

Lx: A Technology Platform for Customizable
VLIW Embedded Processing
Paolo Faraboschi, Geoffrey Brown, Joseph A. Fisher,

Giuseppe Desoli, Fred (Mark Owen) Homewood*

Hewlett-Packard Laboratories (Cambridge, MA)
*STMicroelectronics (Cambridge, MA)

{frb,gbrown,jfisher,desoli}@hpl.hp.com, fred@bristol.st.com

ABSTRACT
Lx is a scalable and customizable VLIW processor technology
platform designed by Hewlett-Packard and STMicroelectronics
that allows variations in instruction issue width, the number and
capabilities of structures and the processor instruction set. For Lx
we developed the architecture and software from the beginning to
support both scalability (variable numbers of identical processing
resources) and customizability (special purpose resources).

In this paper we consider the following issues. When is customi-
zation or scaling beneficial? How can one determine the right
degree of customization or scaling for a particular application
domain? What architectural compromises were made in the Lx
project to contain the complexity inherent in a customizable and
scalable processor family?

The experiments described in the paper show that specialization
for an application domain is effective, yielding large gains in
price/performance ratio. We also show how scaling machine re-
sources scales performance, although not uniformly across all
applications. Finally we show that customization on an applica-
tion-by-application basis is today still very dangerous and much
remains to be done for it to become a viable solution.

1. INTRODUCTION
Dataquest estimates that the embedded processor market should
grow from $7.5 billion in 1998 to $26 billion by 2002. This mar-
ket space is seeing an increasing number of competitors ranging
from companies implementing variations of traditional embedded
processor architectures (such as ARM and MIPS), to more aggres-
sive startups introducing their own new ISA (such as ARC Cores
and Tensilica).

At the same time, the complexity of embedded applications is
escalating considerably, and it is not uncommon to find many
hundred of thousands of lines of high-level language code in em-
bedded products such as printers or mobile phones. Time-to-
market is also becoming a primary concern, as the lifetime of
embedded products constantly shrinks to keep pace with evolving

standards, new user needs and performance requirements.

The combination of application complexity and time-to-market
considerations is what makes a software-based approach to em-
bedded systems particularly appealing today. Ideally, embedded
system designers would like to have a single processing platform
where high performance digital signal processing capability (for
real-time signal processing), is coupled to microprocessor func-
tionality (for general purpose processing tasks). This trend is what
is causing the traditionally separated DSP and micro-controller
domains to converge in an increasingly large number of products
that are starting to be commercially offered.

Our approach is based on two concepts:

•= A new clustered VLIW core architecture and microarchitec-
ture specialized to an application domain that ensures scal-
ability and customizability

•= A toolchain based on aggressive ILP compiler technology
that gives the user a uniform view of the platform at the pro-
gramming language level.

The technology we are developing is called "Lx", we are doing it
in a production environment, most pieces have already been de-
veloped, and products are expected in the near future.

The reasons for developing a new ISA come from the observation
that existing architectures are not scalable in width and customiza-
tion areas are limited. Existing ISAs are either too specialized
(most DSP processors) or too general (general-purpose platforms
like ARM and MIPS).

We believe that the combination of: clustering, VLIW with pre-
cise interrupts, a slim and scalable microarchitecture, and interest-
ing memory hierarchies constitute a novel technology platform.

1.1 Convergence of Embedded Technologies
DSP and micro-controllers are converging in the high-end mar-
kets. This new batch of processors include a combination of fea-
tures from the DSP domain, such as low-overhead looping, rich
set of addressing modes, special purpose arithmetic operations
and formats, etc. At the same time, they usually include a more
RISC-like set of instructions (sometimes in a different mode), to
ease high-level (C or C++) code development, to support system
code and multitasking OS's and in general to be able to implement
much larger applications in the same platform. In the following
we discuss the subset of announced DSPs and configurable RISC
cores that have the most commonality with the Lx architecture.

Over the past several years a number of semiconductor manufac-
turers have announced high performance embedded VLIW cores

Alan Berenbaum
Permission to make digital or hard copies of all or part of this workfor personal or classroom use is granted without fee provided thatcopies are not made or distributed for profit or commercial advan-tage and that copies bear this notice and the full citation on the firstpage. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. ISCA 00 Vancouver, British Columbia Canada Copyright (c) 2000 ACM 1-58113-287-5/00/06-203 $5.00

Alan Berenbaum
203

and processors. These include the Motorola/Lucent StarCore, the
TI C6xxx family, and the Philips Trimedia. Of these, all but the
StarCore are currently in production; however, only the TI C6
family has apparently shipped in large volumes. In addition,
STMicroelectronics has announced the ST100 DSP, which has a
“VLIW mode” for key inner loops.

•= The announced StarCore architecture [13] is a “natural”
VLIW extension of traditional DSPs – the basic operations
supported are optimized for DSP applications with the ability
to issue multiple operations simultaneously. While not as
register starved as previous DSPs, the available 16 data regis-
ters are likely to make the compiler’s task difficult.

•= The TI C6 family [15] is significantly closer than the Star-
Core to a general-purpose processor. C6 presents some diffi-
culties for real time applications because, for example, soft-
ware pipelining using modulo scheduling is evidently not in-
terruptible and interruptible code requires hazard-free regis-
ter usage. This may cause significant register pressure for the
compiler. In contrast, the Lx was designed to be interruptible,
and all code generated by the compiler is hazard free.

•= The Phillips Trimedia processors [12] are the most ambitious
of the currently available embedded VLIW processors. Its in-
struction set is quite rich, includes floating point and multi-
media instructions and full predication. In contrast, Lx has a
modest set of basic instructions that allow future family
members to be customized for specific domains.

