
 

Lx: A Technology Platform for Customizable  
VLIW Embedded Processing 
Paolo Faraboschi, Geoffrey Brown, Joseph A. Fisher, 

Giuseppe Desoli, Fred (Mark Owen) Homewood* 

 

Hewlett-Packard Laboratories (Cambridge, MA) 
*STMicroelectronics (Cambridge, MA) 

{frb,gbrown,jfisher,desoli}@hpl.hp.com, fred@bristol.st.com 
 

ABSTRACT 
Lx is a scalable and customizable VLIW processor technology 
platform designed by Hewlett-Packard and STMicroelectronics 
that allows variations in instruction issue width, the number and 
capabilities of structures and the processor instruction set. For Lx 
we developed the architecture and software from the beginning to 
support both scalability (variable numbers of identical processing 
resources) and customizability (special purpose resources).  

In this paper we consider the following issues. When is customi-
zation or scaling beneficial? How can one determine the right 
degree of customization or scaling for a particular application 
domain? What architectural compromises were made in the Lx 
project to contain the complexity inherent in a customizable and 
scalable processor family? 

The experiments described in the paper show that specialization 
for an application domain is effective, yielding large gains in 
price/performance ratio. We also show how scaling machine re-
sources scales performance, although not uniformly across all 
applications. Finally we show that customization on an applica-
tion-by-application basis is today still very dangerous and much 
remains to be done for it to become a viable solution. 

1. INTRODUCTION 
Dataquest estimates that the embedded processor market should 
grow from $7.5 billion in 1998 to $26 billion by 2002. This mar-
ket space is seeing an increasing number of competitors ranging 
from companies implementing variations of traditional embedded 
processor architectures (such as ARM and MIPS), to more aggres-
sive startups introducing their own new ISA (such as ARC Cores 
and Tensilica). 

At the same time, the complexity of embedded applications is 
escalating considerably, and it is not uncommon to find many 
hundred of thousands of lines of high-level language code in em-
bedded products such as printers or mobile phones. Time-to-
market is also becoming a primary concern, as the lifetime of 
embedded products constantly shrinks to keep pace with evolving 

standards, new user needs and performance requirements. 

The combination of application complexity and time-to-market 
considerations is what makes a software-based approach to em-
bedded systems particularly appealing today. Ideally, embedded 
system designers would like to have a single processing platform 
where high performance digital signal processing capability (for 
real-time signal processing), is coupled to microprocessor func-
tionality (for general purpose processing tasks). This trend is what 
is causing the traditionally separated DSP and micro-controller 
domains to converge in an increasingly large number of products 
that are starting to be commercially offered. 

Our approach is based on two concepts: 

•= A new clustered VLIW core architecture and microarchitec-
ture specialized to an application domain that ensures scal-
ability and customizability 

•= A toolchain based on aggressive ILP compiler technology 
that gives the user a uniform view of the platform at the pro-
gramming language level. 

The technology we are developing is called "Lx", we are doing it 
in a production environment, most pieces have already been de-
veloped, and products are expected in the near future. 

The reasons for developing a new ISA come from the observation 
that existing architectures are not scalable in width and customiza-
tion areas are limited. Existing ISAs are either too specialized 
(most DSP processors) or too general (general-purpose platforms 
like ARM and MIPS). 

We believe that the combination of: clustering, VLIW with pre-
cise interrupts, a slim and scalable microarchitecture, and interest-
ing memory hierarchies constitute a novel technology platform. 

1.1 Convergence of Embedded Technologies 
DSP and micro-controllers are converging in the high-end mar-
kets. This new batch of processors include a combination of fea-
tures from the DSP domain, such as low-overhead looping, rich 
set of addressing modes, special purpose arithmetic operations 
and formats, etc. At the same time, they usually include a more 
RISC-like set of instructions (sometimes in a different mode), to 
ease high-level (C or C++) code development, to support system 
code and multitasking OS's and in general to be able to implement 
much larger applications in the same platform. In the following 
we discuss the subset of announced DSPs and configurable RISC 
cores that have the most commonality with the Lx architecture. 

Over the past several years a number of semiconductor manufac-
turers have announced high performance embedded VLIW cores 
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and processors. These include the Motorola/Lucent StarCore, the 
TI C6xxx family, and the Philips Trimedia. Of these, all but the 
StarCore are currently in production; however, only the TI C6 
family has apparently shipped in large volumes. In addition, 
STMicroelectronics has announced the ST100 DSP, which has a 
“VLIW mode” for key inner loops. 

•= The announced StarCore architecture [13] is a “natural” 
VLIW extension of traditional DSPs – the basic operations 
supported are optimized for DSP applications with the ability 
to issue multiple operations simultaneously. While not as 
register starved as previous DSPs, the available 16 data regis-
ters are likely to make the compiler’s task difficult.  

