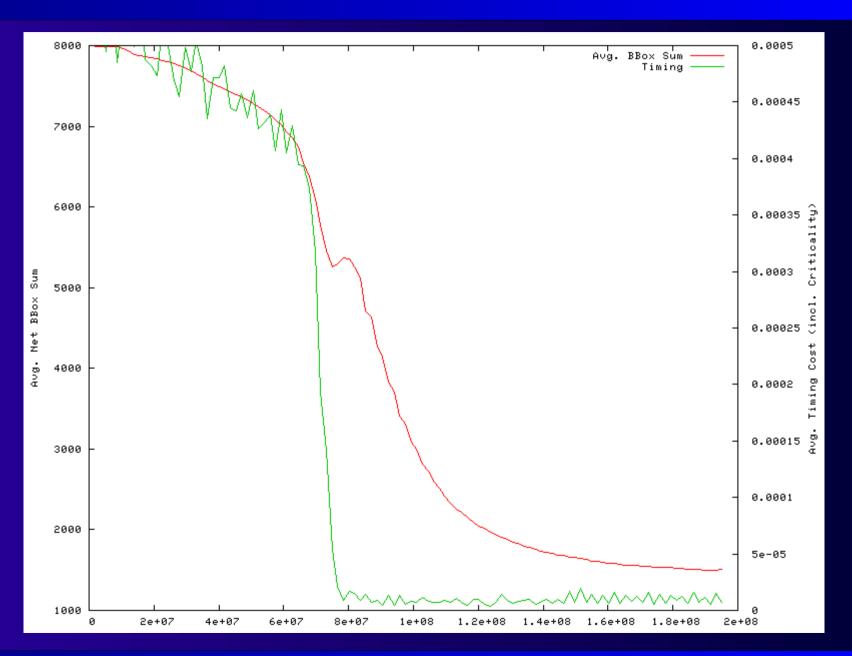
VPR Simulated Annealing 1



VPR Simulated Annealing 2



VPR Simulated Annealing 3



Partitionierung

- Aufteilen eines Graphen
- Hier motiviert durch Plazierung
 - Min-Cut
- Andere Anwendungen
 - Aufteilen einer Schaltung auf mehrere Chips
 - Verkleinern der Problemgröße
 - Vorbearbeitung vor anderem Algorithmus
- Viele Verfahren
 - Beispiel: Kernighan-Lin

Kernighan-Lin Partitionierung 1

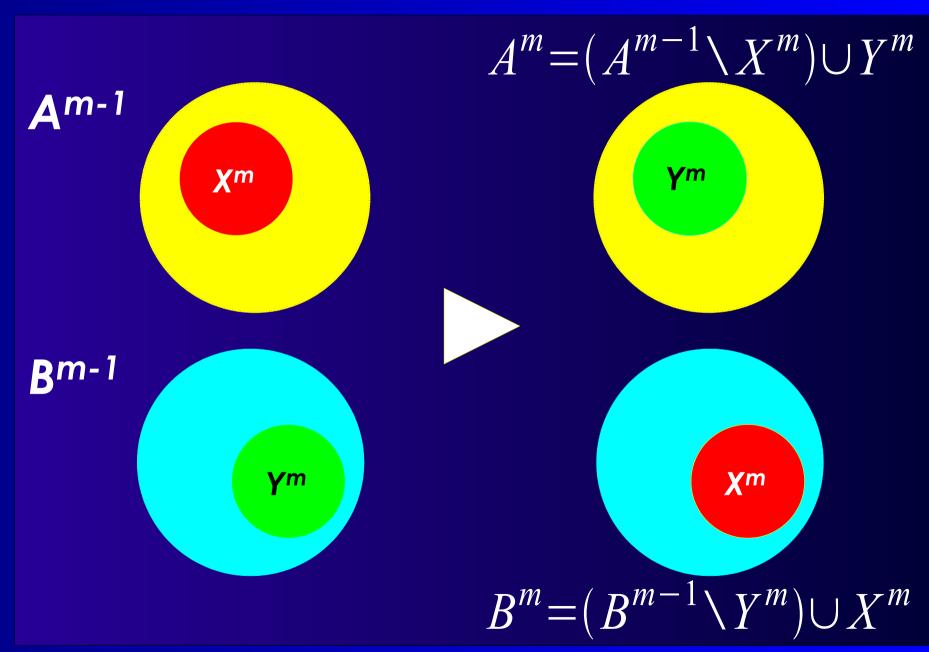
- Problem
 - Gewichteter, ungerichteter Graph G(V,E)
 - |V| = 2 n
 - γ ab: Gewicht von (a,b) \in E, γ ab=0 bei (a,b) \notin E
 - Finde Mengen A und B mit
 - lacktriangle $A \cup B = V, A \cap B = \emptyset, |A| = |B| = n$
 - Minimiere