In addition to embedded VLIW cores, several configurable proc-
essors were recently announced. The most visible of these are the
Tensilica Xtensa architecture and ARC Cores. The Tensilica proc-
essor [14] takes an a-la-carte approach with some support for
custom instructions. The designer has the ability to choose from
optional functional units, memory interfaces, and peripherals. In
addition, the toolchain supports user-defined instructions that are
defined using a simple RTL. The basic processor is a simple sin-
gle issue RISC core. The support for user defined instructions is
consistent with that provided by the Lx toolchain. Thus the Ten-
silica processor is customizable, but not scalable. The ARC core
[8] is a much simpler processor than the Xtensa providing a mod-
est set of synthesis time options to allow some choice among a set
of predefined instructions and peripherals.

1.2 Competing Technologies
It is important to compare customizable VLIW architectures to
other competing high-performance computing technologies in the
embedded space. Table 1 summarizes the situation and shows
how the advantages of high performance, ease of use and flexibil-

ity uniquely position this technology. This is particularly true in a
world where time-to-market is rapidly becoming the dominant
factor in the success of a new technology.

2. SCALABILITY AND CUSTOMIZABILITY
For an embedded architecture, we define scalability as the ability
to vary the number of existing resources, and customizability as
the ability to add new resources. In the Lx family, scalability in-
cludes varying the instruction issue width and the mix of opera-
tions that may be issued simultaneously. Scaling in this sense does
not change the set of operations in the ISA; however, for statically
scheduled architectures, scaling implies changing the set of legal
programs.

The Lx platform was developed in the belief that large perform-
ance advantages are available if we can change both the quantity
of computation available by scaling, and the actual computations
done efficiently, by customizing.

In the rest of the paper we will show that, although it is techni-
cally possible to customize on an application-by-application basis,
today it makes more sense to customize on an application-area (or
domain) basis. For example, we can picture one architecture fam-
ily customized for digital consumer (with implementation scaled
within that architecture family), another for printing applications,
and so on.

It is hard to quantify the advantages of scaling and customizing, as
other works [4] have shown. Sometimes, a large factor speedup
can be obtained via a very special, bit-twiddling operation (MMX-
style extension fall into this category). Sometimes doubling the
functional units doubles performance, sometimes it adds no per-
formance at all. Sometimes customization can have dramatic ef-
fects on inner loops, but little effect on the whole application
(Amdahl’s Law). The remainder of the paper addresses some of
these issues and highlights the customization directions that we
believe are more promising in the high-performance embedded
domain.

3. THE Lx CORE ARCHITECTURE
Lx is a family of embedded cores designed by Hewlett-Packard
Laboratories and STMicroelectronics. It is a scalable platform
where developers can pick the family member based on
cost/performance considerations for their application. For the first
generation of the family, scalability is planned to span from 1 to 4
clusters (i.e., 4 to 16 issued instructions per cycle). In addition to
simple scalability, Lx was designed to be customizable to specific
applications or application areas through the addition of applica-
tion-specific operations.

Technology
Performance

attainable
Time until
running

Time to high
performance

Time to change
code functionality

ASIC Very High Very Long Very Long Impossible: redesign

DSP / ASIP High Long Long Long

Custom VLIW High Short Short Short

RISC Low-Medium Very Short Not Attainable Very Short
Table 1 High Performance Computing Technologies for Embedded Systems

Speed

Flexibility

Alan Berenbaum
204

Lx is a statically scheduled VLIW architecture, thus providing the
most computation at a given silicon area. The VLIW approach
also yields the system advantages of a RISC instruction set, such
as fast interrupts, normal debugging, and so on. Despite a VLIW
instruction set, the operation encoding enables Lx code size to be
competitive with other 32-bit embedded platforms.

Lx comes with a commercial software toolchain, where no visible
changes are exposed to the programmer when the core is scaled
and customized. The toolchain includes sophisticated ILP com-
piler technology (derived from the Multiflow compiler [7]) cou-
pled with widely accepted GNU tools and libraries. The Multiflow
compiler includes most traditional high-level optimizations algo-
rithms and aggressive code motion technology based on Trace
Scheduling [5]. It is considered one of the most optimized ILP
compilers commercially available and is still used broadly in the
computer industry.

3.1 Multi-cluster Organization
Lx is a Multi-cluster architecture [3], as shown in Figure 1. Lx
clusters are composed of a mix of Register Banks, Constant Gen-
erators (immediate operands) and Functional Units. Different
clusters may have different unit/register mixes, but a single PC
and a unified I-cache control them all, so that they run in lockstep.
Likewise, the same execution pipeline drives all clusters. Inter-
cluster communication, achieved by explicit register-to-register
move, is compiler-controlled and invisible to the programmer.

At the multi-cluster level, the architecture specifies:

•= The instruction delivery mechanism, to get instructions from
the cache to the clusters' data-path. The assumption is that all
clusters feed synchronously from the same logical instruction
cache, which will be implemented differently depending on
technology and cost considerations. Likewise, the pipeline
may incur additional decoding cycles beyond certain cluster-
ing limits.

•= The inter-cluster communication mechanism, to transfer data
among clusters. Lx defines a scalable and flexible communi-
cation mechanism based on a simple pair of send-receive in-
struction primitives that move values among registers. The
send-receive method is scalable, as it does not depend on the
number of clusters; and is flexible, as it leaves room for mul-
tiple microarchitecture implementations (bus-based, with
private cluster wires, etc.).

•= The data-cache organization, to establish main memory co-
herency in the presence of multiple memory accesses. We
investigated two models: a MESI-like synchronization
mechanism for multiple independent caches, and a pseudo-
multi-ported cache implemented with multiple interleaved
banks. A discussion of the tradeoffs of these and other
mechanisms is beyond the scope of the paper.

3.2 The Organization of a Single-cluster
An Lx cluster (Figure 2) is a 4-issue VLIW core composed of four
32-bit integer ALUs, two 16x32 multipliers, one Load/Store Unit
and one Branch Unit. The cluster also includes 64 32-bit General-
purpose registers and 8 1-bit branch registers (used to store branch
condition, predicates and carries). Instructions allow two long
immediates per cycle.

