
Incremental Techniques for the Identification of Statically Sensitizable Critical Paths

Yun-Cheng Ju and Resve A. Saleh

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Urbana, IL 61801

ABSTRACT

Thispaper describes new algorithms forjinding the

K-most critical paths, checking static sensitizability of

these paths, and performing incremental timing

verijcation on combinational circuits. The static sensiti-
zation method uses binary decision diagraw to avoid
costly backtracking operation used in other path analysis
programs. The speed and efjciency of the techniques are
demonstrated individually using the ISCAS benchmark cir-
cuits, and then together in a timhg optimization loop.

1. INTRODUCTION

Ensuring that a design meets a set of timing con-
straints is a very important issue in the design of integrated
circuits. Circuit simulators such as SPICE are occasion-

ally used for this purpose but they are usually too slow to
verify an entire circuit. Timing analysis [JOU87, 0US85]
is a data-independent approach which is typically much
faster. Recent work [DU89, MCG89, BEN90] has

improved this approach by identifying the so called false

paths and only reporting the longest true paths in a circuit.

Even though timing analysis programs are relatively
fast, it usually takes tens or hundreds of iterations of
modification and verification to either correct all the timing
violations or to optimize a design. However, when a
design is slightly modified, only a small portion of the cir-
cuit characteristics will be affected compared with the pre-
vious analysis. In addition, it usually takes much less time
to update invalid information than to do a complete

analysis. If the analysis can be carefully decomposed into
several independent phases, some phases can to be either
totally skipped or easily updated to reduce the execution
time and to give the designers faster feedback. In this
paper, we exploit this property to perform incremental tim-
ing analysis on combinational circuits.

Permiw,on to copy without fee all or part of this material]s granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice IS given that copying IS by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,

requires a fee and/or speclflc penmsslon.

We begin by presenting an efficient scheme using
binary decision diagrams to eliminate the statically unsen-

sitizable false paths in a combinational circuit which is a
key contribution in this paper. We then present an
improved path enumeration algorithm to extract the K
most critical paths that does not traverse any unnecessary
full and/or partial paths. Finally, we present an incremen-
tal timing verification algorithm which can efficiently
determine the longest statically sensitizable true paths if
some of the gate delays are changed in the design. Experi-
mental results are provided to illustrate that a large speed

up can be achieved using our incremental algorithm.

Since most of the true paths, and most viable paths, are
statically sensitizable[MCG 89] and since static sensitiza-
tion is much cheaper to implement (especially in a timing
optimization environment), circuit designers can use our
incremental algorithm to correct all of the statically sensi-
tizable long paths in a very short amount of time.

2. A STATIC PATH SENSITIZATION SCHEME

Whenever a long path in a circuit is found, it must

be categorized as a true path or a false path. This section
presents a new approach to the false path problem in tim-

ing verification.

Several sensitization conditions have been investi-
gated in [MCG89]. The most primitive condition, i.e.
static sensitization condition, is used in our work because,
with the help of binary decision diagrams [BRY86,
BRA90], accumte static sensitization can be very efficient,

especially for incremental timing verification. This condi-
tion follows from the observation that for a signat to travel
down a path P = <f 0, f 1,. “ “ f~ >, changing the value
off ~ must change the value of ~i+l. That is equivalent to
saying that all of the other inputs to the gates on the criti-
cal path must have a non-controlling stable value (eg., 1
for AND gates and O for OR gates).

The basic idea of previous approaches reported
[BEN90, DU89, PER89, MCG89] is illustrated in the
example shown in Figure 1. They sensitize a critical path
by generating and resolving logic constraints. Suppose the
path P 1= ~, e, f, c, d > is the one of interest. In order
to propagate X to e , Z must be 1 since e is an AND gate.