$$\sum_{(a,b)\in A\times B} \gamma_{ab}$$

 $\begin{array}{c} (a,b) \in A \times B \\ \hline \text{Arbeitet auf Cliquen-Modell} \end{array}$

Kernighan-Lin Partitionierung 2

- Partitionierungsproblem ist NP-vollständig
- KL ist eine Heuristik
 - Im praktischen Einsatz bewährt
- Vorgehensweise
 - Anfangslösung bestehend aus A⁰ und B⁰
 - ♦ I.d.R. nicht optimal
 - Isoliere Untermengen von A^{m-1} und B^{m-1}
 - Tausche diese aus um A^m und B^m zu bestimmen
 - Wiederhole, solange Verbesserung erreichbar



- Optimum immer in einem Schritt erzielbar
 - Bei geeignetem X^m und Y^m
- Problem: Wie X^m und Y^m bestimmen?
 - Schwer zu finden
- → Suche Lösung in mehreren Schritten
 - Wiederhole, bis keine Verbesserung mehr
- Anzahl Schritte unabhängig von n
 - In der Praxis <= 4.

- Konstruktion von X^m und Y^m
- Externe Kosten

$$E_a = \sum_{y \in B^{m-1}} \gamma_{ay} , a \in A^{m-1}$$

Interne Kosten

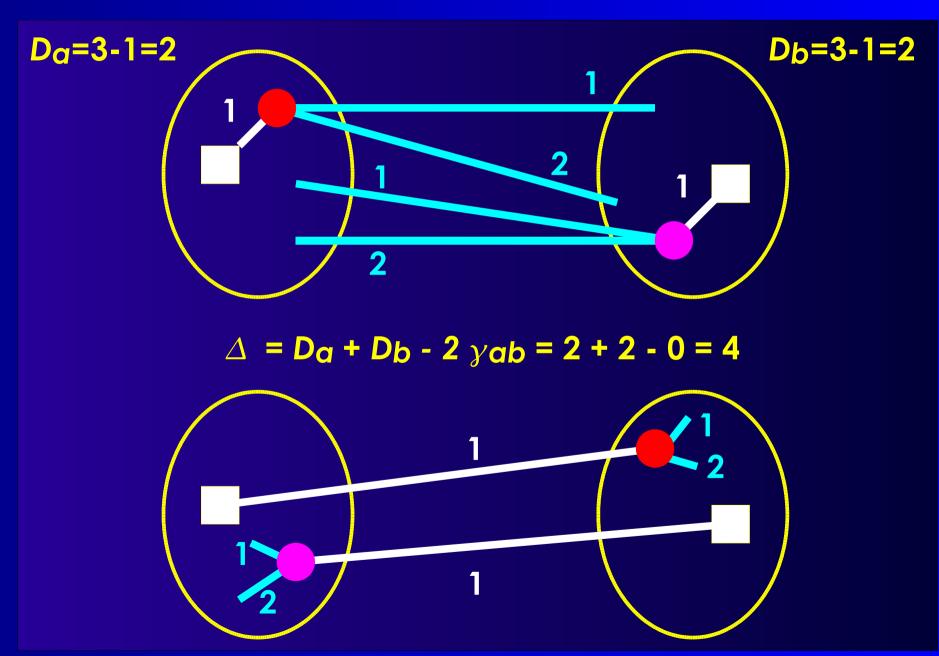
$$I_a = \sum_{x \in A^{m-1}} \gamma_{ax} , a \in A^{m-1}$$