The ISA is a very simple integer RISC instruction set with mini-
mal “predication” support through select instructions. The mem-
ory repertoire includes base+offset addressing, allows speculative
execution (dismissible loads, handled by the protection unit) and
software prefetching.

Lx includes a two-level code compression scheme. The instruc-
tion cache is compressed so that unused operation slots do not
consume space in the instruction encoding. In addition, we devel-
oped an aggressive compression scheme where binaries are com-
pressed with a Huffman-like technique, and blocks of instructions
are decompressed on I-cache refill (discussed in section 3.4).

I ns t r uc t io n
F e tc h
C a c he

a n d
E xp a ns io n

U n it

(F C E X U)

IC a c h e

C lus te r 0

D $

C lus te r 1

D $

C lus te r N
D $

C o re
M e m o r y

C o nt ro lle r
(C M C)

a n d
In te r

C lus te r
B us

(IC B)

In te r rup t a nd E xc e p t io n
C o nt ro lle r

B u n d le P C

...

Figure 1 The structure of a multi-cluster Lx architecture

Alan Berenbaum
205

The control unit supports a "two-step" branch architecture, where
compare and branch operations are de-coupled and the compare-
branch latency is exposed to the compiler. The ISA includes a
complete set of compare and logic operations and a separate set of
8 1-bit branch registers for conditions that allow us to prepare
multiple branches (up to eight). There are no architecturally visi-
ble delay slots after a taken branch so that - for example - dy-
namic branch prediction could be added (if needed) in follow-up
microarchitecture implementations.

3.3 Pipeline, Memory, Interrupts
Lx has a classical six-stage pipeline: F D R E1 E2 W. It is a
simple in-order pipeline: the exception point is at E2 and all
commit points are delayed until after E2 so that all units commit
their results to the register file in order. This allows us to have a
very clean exception model, despite the complexity of a wide-
issue machine. The data-path is fully bypassed from E1 and E2
and completely hidden at the architecture level (i.e. the results of
single cycle operations are available to operations in the following
pipeline stage).

The data cache is a 32KB, 4-way associative, write-back array
with load/store allocation. It includes an 8-entry software con-
trolled Prefetch Buffer that acts as a small level-2 fully associative
cache where requests currently in cache or in prefetch buffer are
dropped and data is copied from the buffer to the cache during a
subsequent miss.

The memory controller includes a simple Protection Unit that
supports segment-based protection regions, speculative loads
(where traps are dismissed) and is easily extendable to a full

MMU for customers that require it.

The memory model is unified, including internal, external mem-
ory, peripherals and control registers (that are mapped into the
upper 4K page). The core memory communicates with external
memory and the peripheral controller using a VSI-like system-on-
chip interface.

The interrupt controller supports the minimal set of required ex-
ceptions: illegal instruction, access violation and misaligned ac-
cess. For all of these, software recovery is supported (“precise”
model). Breakpoints are implemented with hardware support. In
addition to exceptions, the first Lx core supports one hardware
interrupt source: multiple priorities and interrupts sources are
considered part of the customization layer. In this way, we can
achieve a rather fast exception/interrupt response time, which is
approximately 6 cycles to get to a cached exception handler.

3.4 Code Density
Many critics of VLIW technology cite code density as a primary
disadvantage, which is indeed true for naïve VLIW implementa-
tions. However, if we try to break down the causes of potential
increases in code size, we can see that they fall into three main
categories:

1. Sparse ILP encoding. A naïve VLIW implementation would
keep a one-to-one correspondence between functional units
and instruction slots (also called syllables). This introduces
"horizontal" no-ops for unused units, and is probably the
largest source of inefficiency: it impacts both the instruction
cache and main memory. However, all VLIW implementa-
tions—from the early Multiflow Trace [1] and Cydrome [9]

Reg
File
64

GPR
(32b)

Load
Store
Unit

ALU ALU ALU ALU Branch
Unit

I$
32KB

Pre-D
ecode

Br RegFile
8 BR
(1 bit)

D$
4 Set
32KB

16x32
Mult

16x32
Mult

Exception
Control

Prefetch
Buffer

DPU IPU Control
Reg’s

Cluster Cluster 0

Figure 2 Structure of a single-cluster Lx. The shaded area in the middle contains the "proper" cluster resources. The
other components (Caches, Instruction/Data Protection Units, Control Registers, Exception Control) are shared in a

multi-cluster configuration. Branch Units are restricted only to cluster 0.

Alan Berenbaum
206

to the latest TI C6xxx [15] and IA-64 [11]—provide some
way to remove this inefficiency by means of a careful encod-
ing that avoids explicit no-ops when units are unused. Tech-
niques range from using template bits that encode the sylla-
bles in a bundle (Multiflow, IA-64), to run-length coding of
no-ops (Cydrome), and so on. In Lx we achieve the same re-
sults simply by using an "end-of-bundle" bit.

2. RISC encoding and exposed latencies. The encoding of a
general-purpose 32-bit RISC processor is intrinsically sparser
than traditional CISC or DSP processors. This is amplified in
non-scoreboarded VLIW architectures where latencies are
exposed at the ISA level. However, several techniques exist
to mitigate this phenomenon. Some embedded architectures
adopt simplified forms of the instruction set in size-critical
areas (for example: MIPS-16 and ARM-Thumb), others use a
more systematic compression system to decompress lines on
instruction cache misses (for example: the CodePack system
for IBM PowerPC [6]). For Lx, we adopt a philosophy simi-
lar to that of the IBM CodePack system, where the code is
compressed by software (with a Huffman-like algorithm after
linking) and decompressed on-demand on an instruction
cache miss by a simple hardware block connected to the ex-
ternal memory bus.