•= The TI C6 family [15] is significantly closer than the Star-
Core to a general-purpose processor. C6 presents some diffi-
culties for real time applications because, for example, soft-
ware pipelining using modulo scheduling is evidently not in-
terruptible and interruptible code requires hazard-free regis-
ter usage. This may cause significant register pressure for the 
compiler. In contrast, the Lx was designed to be interruptible, 
and all code generated by the compiler is hazard free. 

•= The Phillips Trimedia processors [12] are the most ambitious 
of the currently available embedded VLIW processors. Its in-
struction set is quite rich, includes floating point and multi-
media instructions and full predication. In contrast, Lx has a 
modest set of basic instructions that allow future family 
members to be customized for specific domains. 

In addition to embedded VLIW cores, several configurable proc-
essors were recently announced. The most visible of these are the 
Tensilica Xtensa architecture and ARC Cores. The Tensilica proc-
essor [14] takes an a-la-carte approach with some support for 
custom instructions. The designer has the ability to choose from 
optional functional units, memory interfaces, and peripherals. In 
addition, the toolchain supports user-defined instructions that are 
defined using a simple RTL. The basic processor is a simple sin-
gle issue RISC core. The support for user defined instructions is 
consistent with that provided by the Lx toolchain. Thus the Ten-
silica processor is customizable, but not scalable. The ARC core 
[8] is a much simpler processor than the Xtensa providing a mod-
est set of synthesis time options to allow some choice among a set 
of predefined instructions and peripherals. 

1.2 Competing Technologies 
It is important to compare customizable VLIW architectures to 
other competing high-performance computing technologies in the 
embedded space. Table 1 summarizes the situation and shows 
how the advantages of high performance, ease of use and flexibil-

ity uniquely position this technology. This is particularly true in a 
world where time-to-market is rapidly becoming the dominant 
factor in the success of a new technology. 

2. SCALABILITY AND CUSTOMIZABILITY 
For an embedded architecture, we define scalability as the ability 
to vary the number of existing resources, and customizability as 
the ability to add new resources. In the Lx family, scalability in-
cludes varying the instruction issue width and the mix of opera-
tions that may be issued simultaneously. Scaling in this sense does 
not change the set of operations in the ISA; however, for statically 
scheduled architectures, scaling implies changing the set of legal 
programs. 

The Lx platform was developed in the belief that large perform-
ance advantages are available if we can change both the quantity 
of computation available by scaling, and the actual computations 
done efficiently, by customizing. 

In the rest of the paper we will show that, although it is techni-
cally possible to customize on an application-by-application basis, 
today it makes more sense to customize on an application-area (or 
domain) basis. For example, we can picture one architecture fam-
ily customized for digital consumer (with implementation scaled 
within that architecture family), another for printing applications, 
and so on. 

It is hard to quantify the advantages of scaling and customizing, as 
other works [4] have shown. Sometimes, a large factor speedup 
can be obtained via a very special, bit-twiddling operation (MMX-
style extension fall into this category). Sometimes doubling the 
functional units doubles performance, sometimes it adds no per-
formance at all. Sometimes customization can have dramatic ef-
fects on inner loops, but little effect on the whole application 
(Amdahl’s Law). The remainder of the paper addresses some of 
these issues and highlights the customization directions that we 
believe are more promising in the high-performance embedded 
domain. 

3. THE Lx CORE ARCHITECTURE 
Lx is a family of embedded cores designed by Hewlett-Packard 
Laboratories and STMicroelectronics. It is a scalable platform 
where developers can pick the family member based on 
cost/performance considerations for their application. For the first 
generation of the family, scalability is planned to span from 1 to 4 
clusters (i.e., 4 to 16 issued instructions per cycle). In addition to 
simple scalability, Lx was designed to be customizable to specific 
applications or application areas through the addition of applica-
tion-specific operations. 

 

Technology 
Performance 

attainable 
Time until 
running 

Time to high 
performance 

Time to change 
code functionality 

ASIC Very High Very Long Very Long Impossible: redesign 

DSP / ASIP High Long Long Long 

Custom VLIW High Short Short Short 

RISC Low-Medium Very Short Not Attainable Very Short 
Table 1 High Performance Computing Technologies for Embedded Systems 

Speed 

Flexibility

Alan Berenbaum
204



 

Lx is a statically scheduled VLIW architecture, thus providing the 
most computation at a given silicon area. The VLIW approach 
also yields the system advantages of a RISC instruction set, such 
as fast interrupts, normal debugging, and so on. Despite a VLIW 
instruction set, the operation encoding enables Lx code size to be 
competitive with other 32-bit embedded platforms. 