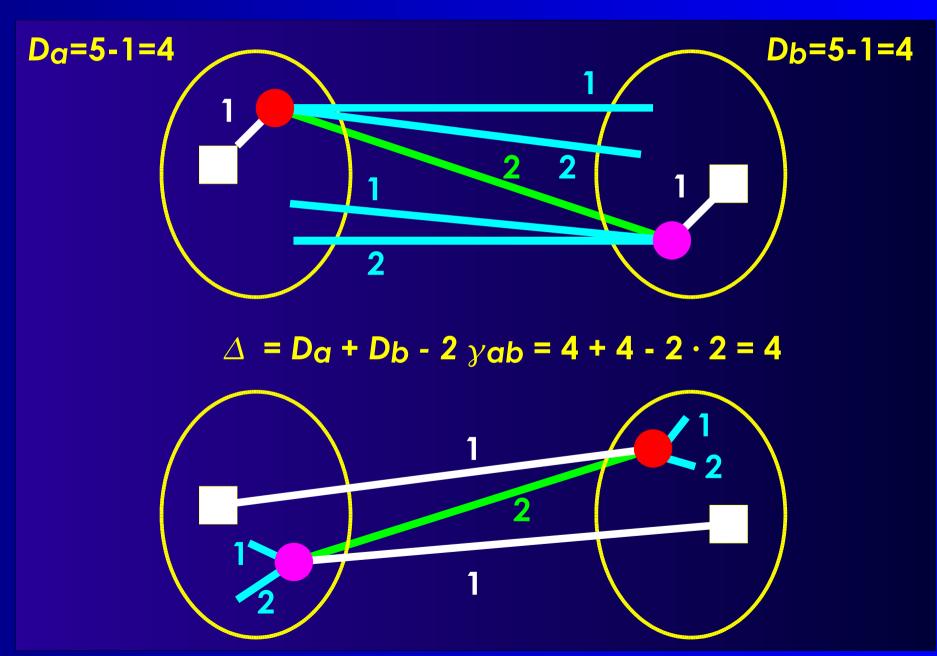
Analog für B

- \square $D_a = E_a I_a$ für $a \in A^{m-1}$ (desirability)
 - >0: Knoten sollte nach B getauscht werden
 - <0: Knoten sollte in A bleiben</p>
- Verbesserung △ der Schnittkosten
 - Bei Austausch von $a \in A^{m-1}$ und $b \in B^{m-1}$