3. Compiler-driven code expansion. This is by far the hardest
factor to quantify. Many techniques that expose ILP tend to
grow code size, regardless of the architectural style. These
include: loop unrolling; region-scheduling compensation
code and global code motion; procedure inlining, cloning and
specialization; and so on. However, many of these techniques
need only be applied aggressively to the computational ker-
nels of the application and—when needed—the user can
guide the compiler heuristics for space/time optimizations.

Figure 3 shows code density figures for Lx in comparison to an-
other 32-bit embedded platform (a StrongARM SA-110) at com-

parable levels of compiler optimizations (benchmarks are de-
scribed in the following sections). As we can see, Lx code size is
very competitive even in the presence of high levels of optimiza-
tion. If we exclude bmark, where the code is heavily unrolled and
the expansion is slightly above three, the rest of the benchmarks
score between 25% and 100% code increase, with an average of
48%. If we apply compression, the overhead goes down signifi-
cantly, to an average of 14.9%. If we compile for minimal code
size (still at a reasonable optimization level), the average increase
is 26%. Somewhat surprisingly, this turns into a code size de-
crease of -14% when we apply cache-line compression.

The memory savings for the code compression algorithm averages
32% of code reduction for optimized code, indicating that we can
exploit a fair amount of redundancy in the RISC/VLIW encoding.
These values are consistent with IBM CodePack results and aca-
demic studies 0, and we believe that this is probably the most
effective and least invasive way to attack the code size problem,
when necessary.

Note that compression would benefit StrongARM as well. Such a
capability is not currently offered, since StrongARM code size is
considered respectable for embedded applications. This means
that VLIW code size can be brought down to the level of more
traditional RISC processors, perceived to be adequate in this re-
spect.

4. SPECIALIZATION AND SCALABILITY
To measure Lx performance on its target application domain, we
collected a set of representative programs that include audio ma-
nipulation, printing pipelines, color processing, cryptography,
video and still image compression and decompression. The do-
main benchmarks were optimized at the C source level (no as-
sembler) by adding compiler pragmas (unrolling and aliasing
directives) and in some cases restructuring the loops to expose

-50.0%
-25.0%

0.0%
25.0%
50.0%
75.0%

100.0%
125.0%
150.0%
175.0%
200.0% Lx (-O3)

Lx (-mc)
Lx(-O3)comp
Lx(-mc)comp

Lx (-O3) 24.6% 22.0% 66.8% 201.6% 47.0% 53.2% 83.2% -8.8% 72.5% 97.8%

Lx (-mc) 19.0% 0.1% 35.7% 31.6% 16.6% 12.1% 61.8% -16.1% 37.1% 64.2%

Lx(-O3)comp -9.1% -6.2% -2.4% 129.1% 7.6% 11.0% 19.2% -46.0% 16.5% 29.2%

Lx(-mc)comp -9.7% -23.0% -17.7% -5.7% -16.6% -18.7% 4.5% -49.6% -7.9% 5.6%

copymark
(36k)

tjpeg (42k) li (43k) bmark
(45k)

mpeg2
(55k)

crypto
(89k)

m88ksim
(95k)

boise
(114k)

go (207k) gcc
(1011k)

Figure 3 Lx code growth compared to StrongARM (SA-110), expressed as % code size increase
(decrease when negative) vs. the SA-110. Lx numbers include, uncompressed code compiled for

performance (-O3), minimum size (-mc) and then the corresponding compressed sizes.

Alan Berenbaum
207

more ILP. Our source-level optimizations improved performance
also for our reference platforms, although the reference compiler
(gcc) did not take advantage of the pragmas.

To evaluate how Lx behaves on programs outside the target do-
main, we also added a set of unmodified reference benchmarks
from the SPECINT'95 suite (gcc, go, li, m88ksim1) and some other
well-known public code (ghostscript and dhrystone), as well as a
rendering program in C++ not optimized at the source level. Table
2 describes the programs in our benchmark set.

To evaluate the benefits of the domain-specific specializations in
Lx, we show performance measurements relative to a baseline
configuration. Our baseline numbers are for a Pentium-II at 333
MHz (measured on an HP Kayak XU PC workstation), compiled
with gcc (v. 2.95, all optimizations), using cygwin libraries. Use
of MMX instructions was ruled out of these experiments because
they are non-portable, and their use is much more labor-intensive
than the code changes we permitted for Lx.

In all graphs, we show measurements for a more typical high-
performance 32-bit embedded processor, the StrongArm SA-110
at 275MHz, measured on a Corel NetWinder machine, compiled
with gcc (version 2.8.1, all optimizations), using linux libraries.

Lx performance is measured on a cycle-accurate simulator
(validated against a Verilog model) that includes cache, bus and
external memory measurements. The Lx C compiler is a
descendant of the Multiflow compiler and uses the GNU newlib
libraries (the C++ benchmark was translated by cfront). The Lx
memory system is a typical embedded system configuration: a
100MHz unified code/data memory bus, with 6-1-1-1[-3] DRAM
bursts.

As we can see from the following graphs, Lx is extremely fast on
compute-intensive, loop-dominated or hand-tuned code, such as
MPEG decoding, JPEG encoding/decoding, DSP algorithms,
cryptography, and so on. On these applications, Lx is more than
2x faster than a PII-333 at a tiny fraction of the area, and factors
(4x-8x) faster than a SA100-275 at a comparable area. On the
other hand, Lx performance is “average” on control-dominated,

1 From the SPECINT'95 suite we left out perl and vortex since
they are not relevant to the embedded domain; compress and ijpeg
since the compression decompression domain is already well-
represented by the other benchmarks.

non-optimized code, or code with a strong unpredictable compo-
nent, such as interpreters (gs), compilers (gcc), simulators
(m88ksim), rule-based “AI” (go), C++ (boise), and so on.

In the following two sections, we are interested in evaluating how
performance scales when we apply variations along two different
directions: clock frequency and issue width.