Lx comes with a commercial software toolchain, where no visible 
changes are exposed to the programmer when the core is scaled 
and customized. The toolchain includes sophisticated ILP com-
piler technology (derived from the Multiflow compiler [7]) cou-
pled with widely accepted GNU tools and libraries. The Multiflow 
compiler includes most traditional high-level optimizations algo-
rithms and aggressive code motion technology based on Trace 
Scheduling [5]. It is considered one of the most optimized ILP 
compilers commercially available and is still used broadly in the 
computer industry. 

3.1 Multi-cluster Organization 
Lx is a Multi-cluster architecture [3], as shown in Figure 1. Lx 
clusters are composed of a mix of Register Banks, Constant Gen-
erators (immediate operands) and Functional Units. Different 
clusters may have different unit/register mixes, but a single PC 
and a unified I-cache control them all, so that they run in lockstep. 
Likewise, the same execution pipeline drives all clusters. Inter-
cluster communication, achieved by explicit register-to-register 
move, is compiler-controlled and invisible to the programmer. 

At the multi-cluster level, the architecture specifies: 

•= The instruction delivery mechanism, to get instructions from 
the cache to the clusters' data-path. The assumption is that all 
clusters feed synchronously from the same logical instruction 
cache, which will be implemented differently depending on 
technology and cost considerations. Likewise, the pipeline 
may incur additional decoding cycles beyond certain cluster-
ing limits. 

•= The inter-cluster communication mechanism, to transfer data 
among clusters. Lx defines a scalable and flexible communi-
cation mechanism based on a simple pair of send-receive in-
struction primitives that move values among registers. The 
send-receive method is scalable, as it does not depend on the 
number of clusters; and is flexible, as it leaves room for mul-
tiple microarchitecture implementations (bus-based, with 
private cluster wires, etc.). 

•= The data-cache organization, to establish main memory co-
herency in the presence of multiple memory accesses. We 
investigated two models: a MESI-like synchronization 
mechanism for multiple independent caches, and a pseudo-
multi-ported cache implemented with multiple interleaved 
banks. A discussion of the tradeoffs of these and other 
mechanisms is beyond the scope of the paper. 

3.2 The Organization of a Single-cluster 
An Lx cluster (Figure 2) is a 4-issue VLIW core composed of four 
32-bit integer ALUs, two 16x32 multipliers, one Load/Store Unit 
and one Branch Unit. The cluster also includes 64 32-bit General-
purpose registers and 8 1-bit branch registers (used to store branch 
condition, predicates and carries). Instructions allow two long 
immediates per cycle. 

The ISA is a very simple integer RISC instruction set with mini-
mal “predication” support through select instructions. The mem-
ory repertoire includes base+offset addressing, allows speculative 
execution (dismissible loads, handled by the protection unit) and 
software prefetching. 

Lx includes a two-level code compression scheme. The instruc-
tion cache is compressed so that unused operation slots do not 
consume space in the instruction encoding. In addition, we devel-
oped an aggressive compression scheme where binaries are com-
pressed with a Huffman-like technique, and blocks of instructions 
are decompressed on I-cache refill (discussed in section 3.4). 
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Figure 1 The structure of a multi-cluster Lx architecture 
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The control unit supports a "two-step" branch architecture, where 
compare and branch operations are de-coupled and the compare-
branch latency is exposed to the compiler. The ISA includes a 
complete set of compare and logic operations and a separate set of 
8 1-bit branch registers for conditions that allow us to prepare 
multiple branches (up to eight). There are no architecturally visi-
ble delay slots after a taken branch so that - for example - dy-
namic branch prediction could be added (if needed) in follow-up 
microarchitecture implementations. 

3.3 Pipeline, Memory, Interrupts 
Lx has a classical six-stage pipeline: F D R E1 E2 W. It is a 
simple in-order pipeline: the exception point is at E2 and all 
commit points are delayed until after E2 so that all units commit 
their results to the register file in order. This allows us to have a 
very clean exception model, despite the complexity of a wide-
issue machine. The data-path is fully bypassed from E1 and E2 
and completely hidden at the architecture level (i.e. the results of 
single cycle operations are available to operations in the following 
pipeline stage). 

The data cache is a 32KB, 4-way associative, write-back array 
with load/store allocation. It includes an 8-entry software con-
trolled Prefetch Buffer that acts as a small level-2 fully associative 
cache where requests currently in cache or in prefetch buffer are 
dropped and data is copied from the buffer to the cache during a 
subsequent miss. 

The memory controller includes a simple Protection Unit that 
supports segment-based protection regions, speculative loads 
(where traps are dismissed) and is easily extendable to a full 

MMU for customers that require it.  

The memory model is unified, including internal, external mem-
ory, peripherals and control registers (that are mapped into the 
upper 4K page). The core memory communicates with external 
memory and the peripheral controller using a VSI-like system-on-
chip interface. 