$$\Delta = D_a + D_b - 2\gamma_{ab}$$

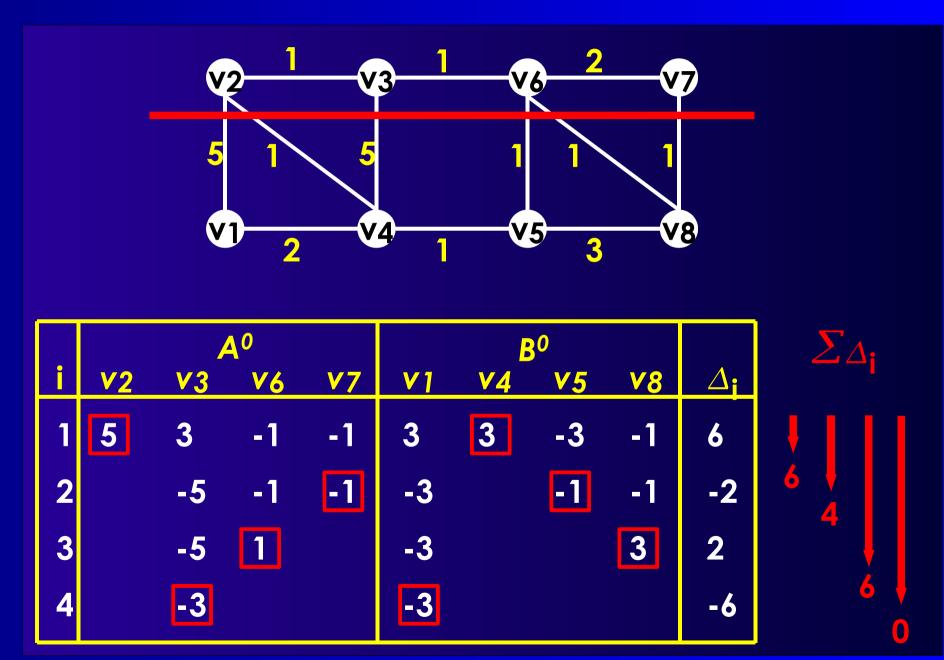
ullet Δ kann negativ sein!