4.1 Scaling Clock Frequency
As a rule of thumb, power consumption in a microprocessor
grows linearly with frequency and quadratically with voltage.
Usually, lowering frequency allows operating at smaller voltages,
and this has a cubic effect on power savings. Therefore, in em-
bedded domains with a limited energy budget, scaling clock fre-
quency may not always be the preferred solution and it is impor-
tant to evaluate the performance benefits. Figure 4 shows per-
formance numbers for Lx at 3 different clock frequencies (200,
300 and 400 MHz) for the benchmark set. We can see that for the
applications in the target domain, performance scales almost line-
arly with clock frequency. This remains true also for wider issues
machines (we show a 2-cluster 8-issue and a 4-cluster 16-issue
Lx). Note that the external memory hierarchy was fixed for all the
experiments, so that the overall system cost is only marginally
affected by the change in clock speed.

If we consider the collection of general-purpose applications, we
see that there is not much we can do by increasing processor
speed. We can observe that Lx performance is competitive and
often better than an embedded processor at a similar cost range.
Finally, Lx still lies about 30% below a workstation-class proces-
sor (like the Pentium-II) that can afford to adopt more expensive
features like larger caches, multiple level memory hierarchies and
aggressive dynamic branch prediction.

For our experiments we chose a frequency range that is realistic
for typical 0.25µ Lx implementations, between 200 and 400 MHz.
At the same time, we kept the external memory interface constant
assuming a 100MHz unified external memory bus. This means
that, for example, a data cache miss (32 bytes/line) takes 25 cycles
on a 200 MHz Lx, 36 cycles on a 300 MHz Lx and 47 cycles on a
400 MHz Lx. Similar considerations apply for the instruction
cache misses. Level-2 caches are rarely used in embedded systems
due to their impact on overall system cost and we chose not to
model them.

Name Description Name Description

bmark Printing imaging pipeline (optimized) boise Printing rendering pipeline (C++)

copymark Color copier pipeline (optimized) dhry Dhrystone 1.1 and 2.1 benchmark

crypto Cryptography code (optimized) gcc SPECINT'95 GNU cc compiler

csc Color-space conversion (optimized) go SPECINT'95 game of GO

mpeg2 MPEG-2 decoder (optimized) li SPECINT'95 LISP interpreter

tjpeg JPEG-like coder/decoder (optimized) m88ksim SPECINT'95 M88000 simulator

adpcm ADPCM audio coder/decoder gs Ghostscript PostScript interpreter

Application Domain Reference Benchmarks

Table 2 The benchmark set.

Alan Berenbaum
208

4.2 Scaling Issue Width
In Figure 5 we present the same data of Figure 4 grouped by issue
width. While increasing frequency and voltage has a cubic effect
on power, power grows at most linearly with area increases. Func-
tional units and registers represent a relatively small fraction of
the overall processor area, so the effect on power consumption is
marginal. Changing the issue width mostly affects processor cost,
since the size of the data-path grows linearly with the number of
clusters, and we assume that the bandwidth to the data cache also
increases with the number of clusters. For these experiments we

consider a pseudo-multi-ported data cache implemented through
multiple interleaved banks, with a stalling mechanisms that can
resolve bank conflicts in one cycle.

Here, we can see how scaling the issue width provides some ad-
vantages, but much less uniformly across the domain. In the target
domain, doubling from 4-issue to 8-issue gives no more than a
25% improvement, and sometimes as little as 5-10%. For general-
purpose code, wider issue above 4 is ineffective and sometimes
detrimental (due to inter-cluster communication overhead, in-
creased code size and data cache conflict stalls).

A detailed analysis of ILP saturation in this experiment is beyond

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00 1_200

1_300
1_400
SA_275

1_200 2.55 2.10 2.02 1.81 1.91 1.89 1.54 0.76 0.61 0.50 0.61 0.52 0.46 0.43

1_300 3.61 3.08 2.80 2.51 2.52 2.38 2.30 1.09 0.92 0.73 0.79 0.65 0.58 0.54

1_400 4.57 3.94 3.46 3.11 3.00 2.74 3.05 1.38 1.22 0.94 0.92 0.74 0.66 0.62

SA_275 0.76 0.66 0.53 0.81 0.35 0.22 0.83 0.22 0.68 0.43 0.55 0.4 0.57

cpmrk crypto csc bmark mpeg2 tjpeg adpcm boise dhry li go gcc m88k gs

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00 2_200

2_300
2_400
SA_275

2_200 2.77 2.49 2.57 2.18 2.20 1.95 1.39 0.69 0.62 0.47 0.54 0.50 0.40 0.43

2_300 3.89 3.62 3.49 3.21 2.87 2.45 2.08 0.97 0.93 0.68 0.69 0.62 0.50 0.54

2_400 4.89 4.65 4.24 4.15 3.39 2.81 2.76 1.21 1.24 0.86 0.80 0.70 0.56 0.62

SA_275 0.76 0.66 0.53 0.81 0.35 0.22 0.83 0.22 0.68 0.43 0.55 0.4 0.57

cpmrk crypto csc bmark mpeg2 tjpeg adpcm boise dhry li go gcc m88k gs

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00 4_200

4_300
4_400
SA_275

4_200 2.89 2.73 3.10 2.23 2.28 2.06 1.38 0.68 0.62 0.47 0.45 0.49 0.34 0.42

4_300 4.05 3.91 4.12 3.23 2.96 2.58 2.06 0.95 0.93 0.67 0.55 0.60 0.41 0.52

4_400 5.07 5.00 4.92 4.16 3.47 2.97 2.74 1.19 1.24 0.86 0.62 0.68 0.46 0.60

SA_275 0.76 0.66 0.53 0.81 0.35 0.22 0.83 0.22 0.68 0.43 0.55 0.4 0.57

cpmrk crypto csc bmark mpeg2 tjpeg adpcm boise dhry li go gcc m88k gs

1
cl

us
te

r (
4-

is
su

e)
2

cl
us

te
rs

 (8
-is

su
e)

4
cl

us
te

rs
 (1

6-
is

su
e)

Figure 4 Lx performance chart: scaling clock frequency (200-300-400 MHz).
Performance is compared to a Pentium-II at 333 MHz, which is 1.00 on the vertical axis.