The interrupt controller supports the minimal set of required ex-
ceptions: illegal instruction, access violation and misaligned ac-
cess. For all of these, software recovery is supported (“precise” 
model). Breakpoints are implemented with hardware support. In 
addition to exceptions, the first Lx core supports one hardware 
interrupt source: multiple priorities and interrupts sources are 
considered part of the customization layer. In this way, we can 
achieve a rather fast exception/interrupt response time, which is 
approximately 6 cycles to get to a cached exception handler. 

3.4 Code Density 
Many critics of VLIW technology cite code density as a primary 
disadvantage, which is indeed true for naïve VLIW implementa-
tions. However, if we try to break down the causes of potential 
increases in code size, we can see that they fall into three main 
categories: 

1. Sparse ILP encoding. A naïve VLIW implementation would 
keep a one-to-one correspondence between functional units 
and instruction slots (also called syllables). This introduces 
"horizontal" no-ops for unused units, and is probably the 
largest source of inefficiency: it impacts both the instruction 
cache and main memory. However, all VLIW implementa-
tions—from the early Multiflow Trace [1] and Cydrome [9] 
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Figure 2 Structure of a single-cluster Lx. The shaded area in the middle contains the "proper" cluster resources. The 
other components (Caches, Instruction/Data Protection Units, Control Registers, Exception Control) are shared in a 

multi-cluster configuration. Branch Units are restricted only to cluster 0. 
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to the latest TI C6xxx [15] and IA-64 [11]—provide some 
way to remove this inefficiency by means of a careful encod-
ing that avoids explicit no-ops when units are unused. Tech-
niques range from using template bits that encode the sylla-
bles in a bundle (Multiflow, IA-64), to run-length coding of 
no-ops (Cydrome), and so on. In Lx we achieve the same re-
sults simply by using an "end-of-bundle" bit. 

2. RISC encoding and exposed latencies. The encoding of a 
general-purpose 32-bit RISC processor is intrinsically sparser 
than traditional CISC or DSP processors. This is amplified in 
non-scoreboarded VLIW architectures where latencies are 
exposed at the ISA level. However, several techniques exist 
to mitigate this phenomenon. Some embedded architectures 
adopt simplified forms of the instruction set in size-critical 
areas (for example: MIPS-16 and ARM-Thumb), others use a 
more systematic compression system to decompress lines on 
instruction cache misses (for example: the CodePack system 
for IBM PowerPC [6]). For Lx, we adopt a philosophy simi-
lar to that of the IBM CodePack system, where the code is 
compressed by software (with a Huffman-like algorithm after 
linking) and decompressed on-demand on an instruction 
cache miss by a simple hardware block connected to the ex-
ternal memory bus. 

3. Compiler-driven code expansion. This is by far the hardest 
factor to quantify. Many techniques that expose ILP tend to 
grow code size, regardless of the architectural style. These 
include: loop unrolling; region-scheduling compensation 
code and global code motion; procedure inlining, cloning and 
specialization; and so on. However, many of these techniques 
need only be applied aggressively to the computational ker-
nels of the application and—when needed—the user can 
guide the compiler heuristics for space/time optimizations. 

Figure 3 shows code density figures for Lx in comparison to an-
other 32-bit embedded platform (a StrongARM SA-110) at com-

parable levels of compiler optimizations (benchmarks are de-
scribed in the following sections). As we can see, Lx code size is 
very competitive even in the presence of high levels of optimiza-
tion. If we exclude bmark, where the code is heavily unrolled and 
the expansion is slightly above three, the rest of the benchmarks 
score between 25% and 100% code increase, with an average of 
48%. If we apply compression, the overhead goes down signifi-
cantly, to an average of 14.9%. If we compile for minimal code 
size (still at a reasonable optimization level), the average increase 
is 26%. Somewhat surprisingly, this turns into a code size de-
crease of -14% when we apply cache-line compression.  

The memory savings for the code compression algorithm averages 
32% of code reduction for optimized code, indicating that we can 
exploit a fair amount of redundancy in the RISC/VLIW encoding. 
These values are consistent with IBM CodePack results and aca-
demic studies 0, and we believe that this is probably the most 
effective and least invasive way to attack the code size problem, 
when necessary. 

Note that compression would benefit StrongARM as well. Such a 
capability is not currently offered, since StrongARM code size is 
considered respectable for embedded applications. This means 
that VLIW code size can be brought down to the level of more 
traditional RISC processors, perceived to be adequate in this re-
spect. 