28th ACM/l EEE Design Automation Conference@

Paper 32.2
54101991 ACM 0-89791-395-7/91/0006/0541 $1.50

Propagating e to f produces no constraints, but propagat-
ing f to c requires b = 1 and propagating c to d requires

g =0. However, g = O implies both f and X are 1 and a
conflict is detected at node e because X = Z = f = 1. The
problem with previous approaches is that they have to
compromise between accuracy and the combinatorial

explosion associated with backward searches to justify
these logic constraints. For example, if g is an AND gate
instead, setting either f or X to O can temporarily satisfy

the constraint but backtracking may be needed later to
retrace the search graph to resolve any conflicts that may

arise by trying alternative assignments at previously
assigned nodes. In addition, the same partial path may
have to be examined many times which makes the problem
even worse.

PI
x

....-..-..<

Y

a: XY b: XY+Z c: X’Z+XYZ’ d: X’+Y+Z
e: XZ E X’+z’ g: X’+z

Figure 1: An Example for Static Sensitization

Our idea is based on the fact that, if the logic
description of every node in terms of the primary inputs is
available, no backtracking is necessary to sensitize a path.
This backtracking operation is really the most expensive

part of path sensitization, and it is completely eliminated in
our approach. In other words, we transform the sensitiza-
tion problem into a satisjiability problem and apply binary
decision diagrams (BDDs) to facilitate the procedure. As
we shall see in the next section, our direct approach is very
efficient and accurate. Let’s examine the path P 1 again.
In order to sensitize path P 1, we need Z = b = 1 but g = O.
With the help of BDDs, it is very easy to see that

Z nb ng’=Z n (XY+Z) n (X’Z)’=@. On the other
hand, if we examine another path P 2 = <Z, e, f, g, d >,
we need X = 1 and c = O to sensitize the path. Since
X nc’=X n (X’Z+XYZ’)’=XY’+XZ *0, path PI is

statically sensitizable.

Since we are only interested in finding the longest
true paths in a circuit, it is not necessary to examine all of
the output functions at one time. As we will show in the
next section, using binary decision diagrams (BDDs), the

logic functions for all of the internal nodes of the slowest
primary output function can be constructed in only a few

CPU seconds for most of the ISCAS benchmark circuits.

2.1. Experimental Results

We implemented our static sensitization scheme
using the BDD package described in [BRA90] and an ord-
ering strategy described in [MAL88]. Figure 2 shows the
execution times in CPU seconds for constructing the
BDDs for the slowest primary output in each benchmark

circuit and for sensitization while searching for the 3 most

critical true paths. The path enumeration algorithm used
will be explained in the next section. The table also shows
the number of fatse paths detected by our scheme before
reaching the third true path and the total number of nodes
in the BDDs for each circuit. Circuits c432 and c2670

could be preprocessed and analyzed in under a minute
even though there were a large number of false paths in
them. The BDDs for circuit c6288 could not be generated

(degenerate example of a multiplier) and circuit c1908
needed a depth iirst scheme to complete the search and had

over 32,000 false paths! The other examples produced

short analysis times.

Circuit

*c432

C499

C880

c1 355

~Cl 908

c2670

C3540

C5315

c6288

c7552

Time to \. Size of

build bdd

6.09

25.97

14.19

22.61

21.82

25.61

0.01

56.79

3.64

bdd

8022

13668

20865

19477

15466

39709

10

22’743

4431

Time to

search

48.41

10.70

1.63

10.27

39446.57

33.52

0.01

5.18

1.12

Total siz,

21421

15548

23816

23541

32179

46636

14

25934

4991

me shown in CPU seconds on VAX3500 WO]
* original input ordering was used.
* depth first search algorithm was used.
- memory ran out before completion.

Figure 2 Sensitization Results

Nbr. of

dse paths

575

0

0
23

32457

969

0

112

57

;tation

In addition, currently we are investigating the possi-
bility of extending our scheme to handle the false path
problem at switch level using the switch-level symbolic
simulation techniques [BRY87].