The SA_275 bars represent a 275MHz StrongARM.

Alan Berenbaum
209

the scope of this paper and the particular values clearly depend on
the compiler, the coding style and the specific applications. How-
ever, what emerges is that some amount of restructuring is cer-
tainly necessary for applications to benefit from aggressive ILP. If
we consider the benchmarks that perform best (crypto, csc, bmark,
mpeg2), they were all optimized for ILP through compiler annota-
tions and algorithm modifications

4.3 Putting it all together
From our analysis, we can draw the following conclusions:

•= Specializing for an application domain pays off. In the Lx
case (integer imaging and media-manipulation algorithms)

we can get 4x-8x performance gains starting from C-level
code with respect to a more general-purpose architecture at
similar cost and technology.

•= Scaling speed vs. power pays off fairly uniformly across the
application domain and gains are almost linear in the consid-
ered frequency range.

•= Scaling issue width vs. cost sometimes pays off, but yield
smaller gains and not uniformly across all applications.

•= Outside the application domain that we specialize for, we can
still get performance that is comparable with a general-
purpose architecture. This is very important in the real world,
since it de-risks the introduction of a new technology by not

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00 1_200

2_200
4_200
SA_275

1_200 2.55 2.10 2.02 1.81 1.91 1.89 1.54 0.76 0.61 0.50 0.61 0.52 0.46 0.43

2_200 2.77 2.49 2.57 2.18 2.20 1.95 1.39 0.69 0.62 0.47 0.54 0.50 0.40 0.43

4_200 2.89 2.73 3.10 2.23 2.28 2.06 1.38 0.68 0.62 0.47 0.45 0.49 0.34 0.42

SA_275 0.76 0.66 0.53 0.81 0.35 0.22 0.83 0.22 0.68 0.43 0.55 0.4 0.57

cpmrk crypto csc bmark mpeg2 tjpeg adpcm boise dhry li go gcc m88k gs

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00 1_300

2_300
4_300
SA_275

1_300 3.61 3.08 2.80 2.51 2.52 2.38 2.30 1.09 0.92 0.73 0.79 0.65 0.58 0.54

2_300 3.89 3.62 3.49 3.21 2.87 2.45 2.08 0.97 0.93 0.68 0.69 0.62 0.50 0.54

4_300 4.05 3.91 4.12 3.23 2.96 2.58 2.06 0.95 0.93 0.67 0.55 0.60 0.41 0.52

SA_275 0.76 0.66 0.53 0.81 0.35 0.22 0.83 0.22 0.68 0.43 0.55 0.4 0.57

cpmrk crypto csc bmark mpeg2 tjpeg adpcm boise dhry li go gcc m88k gs

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00 1_400

2_400
4_400
SA_275

1_400 4.57 3.94 3.46 3.11 3.00 2.74 3.05 1.38 1.22 0.94 0.92 0.74 0.66 0.62

2_400 4.89 4.65 4.24 4.15 3.39 2.81 2.76 1.21 1.24 0.86 0.80 0.70 0.56 0.62

4_400 5.07 5.00 4.92 4.16 3.47 2.97 2.74 1.19 1.24 0.86 0.62 0.68 0.46 0.60

SA_275 0.76 0.66 0.53 0.81 0.35 0.22 0.83 0.22 0.68 0.43 0.55 0.4 0.57

cpmrk crypto csc bmark mpeg2 tjpeg adpcm boise dhry li go gcc m88k gs

20
0M

H
z

40
0M

H
z

30
0M

H
z

 Figure 5 Lx performance chart: scaling cluster width 1 to 4 (issues 4-wide, 8-wide and 16-wide)

Alan Berenbaum
210

tying its performance too closely to a narrow set of applica-
tions and attacking the Amdhal's Law problem. However,
performance on general-purpose applications scales poorly
with respect to issue width and clock speed, which is not sur-
prising assuming a fixed memory hierarchy beyond the proc-
essor.

5. APPLICATION-SPECIFIC CUSTOMIZATION
If we look at the space between application domains and imple-
mentations, it is possible to conceive of customization at any level
in the hierarchy (Figure 6). From more to less general levels of
commitment, we can distinguish:

•= Domain-specific customization. This is where a platform like
Lx achieves the largest benefits, as we have seen in the pre-
vious sections. At the domain level, we can influence choices
like the core ISA, the pipeline organization, the memory hi-
erarchy, and the mix of resources. For example, the choice
between an integer and floating-point data-path sits at this
level. These choices impact the target market of the technol-
ogy platform (DSP's, micro-controllers, very-low power,
etc.)

•= Application-specific customization. Within a domain, we can
distinguish specific applications that are tied to individual
products. Here it is conceivable to think about sizing and
scaling the basic resources according to the overall character-
istics of the application. For example, if our target product is
a digital camera, we will have to stress low-power (at the ex-
pense of clock cycle speed), but at the same time we know
that the application will likely contain a lot of potential ILP.

•= Algorithm-specific customization. Even when the application
is fixed, there is usually a wide choice of algorithms that

yield similar results. The choice of the algorithm is usually
driven by output quality, desired performance, implementa-
tion costs and other less quantifiable factors (like intellectual
property issues). At the algorithm level, we can think of add-
ing specific customization in the form of special computation
instructions, storage organization (special memories) or other
ad-hoc structures.

•= Implementation-specific customization. For a given algorithm
within an application, it is fairly common to have several
software implementations that produce the same bit-by-bit
result. For example, a simple 2D image filter can be imple-
mented as a 2D convolution in the space domain or as a mul-
tiplication in the frequency domain; this is where specialized
customization has larger benefits and where we can think of
automating the process (as described for example in [4]). Un-
fortunately, this is also where such customization is riskiest,
as we show in the following sections.