4. SPECIALIZATION AND SCALABILITY 
To measure Lx performance on its target application domain, we 
collected a set of representative programs that include audio ma-
nipulation, printing pipelines, color processing, cryptography, 
video and still image compression and decompression. The do-
main benchmarks were optimized at the C source level (no as-
sembler) by adding compiler pragmas (unrolling and aliasing 
directives) and in some cases restructuring the loops to expose 
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Figure 3 Lx code growth compared to StrongARM (SA-110), expressed as % code size increase 
(decrease when negative) vs. the SA-110. Lx numbers include, uncompressed code compiled for 

performance (-O3), minimum size (-mc) and then the corresponding compressed sizes. 
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more ILP. Our source-level optimizations improved performance 
also for our reference platforms, although the reference compiler 
(gcc) did not take advantage of the pragmas. 

To evaluate how Lx behaves on programs outside the target do-
main, we also added a set of unmodified reference benchmarks 
from the SPECINT'95 suite (gcc, go, li, m88ksim1) and some other 
well-known public code (ghostscript and dhrystone), as well as a 
rendering program in C++ not optimized at the source level. Table 
2 describes the programs in our benchmark set. 

To evaluate the benefits of the domain-specific specializations in 
Lx, we show performance measurements relative to a baseline 
configuration. Our baseline numbers are for a Pentium-II at 333 
MHz (measured on an HP Kayak XU PC workstation), compiled 
with gcc (v. 2.95, all optimizations), using cygwin libraries. Use 
of MMX instructions was ruled out of these experiments because 
they are non-portable, and their use is much more labor-intensive 
than the code changes we permitted for Lx. 

In all graphs, we show measurements for a more typical high-
performance 32-bit embedded processor, the StrongArm SA-110 
at 275MHz, measured on a Corel NetWinder machine, compiled 
with gcc (version 2.8.1, all optimizations), using linux libraries. 

Lx performance is measured on a cycle-accurate simulator 
(validated against a Verilog model) that includes cache, bus and 
external memory measurements. The Lx C compiler is a 
descendant of the Multiflow compiler and uses the GNU newlib 
libraries (the C++ benchmark was translated by cfront). The Lx 
memory system is a typical embedded system configuration: a 
100MHz unified code/data memory bus, with 6-1-1-1[-3] DRAM 
bursts. 

As we can see from the following graphs, Lx is extremely fast on 
compute-intensive, loop-dominated or hand-tuned code, such as 
MPEG decoding, JPEG encoding/decoding, DSP algorithms, 
cryptography, and so on. On these applications, Lx is more than 
2x faster than a PII-333 at a tiny fraction of the area, and factors 
(4x-8x) faster than a SA100-275 at a comparable area. On the 
other hand, Lx performance is “average” on control-dominated, 

                                                                 
1 From the SPECINT'95 suite we left out perl and vortex since 
they are not relevant to the embedded domain; compress and ijpeg 
since the compression decompression domain is already well-
represented by the other benchmarks. 

non-optimized code, or code with a strong unpredictable compo-
nent, such as interpreters (gs), compilers (gcc), simulators 
(m88ksim), rule-based “AI” (go), C++ (boise), and so on. 

In the following two sections, we are interested in evaluating how 
performance scales when we apply variations along two different 
directions: clock frequency and issue width. 

4.1 Scaling Clock Frequency 
As a rule of thumb, power consumption in a microprocessor 
grows linearly with frequency and quadratically with voltage. 
Usually, lowering frequency allows operating at smaller voltages, 
and this has a cubic effect on power savings. Therefore, in em-
bedded domains with a limited energy budget, scaling clock fre-
quency may not always be the preferred solution and it is impor-
tant to evaluate the performance benefits. Figure 4 shows per-
formance numbers for Lx at 3 different clock frequencies (200, 
300 and 400 MHz) for the benchmark set. We can see that for the 
applications in the target domain, performance scales almost line-
arly with clock frequency. This remains true also for wider issues 
machines (we show a 2-cluster 8-issue and a 4-cluster 16-issue 
Lx). Note that the external memory hierarchy was fixed for all the 
experiments, so that the overall system cost is only marginally 
affected by the change in clock speed. 

If we consider the collection of general-purpose applications, we 
see that there is not much we can do by increasing processor 
speed. We can observe that Lx performance is competitive and 
often better than an embedded processor at a similar cost range. 
Finally, Lx still lies about 30% below a workstation-class proces-
sor (like the Pentium-II) that can afford to adopt more expensive 
features like larger caches, multiple level memory hierarchies and 
aggressive dynamic branch prediction. 

For our experiments we chose a frequency range that is realistic 
for typical 0.25µ Lx implementations, between 200 and 400 MHz. 
At the same time, we kept the external memory interface constant 
assuming a 100MHz unified external memory bus. This means 
that, for example, a data cache miss (32 bytes/line) takes 25 cycles 
on a 200 MHz Lx, 36 cycles on a 300 MHz Lx and 47 cycles on a 
400 MHz Lx. Similar considerations apply for the instruction 
cache misses. Level-2 caches are rarely used in embedded systems 
due to their impact on overall system cost and we chose not to 
model them. 