3. A PATH ENUMERATION ALGORITHM

Several algorithms have been developed earlier
[YEN89] to extract the K most critical paths from a com-

binational network; however, they may not be efficient
enough to handle the cases when K is large. In this sec-
tion we present an improved algorithm that enumerates the
longest paths for a given acyclic directed graph in a non-
increasing order of their delays. In the rest of this paper,
we use nodes to represent components and use edges to
represent the connections between components. To sim-
plify the calculation of the delay of a path, we assume that

the weight of a node is zero and the weight of each edge
corresponds to the summation of the delay of component
as well as the delay of connection. The efficiency of this
algorithm is demonstrated by some experimental results.

The use of branch slacks is the key idea of our new
algorithm. One significant advantage of our proposed

algorithm is that circuit designer does not have to provide

the constant K at the beginning of the analysis. Our algo-
rithm generates the next longest path at every new iteration
and can be stopped and/or continued at any time. There
are two major phases in the algorithm : (1) the

Paper 32.2

542

computation of maximal delay to sink and ranking edges
for each node, and (2) the path enumeration phase.

3.1. Preprocessing Phase

For the purposes of handling multiple primary inputs

and primary outputs, we add a source node s and sink
node t and add a dummy edge with weight zero from node
s to each of the primary input nodes and from each of the
primary output nodes to the node t. Without loss of gen-
erality, we assume each gate has equal rise and fall delays.
For the case when rise and fait delays are different, a sim-
ple transformation proposed by T189] can be applied to
represent the delay information. The delay D of a path
P =<s =V13, V1, V2,vn. vn+l = t > is defined as D (P)

i =n

= ~~(vi,vi+~), where the ~(vi,vi+~) is the delw of edge
I

<Vi,t’’j+l>.

In order to determine the order of traversals of paths
in the path enumeration phase, we use the basic ideas of
calculating the -_delay fo_sink (v) for each node v and
ordering the successom &f each node v from [YEN89].
The mm_delay to sink(v) is defined as the maximum of——
the delays of all possible partial paths starting from node v

and ending with the sink.

While ordering the successors of each node v
according to the non-increasing order of the cost function,

(d(v, u) + max_delay to sink (u)), the branch slack,——
branch_slack (v, ui), can be computed as the difference of
the cost functions between each adjacent successors ~i and
~i+l. Here, Ui+l is the node next to node ui in the sorted
successors list of v. Therefore, notationally, we can write
that ~i+l = nextnode (v, u;). Note that branch slack

(v, u~) = d(v, Uk) + max_delay to sink(u~) if u~ ~s the——
last successor of node v. This branch slack is the key to

the efficiency of the new algorithm described in the next
section.

Figure 3 illustrates the calculation of max_delay_

to_sinks and branch slacks. Suppose we are processing

node C and that nodes D, F, and G have max_delay_
to_sink’s of 10, 19, and 5, respectively. The path from C
to D gives a maximum delay of 10+ 10= 20 whereas the
path from C to G gives a maximum delay of only
12+ 5 = 17. Therefore, D is the first successor of C,

max_delay7to_sink (C) = 20, and branch_slack (C, D)
=3. Simhrly, C is the first successor of B,
max_delay to sink(B)= 30, and branch_slack (B, C)
=30-29~1:

‘“b’ “b
Figure 3: An Example for Calculating wuzx_delay_to_sink

and branch slack—

The branch_slack(u ,V) gives two pieces of valuable
information: (1) The delay of the next longest path which

branches out from node u through another edge
<u ,nextnode (u ,V)> is branch_slack (u ,V) shorter than the

original path; and (2) The maximum gain in speed by
reducing the delay associated with edge <U ,V > is

branch_slack (u ,V) since a new critical path may branch

out before the improved edge <u ,V >. Figure 4 demon-
strates how branch slacks can solve the difficulties in
speeding up designs mentioned in [JOU87]. Jouppi
pointed out that even if the critical paths of a design are
known, the best way to improve the performance of the
design may not be clear. Figure 4(a) explains why speed-
ing up some components does not improve performance
much and figure 4(b) shows that branch slacks provide the

exact information for circuit designers to avoid needless
modifications.