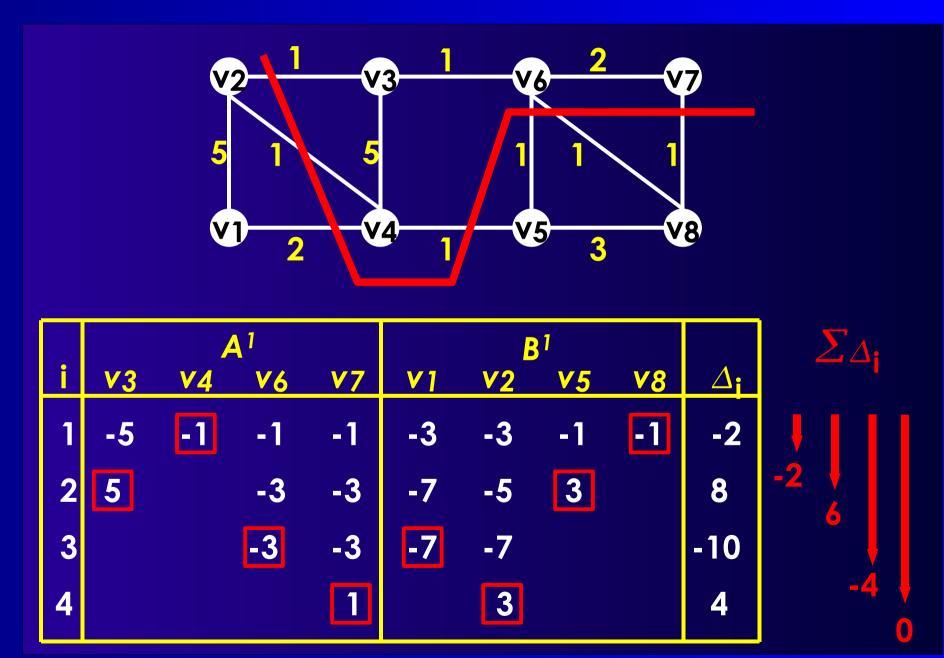


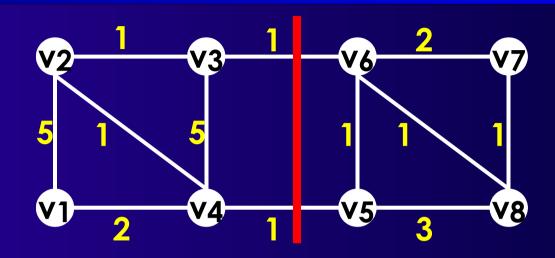


```
initialize (A<sup>0</sup>, B<sup>0</sup>);
                                       D_{\mathbf{r}} = E_{\mathbf{r}} - I_{\mathbf{r}}
m := 1;
do {
                                             =E_{x}^{old}+\gamma_{ax}-\gamma_{bx}-(I_{x}^{old}-\gamma_{ax}+\gamma_{bx})
  foreach a \in A^{m-1}
    "berechne Da";
                                             =D_x^{old}+2\gamma_{ax}-2\gamma_{bx}
  foreach b \in B^{m-1}
    "berechne Db"
  for (i:=1; i <= n; ++i) {
    "finde freie a_i \in A^{m-1}, b_i \in B^{m-1} mit
       \Delta_i := D_{ai} + D_{bi} - 2 \gamma_{aibi} \text{ maximal}
    "sperre a; und b;"
                                                        if (G > 0) {
    foreach "freies" x \in A^{m-1}
                                                          X^m := \{a_1, ... a_k\};
       D_X := D_X + 2 \gamma_{XGi} - 2 \gamma_{XDi}
                                                          Y^m := \{b_1, ..., b_k\};
    foreach "freies" y \in B^{m-1}
                                                          A^m := (A^{m-1} \setminus X^m) \cup Y^m;
                                                          B^m := (B^{m-1} \setminus Y^m) \cup X^m;
  "finde ein k mit \sum_{k} \Delta_{i} ist max."
                                                          "entsperre alle Knoten in A^m and B^{m}"
                                                          m := m + 1;
  G := \sum \Delta_i
                                                     } while (G > 0);
```

- lacksquare Δi kann negativ werden
- $-\sum_{\Delta i}$ kann zeitweise auch negativ sein
 - Dicht verbundene Teilmengen
 - Keine Verbesserung bei Austausch von Einzelknoten
 - Erst bei Austauch der gesamten Teilmenge







- Danach keine Verbesserung mehr in G
- Innere Schleife: n Iterationen
 - Finden des Paares mit bestem Δ : O(n²)
 - Nach \triangle sortiert: O(n log n)
- \rightarrow O(n³) oder O(n² log n)

- KL: Lokale Suche mit variabler Nachbarschaft
- Schnellere Verfahren
 - Fiduccia-Mattheyses (FM)
 - ◆ Wesentlich schneller: O(n)
 - ◆ Aber schlechtere Qualität der Lösungen
 - QuickCut (QC): avg. O(|E| log n)
 - Gleiche Qualität wie KL
- Diverse Alternativen
 - Spectral Partitioning, Multi-Level-FM, ...

Weiteres Vorgehen

- Bewertung der Abgaben
 - Bescheid über Platzzuteilung via E-Mail
 - Bis Mittwoch 18:00 Uhr
 - Zuweisung von Kolloquiums-Slot
- Donnerstag
 - Gruppenweise 30-minütige Kolloquien
 - Anwesenheitspflicht!
- Freitag
 - Gruppenweise 10-minütige Vorträge
 - Nicht überziehen!
 - Ausgabe der nächsten Aufgabe
- VL Dienstag: 5.2-5.4 Exakte Optim.verfahren

Zusammenfassung

- Schnelle pfadorientierte Timing-Analyse
- VPR
 - Adaptives Simulated Annealing
 - Selbstnormalisierende Kostenfunktion
 - Schnelle Netzumfangsberechnung
 - Gesamtalgorithmus
- Kernighan-Lin MinCut-Partitionierung
- Papers auf Web-Seite
 - Ju & Saleh 1991: Kritische Pfadaufzählung
 - Nur Abschnitt 3 relevant
 - Cheng 1994: q(i) Korrekturfaktoren
 - ... sonst eher schlecht zu lesen
 - Marquardt & Betz: VPR
 - 1997 Grundlagen
 - 2000 Timing-gesteuerte Betriebsart (Criticality, etc.)