 

Name Description Name Description 

bmark Printing imaging pipeline (optimized) boise Printing rendering pipeline (C++) 

copymark Color copier pipeline (optimized) dhry Dhrystone 1.1 and 2.1 benchmark  

crypto Cryptography code (optimized) gcc SPECINT'95 GNU cc compiler  

csc Color-space conversion (optimized) go SPECINT'95 game of GO  

mpeg2 MPEG-2 decoder (optimized) li SPECINT'95 LISP interpreter  

tjpeg JPEG-like coder/decoder (optimized) m88ksim SPECINT'95 M88000 simulator  

adpcm ADPCM audio coder/decoder gs Ghostscript PostScript interpreter  

Application Domain Reference Benchmarks 

Table 2 The benchmark set. 
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4.2 Scaling Issue Width 
In  Figure 5 we present the same data of Figure 4 grouped by issue 
width. While increasing frequency and voltage has a cubic effect 
on power, power grows at most linearly with area increases. Func-
tional units and registers represent a relatively small fraction of 
the overall processor area, so the effect on power consumption is 
marginal. Changing the issue width mostly affects processor cost, 
since the size of the data-path grows linearly with the number of 
clusters, and we assume that the bandwidth to the data cache also 
increases with the number of clusters. For these experiments we 

consider a pseudo-multi-ported data cache implemented through 
multiple interleaved banks, with a stalling mechanisms that can 
resolve bank conflicts in one cycle. 

Here, we can see how scaling the issue width provides some ad-
vantages, but much less uniformly across the domain. In the target 
domain, doubling from 4-issue to 8-issue gives no more than a 
25% improvement, and sometimes as little as 5-10%. For general-
purpose code, wider issue above 4 is ineffective and sometimes 
detrimental (due to inter-cluster communication overhead, in-
creased code size and data cache conflict stalls). 

A detailed analysis of ILP saturation in this experiment is beyond 
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Figure 4 Lx performance chart: scaling clock frequency (200-300-400 MHz).  
Performance is compared to a Pentium-II at 333 MHz, which is 1.00 on the vertical axis.  

The SA_275 bars represent a 275MHz StrongARM. 
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the scope of this paper and the particular values clearly depend on 
the compiler, the coding style and the specific applications. How-
ever, what emerges is that some amount of restructuring is cer-
tainly necessary for applications to benefit from aggressive ILP. If 
we consider the benchmarks that perform best (crypto, csc, bmark, 
mpeg2), they were all optimized for ILP through compiler annota-
tions and algorithm modifications 

4.3 Putting it all together 
From our analysis, we can draw the following conclusions: 

•= Specializing for an application domain pays off. In the Lx 
case (integer imaging and media-manipulation algorithms) 

we can get 4x-8x performance gains starting from C-level 
code with respect to a more general-purpose architecture at 
similar cost and technology. 

•= Scaling speed vs. power pays off fairly uniformly across the 
application domain and gains are almost linear in the consid-
ered frequency range. 

•= Scaling issue width vs. cost sometimes pays off, but yield 
smaller gains and not uniformly across all applications. 

•= Outside the application domain that we specialize for, we can 
still get performance that is comparable with a general-
purpose architecture. This is very important in the real world, 
since it de-risks the introduction of a new technology by not 
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 Figure 5 Lx performance chart: scaling cluster width 1 to 4 (issues 4-wide, 8-wide and 16-wide) 
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tying its performance too closely to a narrow set of applica-
tions and attacking the Amdhal's Law problem. However, 
performance on general-purpose applications scales poorly 
with respect to issue width and clock speed, which is not sur-
prising assuming a fixed memory hierarchy beyond the proc-
essor. 

5. APPLICATION-SPECIFIC CUSTOMIZATION 
If we look at the space between application domains and imple-
mentations, it is possible to conceive of customization at any level 
in the hierarchy (Figure 6). From more to less general levels of 
commitment, we can distinguish: 

•= Domain-specific customization. This is where a platform like 
Lx achieves the largest benefits, as we have seen in the pre-
vious sections. At the domain level, we can influence choices 
like the core ISA, the pipeline organization, the memory hi-
erarchy, and the mix of resources. For example, the choice 
between an integer and floating-point data-path sits at this 
level. These choices impact the target market of the technol-
ogy platform (DSP's, micro-controllers, very-low power, 
etc.) 