1
Speeding up either of

these by 30ns only speeds
3

L up circuit by 1ns N ,,...

(a) Difficulties in Speeding Up Designs

o

49

w
(b) Branch Slacks Identifies the Upper Limit for

Performance Improvement

Figure 4: Branch Slacks Identifies the Best Spot

to Improve a Design

3.2. The Path Enumeration Phase

The difference between our new algorithm and the
previous ones is that our proposed algorithm can find the
next longest path very easily with the help of branch
slacks. Since all of the successors are sorted, the longest
path Pl=<s=vO, vl, vz,v.. V.+l = t> can be found by

expanding the longest partial path simply by adding the
first successor of the last node on the partial path one at a
time. With the help of the branch slacks associated with
edges on P 1, it is not difficult to see that the second longest

path Pz branches out from node vj on the path which has
the smallest branch_slack (vj ,vj+l) and the remaining
nodes of path P z can also be determined by the same way
as P 1 is generated. In general, at iteration k, the k longest
paths are collected in the buffer and some of them may
still have unexploited branch points. With the help of the
smallest branch slack of all available branch points, the
delay of the next critical path (next_delay) from which
each path in the buffer can generate can be determined.
Our algorithm simply picks the one with the longest

Paper 32.2
543

next_delay from a heap data structure to generate the
k+l-th longest path. It should be noted that the use of a
heap data structure is very important maintaining
efficiency in critical path analysis programs [MCG891.

The overall path enumeration atgorithm is outlined

below. Notice that when a new path Pi is generated, all of
its available branch points, vj, and their associated

branch slacks are placed in list [i] according to the non-
increas~ng order of their branch_slacks. In addition, the
delay of the next critical path from which path P; can gen-
erate, nex~_delay (1’ 1), is simply delay (1’1) minus the
branch_slack of the first pair in list [i].

Algorithm : Path Enumeration
generate the longest path P 1;
prepare list [1] and calculate next_delay (P ~);
k+l;
while (k paths are not enough yet) {

i e the path with the longest next--delay;

j + the first available branch point in list [i];
generate the next longest path Pk+l by branching

out from the j -th node on path Pi;
prepare list [k+l] and calculate next_delay (P~+J;
remove the first element in list [i] and update

next_delay (Pi);
k+k+l;

1
return(pl...pk);

In order not to report the same path twice, when a new
path pk is generated by branching out from path Pi at node
vj, it shall not consider the branch points in front of vj that
are shared by both Pi and Pj. Figure 5 illustrates how our

algorithm extracts the 5 most critical paths tlom an exam-
ple network shown in Figure 5(a). A trace of the execu-
tion of our algorithm is listed in Figure 5(b).

the ISCAS benchmark suite ERG85]. Random delays
from 200 to 209 time units were assigned to each gate. Six
large circuits (c1355, c1908, c2670, c53 15, c6288, and
c7552) with a total number of paths greater than 100,000
were tested using our algorithm. To provide a fair com-
parison, we improved the existing best jirst and depth jirst
algorithms to extract K paths reported in [YEN89] so that
they also used a heap. Figure 6 shows the execution times
in CPU seconds and the percentages of wasted edge

traversals, i.e., the percentages of edges encountered when
generating paths which were eliminated later, for the three
largest circuits. Notice that our algorithm does not make
any unnecessary edge traversals and has the capability of
continuing a search for the next most critical path without
having to restart from scratch. Actually, the critical path
analysis and path sensitization are done simultaneously in
our algorithm and, in fact, the algorithm is expected to per-
form even better (relative to depth-first and best-first)

when searching for the true paths because expanding each

edge involves sensitization and is much more expensive.