The two major trends that dominate the customization space are
effectiveness and flexibility.

•= Effectiveness. Obviously, the more we freeze our applica-
tion/algorithm/implementation space, the higher the advan-
tages of customization will be. At the same time, this goes
against time-to-market. Probably the primary reason why de-
velopers prefer a software approach to a hardware design is
the fact that with software they are free to change the appli-
cation at the very last minute.

A pure software approach also enables concurrent engineer-
ing between hardware and firmware design. By adding cus-
tomization, the hardware (i.e., processor) design time gets in
the critical path of the software design, that has to be com-
pleted by the time customization starts. Note that we can di-

Im age
P roc ess ing

D om ain

A pp lic a tion

E dge
E nhanc em ent

A lgor ith m

M as k F ilte r ing

A pp lic a tion

A lgor ith m

M orpho logic a l

Im p le men ta tion

C onvo lu t ion

Im p le men ta tion

F requenc y M ult ip ly

Im p le men ta tion

Look -up tab le

C u sto m iz atio n E ffec tiv en ess (an d R is k)

F lex ib il ity

Figure 6 Example of different customization levels in the image-processing domain. One of the risks of over-
customization comes from the difficulty of distinguishing between algorithms, implementations and implementation

alternatives. This still requires the human intervention of an application expert.

Alan Berenbaum
211

minish this risk by reducing the design (and verification)
time of a new custom processor, which is where automation
helps. Finally, it is worth mentioning that rarely can the spe-
cialization for one specific implementation be leveraged into
another one, and this also increases the risk of customization.

•= Flexibility. In order to maintain flexibility we can be more
general in our customization, at the expense of peak per-
formance for some specific algorithm and implementation.
At the extreme, we can design a completely general-purpose
processor. We also note that the more we raise the generality
of our customizations, the harder it is to design a process that
can do that automatically, although we have a fair chance
that any reasonable algorithm within the domain will benefit
from the added features. A carefully designed generic MMX-
style (micro-SIMD) instruction set extension is a good ex-
ample of this.

5.1 A Customization Case Study: MD5 Encryption
To illustrate the concepts expressed in the previous section, we
use a common encryption algorithm called MD5 (Message Di-
gest). MD5 is a one-way hash function that produces a 128-bit
hash of an input message and is commonly used in secure transac-
tions and in the generation of signatures [10]. MD5 is interesting
in our context since it represents a computationally intensive real
application that is at the same time a good candidate for heavy
customization.

The basic computation of MD5 is based on four elementary opera-
tors (we use C notation):

F(x,y,z) = (x & y) | (~x & z)
G(x,y,z) = (x & z) | (y & ~z)
H(x,y,z) = x ^ y ^ z
I(x,y,z) = y ^ (x | ~z)

These operators are used in a loop kernel that iteratively applies
the following four steps:

FF(a,b,c,d,M,s) => a = b + ((a + F(b,c,d) + M) << s)
GG(a,b,c,d,M,s) => a = b + ((a + G(b,c,d) + M) << s)
HH(a,b,c,d,M,s) => a = b + ((a + H(b,c,d) + M) << s)
II(a,b,c,d,M,s) => a = b + ((a + I(b,c,d) + M) << s)

We can think of applying customization at the different levels
described in the previous sections.

In particular, we can add a fairly generic set of encryption-specific

operations that we believe will also benefit other similar algo-
rithms. Within the Lx architecture constraints we can easily add
arithmetic operations that use more than two operands by bun-
dling together multiple issue slots within a wide instruction word.
In this case, a reasonable set of four-operand operations (of which
we can issue two per cycle on a 1-cluster Lx) is the following:

ASM_1_F(a,x,y,z) = a + (x & y) | (~x & z)
ASM_1_G(a,x,y,z) = a + (x & z) | (y & ~z)
ASM_1_H(a,x,y,z) = a + x ^ y ^ z
ASM_1_I(a,x,y,z) = a + y ^ (x | ~z)

If MD5 is our one and only choice we can push customization one
level further and actually implement the second set of more com-
plex operations using six operands and three instruction slots (one
per cycle, leaving the fourth slot free on a 1-cluster Lx):

ASM_2_FF(a,b,c,d,M,s) = b + ((a + F(b,c,d) + M) << s)
ASM_2_GG(a,b,c,d,M,s) = b + ((a + G(b,c,d) + M) << s)
ASM_2_HH(a,b,c,d,M,s) = b + ((a + H(b,c,d) + M) << s)
ASM_2_II(a,b,c,d,M,s) = b + ((a + I(b,c,d) + M) << s)

Table 3 shows the performance implications of these customiza-
tions (assuming a single-cycle implementation). In the left part of
the table, we present performance numbers for MD5.

As we can see, customization is effective in this case: we gain a
factor of 1.7x with the simple (level 1) customization, and a factor
of 4.5x with the more complex (level 2) instructions.

The reason that customization can be dangerous is evident in the
right half of Table 3, where we show the effect of the newly added
instructions to another popular algorithm that implements an al-
ternative one-way hashing technique, SHA (Secure Hash Algo-
rithm). We can see how the level-1 (more generic) set of instruc-
tion still gives us a significant benefit (1.4x) for SHA, while the
second (more specific) extension is not applicable to SHA. Note
that since the level-2 set is a superset of level-1 we could still use
it (with some effort) in the SHA case, achieving the performance
represented by the numbers in parentheses. However, the level-2
extensions use a larger number of machine resources and while
they are very effective for MD5, they are actually harmful for
SHA performance.