•= Application-specific customization. Within a domain, we can 
distinguish specific applications that are tied to individual 
products. Here it is conceivable to think about sizing and 
scaling the basic resources according to the overall character-
istics of the application. For example, if our target product is 
a digital camera, we will have to stress low-power (at the ex-
pense of clock cycle speed), but at the same time we know 
that the application will likely contain a lot of potential ILP. 

•= Algorithm-specific customization. Even when the application 
is fixed, there is usually a wide choice of algorithms that 

yield similar results. The choice of the algorithm is usually 
driven by output quality, desired performance, implementa-
tion costs and other less quantifiable factors (like intellectual 
property issues). At the algorithm level, we can think of add-
ing specific customization in the form of special computation 
instructions, storage organization (special memories) or other 
ad-hoc structures. 

•= Implementation-specific customization. For a given algorithm 
within an application, it is fairly common to have several 
software implementations that produce the same bit-by-bit 
result. For example, a simple 2D image filter can be imple-
mented as a 2D convolution in the space domain or as a mul-
tiplication in the frequency domain; this is where specialized 
customization has larger benefits and where we can think of 
automating the process (as described for example in [4]). Un-
fortunately, this is also where such customization is riskiest, 
as we show in the following sections. 

The two major trends that dominate the customization space are 
effectiveness and flexibility. 

•= Effectiveness. Obviously, the more we freeze our applica-
tion/algorithm/implementation space, the higher the advan-
tages of customization will be. At the same time, this goes 
against time-to-market. Probably the primary reason why de-
velopers prefer a software approach to a hardware design is 
the fact that with software they are free to change the appli-
cation at the very last minute. 

A pure software approach also enables concurrent engineer-
ing between hardware and firmware design. By adding cus-
tomization, the hardware (i.e., processor) design time gets in 
the critical path of the software design, that has to be com-
pleted by the time customization starts. Note that we can di-
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Figure 6 Example of different customization levels in the image-processing domain. One of the risks of over-
customization comes from the difficulty of distinguishing between algorithms, implementations and implementation 

alternatives. This still requires the human intervention of an application expert. 
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minish this risk by reducing the design (and verification) 
time of a new custom processor, which is where automation 
helps. Finally, it is worth mentioning that rarely can the spe-
cialization for one specific implementation be leveraged into 
another one, and this also increases the risk of customization. 

•= Flexibility. In order to maintain flexibility we can be more 
general in our customization, at the expense of peak per-
formance for some specific algorithm and implementation. 
At the extreme, we can design a completely general-purpose 
processor. We also note that the more we raise the generality 
of our customizations, the harder it is to design a process that 
can do that automatically, although we have a fair chance 
that any reasonable algorithm within the domain will benefit 
from the added features. A carefully designed generic MMX-
style (micro-SIMD) instruction set extension is a good ex-
ample of this. 

5.1 A Customization Case Study: MD5 Encryption 
To illustrate the concepts expressed in the previous section, we 
use a common encryption algorithm called MD5 (Message Di-
gest). MD5 is a one-way hash function that produces a 128-bit 
hash of an input message and is commonly used in secure transac-
tions and in the generation of signatures [10]. MD5 is interesting 
in our context since it represents a computationally intensive real 
application that is at the same time a good candidate for heavy 
customization. 

The basic computation of MD5 is based on four elementary opera-
tors (we use C notation): 

F(x,y,z) = (x & y) | (~x & z)
G(x,y,z) = (x & z) | (y & ~z)
H(x,y,z) = x ^ y ^ z
I(x,y,z) = y ^ (x | ~z)

 
These operators are used in a loop kernel that iteratively applies 
the following four steps: 

FF(a,b,c,d,M,s) => a = b + ((a + F(b,c,d) + M) << s)
GG(a,b,c,d,M,s) => a = b + ((a + G(b,c,d) + M) << s)
HH(a,b,c,d,M,s) => a = b + ((a + H(b,c,d) + M) << s)
II(a,b,c,d,M,s) => a = b + ((a + I(b,c,d) + M) << s)

 
We can think of applying customization at the different levels 
described in the previous sections.  

In particular, we can add a fairly generic set of encryption-specific 

operations that we believe will also benefit other similar algo-
rithms. Within the Lx architecture constraints we can easily add 
arithmetic operations that use more than two operands by bun-
dling together multiple issue slots within a wide instruction word. 
In this case, a reasonable set of four-operand operations (of which 
we can issue two per cycle on a 1-cluster Lx) is the following: 

ASM_1_F(a,x,y,z) = a + (x & y) | (~x & z)
ASM_1_G(a,x,y,z) = a + (x & z) | (y & ~z)
ASM_1_H(a,x,y,z) = a + x ^ y ^ z
ASM_1_I(a,x,y,z) = a + y ^ (x | ~z)

 
If MD5 is our one and only choice we can push customization one 
level further and actually implement the second set of more com-
plex operations using six operands and three instruction slots (one 
per cycle, leaving the fourth slot free on a 1-cluster Lx): 

ASM_2_FF(a,b,c,d,M,s) = b + ((a + F(b,c,d) + M) << s)
ASM_2_GG(a,b,c,d,M,s) = b + ((a + G(b,c,d) + M) << s)
ASM_2_HH(a,b,c,d,M,s) = b + ((a + H(b,c,d) + M) << s)
ASM_2_II(a,b,c,d,M,s) = b + ((a + I(b,c,d) + M) << s)

 
Table 3 shows the performance implications of these customiza-
tions (assuming a single-cycle implementation). In the left part of 
the table, we present performance numbers for MD5.  