Ckcuit Algorithm K=50 K=SOO K=5000

BestFirst 0.10 (3%) 1.19 (3%) 40.24 (3%)

C5315 DepthFirst 0.18 (58%) 0.91 (61%) 16.84 (64%)

ours 0.06 (O%) 0.52 (0%) 5.15 (0%)

BestFhst 0.22 (4%) 2.46 (5%) 61.30 (6%)

c6288 Depth Fist 0.64 (70%) 8.06 (78%) 94.83 (83%)

Oum 0.17 (0%) 1.49 (0%) 14.52 (O%)

BestFirst 0.08 (4%) 1.00 (3%) 32.77 (3%)

c7552 DepthFhst 0.13 (70%) 1.15 (56%) 11.56 (59%)

Ouls 0.03 (o%) 0.44 (0%) 4.44 (o%)

Time Shown in CPU seconds on VAX3500 workstation

Figure 6: Performance Statistics

(a) A Network with Source A and Sink D

next_
iteration path(delay)

available branch points

delay (branch slack)

1 ABFCD(13) 12 A(l),B(1),C(2),F(3)
2 AEBFCD(l 2) 11 B(1),E(2),C(2),F(3)

3 ABCD(12) 10 c(2)

4 ABFCGD(l 1) O

5 AEBCD(l 1) 9 D(2)

(b) A Trace of the Execution of our Algorithm

Figure 5: Example of Extracting the 5 Most Critical Paths

3.3. Experimental Results

We implemented our algorithm in the C language on
a VAX3500 workstation. Benchmarks were taken from

4. INCREMENTAL CRITICAL PATH ANALYSIS

In this section, we describe an incremental path

analysis approach using the path analysis and sensitization

techniques from the previous sections. A circuit design is
usually analyzed for timing and modified tens or even hun-
dreds of times during debugging and optimization cycles.

Thus, it is very important for each iteration of the analysis
loop to be as fast as possible. Incremental timing
verification exploits the fact that when a design is slightly
modified, only a few paths have to be re-examined.

In this paper, we focus on changes in gate delay
values but not to the stmcture of a given circuit. Since
timing information is not stored in the BDD-based logic
representations, it is clear that there is no need to re-
construct the BDDs if only the delays of some components

change. In addition, a full and/or partial path remains true
(or false) if and only if it was a true (or false) path in the
previous analysis. Therefore, we do NOT have to re-

sensitize the long paths we examined in the previous runs
and this is the main reason why we use static sensitization

condition, even though it may underestimate the critical
path delay for some rare cases. We believe it would be a

Paper 32.2

544

good idea to correct all of the statically sensitizable long

paths tirst in a very short amount of time and then apply

some more sophisticated timing verifiers to examine if

there are any dynamically sensitizable or viable long paths
left.

In general, the only characteristics that could change

are the max_delay_to_sinks, branch_slacks, orderings of
successors, and the lengths and next_lengths of existing

partial/full paths which are all relatively cheap to update (
<1 !ZO CPU time) compared with the cost of building the
BDDs and/or sensitizing paths. Instead of restarting the
search from the beginning again, we only have to update
the invalid information, reorder the heap, and continue the
modified best first search of other long paths. In addition,

since true paths are the only paths that need to be shor-
tened while the lengths of false paths are not of interest,
the lengths of true paths become shorter and shorter as the
optimization phase proceeds, but the number of long false
paths that other non-incremental algorithms have to sensi-
tize becomes larger and larger. Our algorithm does not
waste time re-examining known false paths.

The incremental search algorithm uses two heaps

(the original path enumeration algorithm only uses one
heap to keep the next_delays for every path). Suppose a

circuit designer is interested in knowing the K most criti-

cal true paths. After updating the lengths of all of the
paths in the buffer, the longest K most critical true paths
(the buffer may have more than K true paths already) are
put in the Heap_L with the shortest one on the top of the
heap. On the other hand, the next_lengths of alt of the

paths with available branch points are put in another heap
Heap_N with the longest one on the top of the heap. The
overall incremental timing verification algorithm is out-
lined below:

Algorithm : Incremental Critical Path Identification

update the invalid information;
prepare Heap_L and Heap_N;
while (Heap_N.top > Heap_L.top) {

I* nwre unexploited long paths *I
generate and sensitize a new long path P_;
if (Pm is a true path)

Replace the top element of Heap_L by P.CW
and rebuild Heap_L;

Insert next_delay (P.m) in Heap_N;

}
return (true paths in Heap_L);

The algorithm above only considers gate delay changes.