In this example, if for any reason we were forced to switch to
SHA, we would be much better off with the more generic (level-
1) extensions. In practice, there are many reasons why this change
may be unpredictable and occur late in the development process,
for example if it turns out that the security of MD5 is not as we

 MD5 SHA

 Cycles Ops ILP

Speedup
vs.

software Cycles Ops ILP

Speedup
vs.

software

Software 445 640 1.44 1.00 384 1436 3.74 1.00
ASM level 1 262 350 1.34 1.70 259 784 3.03 1.48
ASM level 2 100 154 1.54 4.45 N/A (444) N/A (784) N/A (1.76) N/A (0.86)

Table 3 Values are for a complete round of MD5 over 512 bits of input on a 1-cluster Lx.
The table includes data for the SHA algorithm (similar to MD5), using the same set of custom instructions

designed for MD5. Values in parentheses use level-2 instructions to implement level-1 functionality.

Alan Berenbaum
212

expected when we started. To draw a parallel, a similar set of
considerations is what caused MD4 (the MD5 predecessor) to be
abandoned and replaced by MD5.

On the other hand, if MD5 is "the" standard, more aggressive
customization brings major benefits. However, it is important to
observe that for "standard" algorithms, the ASIC approach is in-
deed real competition to software-based technology. If the appli-
cation is really fixed, it is certainly more cost-effective (and usu-
ally faster) to freeze the functionality in a piece of hardware. This
further narrows the range of applicability for aggressive customi-
zation.

6. CONCLUSIONS
In this paper we presented the key features of the Lx technology
platform. The lessons we learned from the design can be summa-
rized as follows.

1. Domain-level specialization of embedded VLIW architec-
tures is very effective, as the benchmarks that we presented
indicate. The compiler technology is up to speed, and we
have shown that cost/performance numbers are compelling.
We have also demonstrated that the code size growth of
VLIW architectures can be kept under control with careful
design considerations.

2. Enabling scalability and customizability in a technology
platform, requires many constraints in various aspects. For
example, the Lx core ISA, run-time architecture (ABI), mi-
croarchitecture organization and pipeline have to be rigidly
controlled. Lx is a good example of a design that takes these
tradeoffs into account.

3. Scalability by increasing ILP resources is somewhat, but not
uniformly, effective across all applications in a domain and
requires some careful cost/performance analysis. The sim-
plicity of a VLIW architecture makes scalability possible by
increasing clock speed. This scales much more uniformly, al-
though it impacts the power budget, which is usually limited
in embedded domains. On pure general-purpose code we
show that we can do as well as other competitive platforms at
similar cost, but scalability does not apply (i.e. their ILP does
not scale).

4. Aggressive customization works in limited cases, but it is
dangerous to push because it is too application and algo-
rithm-dependent, people want to be able to change the soft-
ware at the last minute (for time-to-market), and it compro-
mises concurrent hardware/software engineering. Despite
automation, the cost of designing a high-performance VLIW
core is still very high today and tools are not quite up to
speed in a real-world production environment. Finally, issues
like verification in the presence of user-driven customization
are far from being solved and clearly point to research areas
that are worth pursuing in the near future.

REFERENCES
[1] Colwell, R., O’Donnell, J., Papworth, D., and Rodman, P.

"Instruction Storage Method with a Compressed Format us-
ing a Mask Word", U.S. Patent 5057837, Oct. 1991.

[2] Colwell, R. P., Nix, R. P., O'Donnell, J. J., Papworth, D. B.,
and Rodman, P. K. A VLIW Architecture for a Trace
Scheduling Compiler. In Proceedings of the Second
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
pages 180-192. ACM. 1987.

[3] Faraboschi, P., Fisher, J. and Desoli, G Clustered Instruc-
tion-Level Parallel Processors. Hewlett-Packard Technical
Report. HPL-98-204, 1998.

[4] Fisher, J., Faraboschi, P., and Desoli, G. "Custom-Fit Proc-
essors: Letting Applications Define Architectures". In Proc.
30th Annual International Symposium on Microarchitecture
(MICRO30), Paris, France, December 1996.

[5] Fisher, J. "Trace Scheduling: A Technique for Global
Microcode Compaction". IEEE Trans. on Computers, C-
30(7):478-490. 1981.

[6] IBM Corp. "CodePack Compression for PowerPC".
Available as: http://www.chips.ibm.com/products/powerpc/
cores/cdpak.html

[7] Lowney, P. G. et al. (1993). "The Multiflow Trace
Scheduling Compiler". The Journal of Supercomputing,
7(1/2):51-142.

[8] Raik-Allen G. "ARC Cores rides platform divergence
trend". Red Herring, June 1999. Available as http://www.
redherring.com/insider/1999/0604/vcarccores.html

[9] Rau B., Yen D., Yen W., and Towle R., "The Cydra 5 De-
partmental Supercomputer: Design Philosophies, Decisions,
and Trade-offs," IEEE Computer, January 1989, pp. 12-35.

[10] Schneier B. "Applied Cryptography (Second Edition). Pro-
tocols, Algorithms and Source Code in C". John Wiley and
Sons. 1996.

[11] Sharangpani H. "Intel Itanium Processor Microarchitec-
ture Overview". Microprocessor Forum. 1999. Available as:
http://developer.intel.com/design/ia-64/architecture.htm

[12] Slavenburg G, Rathnam S., Dijkstra H, "The TriMedia TM-
1 PCI VLIW Media Processor", Hot Chips 8, August 1996.

[13] StarCore Alliance (Motorola Semiconductors and Lucent
Technologies). Leadership in DSP Technology for Com-
munications Applications. Available as: http://www.
starcore-dsp.com/files/SC140pres.pdf

[14] Tensilica Inc., "Application Specific Microprocessor Solu-
tions (Data Sheet for Xtensa V1)", 1998. Available as:
http://www.tensilica.com/datasheet.pdf

[15] Texas Instruments Inc. "TMS320C6000: a High Perform-
ance DSP Platform". Available as: http://www.ti.com/
sc/docs/products/dsp/c6000/index.htm

[16] Wolfe, A. and Chanin, A., "Executing Compressed Pro-
grams on An Embedded RISC Architecture", In
Proceedings of the 25th Annual International Symposium
on Microarchitecture, pages 81-91, Portland, Oregon

Alan Berenbaum
213