The problem becomes somewhat more complicated if
the circuit topology is changed. For example, the
transduction method [MUR89, MAT89] can be used to
eliminate redundant logic circuitry. In this case, the
table of BDD logic functions can be updated in an
event-driven manner but more paths have to be re-

examined. However, we did not focus on this part
because the CPU time spent on modifying the circuit
topology usually dominates the entire timing optimiza-
tion loop. This will be a topic of future consideration.

4.1. Experimental Results

In order to demonstrate the capabilities of the new

algorithm, we designed an circuit timing optimization loop
using our incremental timing verifier. At every iteration

the most critical true path is identified and the delay of
slowest device on the path is reduced by 570. This loop is
repeated until the modfied design is 570 faster than the ori-
ginal design.

Two benchmark circuits, c1355 and c499, were
chosen for this experiment because, as shown in Figure 2,
these two circuits have only a few long false paths and
they actually spend more time in sensitizing their paths

than constructing the BDD tables Therefore, lower speed-

ups are expected for these cases. Note that our algorithm
neither re-examines the known long false paths nor re-

constructs the BDDs after the first iteration. Figure 7
shows the accumulated CPU times (in seconds) for the
whole optimization processes as a function of the iteration
count. For both benchmark circuits, if no incremental
technique is applied, the accumulated CPU time (labeled
by Orig.) grows very quickly. However, if we exploit the
fact that the BDD tables do not have to be re-constructed,

a significant amount of CPU time can be saved (labeled by
Incr_O). Finally, if our incremental search scheme is also

used, the accumulated CPU time hardly increases after a
few iterations (labeled by Incr.).

8000

7000

6000

5000

4000 ;

3000:

2000:

1000:
n

“o 20 40 60 80
3500:

3000:

2500:

2000:

1500

1000

500

(1
o 6 12 18 24 30

Figure 7: Accumulated CPU times (sees)

The average CPU time taken in each iteration and
the maximum memory used for both algorithms are also
shown in figure 8. With some fair amount of additional
memory (20% for c499 and 5870 for c 1355), our incre-
mental schemes drastically reduced the amount of CPU
time spent on the timing optimization loop from 2,5 CPU

Paper 32.2
545

hours down to 11 CPU minutes for c1355 and from 1 CPU
hour down to 2 CPU minutes for c499. As mentioned
above, these were the particularly difficult circuits. For the
circuits where all of the long paths have been sensitized
earlier, our algorithm is thousands of times faster.

Circoit C1355 C499

Number of Itemtions 98 ~

Avemge CPU original 89.97 106.77

seconds per iteration Incremental 6.81 4.33

Overall
speedup

13.21 24.66

Maximum 614.9 5276.4

original 60314 18648
Maximum Memory

Usaze
Incremental 95148 22458

1- I Overhead I 58% I 20% I

Figure 8: Performance for Incremental Timing Verifier

5. CONCLUSION

We have presented new algorithms for path
enumeration, static sensitization, and incremental timing
verification for critical path analysis of combinational cir-
cuits. We demonstrated that all of these three algorithms
are very useful for the application of timing optimization
using the ISCAS benchmark circuits. The next step of this
research is to apply the switch-level symbolic simulation
techniques to extend the false path problem down to
switch level and to apply the incremental approach when

the structural changes are made to the circuit.

6. ACKNOWLEDGEMENTS

The authors would like to thank Karl. S. Brace and
Randal E. Bryant for providing the BDD package, and
Larry Jones and K. C. Chen for useful discussions. Finan-
cial support for this research was provided by the Sem-
iconductor Research Corporation.

REFERENCES

[BEN90]

[BRA90]

[BRG85]

[BRY86]

J. Benkoski, E. V. Meersch, L. J. Claesen, and
H. D. Man, “Timing Verification Using Stati-

cally Sensitizable Paths”, IEEE Transactions
on Computer-Aided Design, CAD-9 (no. 10),
pp. 1073-1083, Oct. 1990.

K. S. Brace, R. L. Rudcll, and R. E. Bryant,
“Efficient Implementation of a BDD Pack-
age”, in Proceedings of 27th ACMIIEEE
Design Automation Conference, pp. 40-45,

July 1990.

F. Brglez and H. Fujiwara, “A neutral netlist

of 10 combinational benchmark circuits and a
target translator in fortran”, IEEE Interna-
tional Symposium on Circuits and Systems,
June 1985.

R. E. Bryant, “Graph-based Algorithms for
Boolean Function ‘Manipulatiofi, in IEEE
Transactions on Computer, C-35 (no.8), pp.

Paper 32.2

546

[BRY87]

[DU89]

[JOU87]

~189]

[MAL88]

[MAT89]

[MCG89]

[MUR89]

PER89]

[OUS85]

[YEN89]

667-691, June 1986.

R. E. Bryant, “Boolean Analysis of MOS Cir-
cuits”, in IEEE Transactions on Computer-
Aided Design, CAD-6 (no.4), pp. 634-649,
July 1987.

D. H. Du, S. H. Yen, and S. Ghanta, “On the

General False Path Problem in Timing
Analysis”, in Proceedings of 26th ACMIIEEE
Design Automation Conference, pp. 555-560,

hdy 1989.

N. Jouppi, “Timing Analysis and Performance
Improvement of MOS VLSI Designs”, IEEE
Transactions on Computer-Aided Design,
CAD-6 (no.4), pp. 650-665, July 1987.

W. Li, S. Reddy, and S. K. Sahni, “On Path
Selection in Combinational Logic Circuits”,
IEEE Transactions on Computer-Aided
Design, CAD-8 (no. 1), pp. 56-63 Jan. 1989

S. Malik, A. R. Wang, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Logic Verification
using Binary Decision Diagrams in a Logic
Synthesis Environment”, in Proceedings of
IEEE International Conference on Computer
Aided Design, pp. 6-9, Nov. 1988.

Y. Matsunaga and M. Fujita, “Multi-Level

Logic Optimization Using Binary Decision
Diagrams”, in Proceedings of IEEE Interna-

tional Conference on Computer Aided Design,
pp. 556-559, NOV. 1989.

P. McGeer and R. K. Brayton, “Efficient
Algorithms for Computing the Longest Viable
Path in a Combinational Network”, in
Proceedings of 26th ACMIIEEE Design Auto-
mation Conference, pp. 561-567, July 1989.

S. Muroga, Y. Kambayashi, H. C. Lai, and J.
N. Culliney, “The Transduction Method -
Design of Logic Networks Based on Permissi-

ble Functions”, IEEE Transactions on

Computer-Aided Design, CAD-38 (no. 10), pp.

1404-1424 Oct. 1989

S. Perremans, L. Claesen, and H. D. Man,
“Static Timing Analysis of Dynamically Sen-
sitizable Paths”, in Proceedings of 26th
ACMIIEEE Design Automation Conference,
pp. 568-573, July 1989.

J. Ousterhout, “A Switch-Level Timing
Verifier for Digital MOS VLSI”, IEEE Tran-

sactions on Computer-Aided Design, CAD-4
(no.3), pp. 336-349, July 1985.

S. H. Yen, D. H. Du, and S. Ghanta, “Efficient
Algorithms for Extracting the K Most Critical

Paths in Timing Analysis”, in Proceedings of
26th ACMIIEEE Design Automation Confer-
ence, pp. 649-654, July 1989.