As we can see, customization is effective in this case: we gain a 
factor of 1.7x with the simple (level 1) customization, and a factor 
of 4.5x with the more complex (level 2) instructions. 

The reason that customization can be dangerous is evident in the 
right half of Table 3, where we show the effect of the newly added 
instructions to another popular algorithm that implements an al-
ternative one-way hashing technique, SHA (Secure Hash Algo-
rithm). We can see how the level-1 (more generic) set of instruc-
tion still gives us a significant benefit (1.4x) for SHA, while the 
second (more specific) extension is not applicable to SHA. Note 
that since the level-2 set is a superset of level-1 we could still use 
it (with some effort) in the SHA case, achieving the performance 
represented by the numbers in parentheses. However, the level-2 
extensions use a larger number of machine resources and while 
they are very effective for MD5, they are actually harmful for 
SHA performance. 

In this example, if for any reason we were forced to switch to 
SHA, we would be much better off with the more generic (level-
1) extensions. In practice, there are many reasons why this change 
may be unpredictable and occur late in the development process, 
for example if it turns out that the security of MD5 is not as we 

 

 MD5 SHA 

 Cycles Ops ILP 

Speedup 
vs.  

software Cycles Ops ILP 

Speedup
vs. 

software 

Software 445 640 1.44 1.00 384 1436 3.74 1.00 
ASM level 1 262 350 1.34 1.70 259 784 3.03 1.48 
ASM level 2 100 154 1.54 4.45 N/A (444)  N/A (784)  N/A (1.76) N/A (0.86)

Table 3 Values are for a complete round of MD5 over 512 bits of input on a 1-cluster Lx.  
The table includes data for the SHA algorithm (similar to MD5), using the same set of custom instructions  

designed for MD5. Values in parentheses use level-2 instructions to implement level-1 functionality. 
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expected when we started. To draw a parallel, a similar set of 
considerations is what caused MD4 (the MD5 predecessor) to be 
abandoned and replaced by MD5. 

On the other hand, if MD5 is "the" standard, more aggressive 
customization brings major benefits. However, it is important to 
observe that for "standard" algorithms, the ASIC approach is in-
deed real competition to software-based technology. If the appli-
cation is really fixed, it is certainly more cost-effective (and usu-
ally faster) to freeze the functionality in a piece of hardware. This 
further narrows the range of applicability for aggressive customi-
zation. 

6. CONCLUSIONS 
In this paper we presented the key features of the Lx technology 
platform. The lessons we learned from the design can be summa-
rized as follows. 

1. Domain-level specialization of embedded VLIW architec-
tures is very effective, as the benchmarks that we presented 
indicate. The compiler technology is up to speed, and we 
have shown that cost/performance numbers are compelling. 
We have also demonstrated that the code size growth of 
VLIW architectures can be kept under control with careful 
design considerations. 

2. Enabling scalability and customizability in a technology 
platform, requires many constraints in various aspects. For 
example, the Lx core ISA, run-time architecture (ABI), mi-
croarchitecture organization and pipeline have to be rigidly 
controlled. Lx is a good example of a design that takes these 
tradeoffs into account. 

3. Scalability by increasing ILP resources is somewhat, but not 
uniformly, effective across all applications in a domain and 
requires some careful cost/performance analysis. The sim-
plicity of a VLIW architecture makes scalability possible by 
increasing clock speed. This scales much more uniformly, al-
though it impacts the power budget, which is usually limited 
in embedded domains. On pure general-purpose code we 
show that we can do as well as other competitive platforms at 
similar cost, but scalability does not apply (i.e. their ILP does 
not scale). 

4. Aggressive customization works in limited cases, but it is 
dangerous to push because it is too application and algo-
rithm-dependent, people want to be able to change the soft-
ware at the last minute (for time-to-market), and it compro-
mises concurrent hardware/software engineering. Despite 
automation, the cost of designing a high-performance VLIW 
core is still very high today and tools are not quite up to 
speed in a real-world production environment. Finally, issues 
like verification in the presence of user-driven customization 
are far from being solved and clearly point to research areas 
that are worth pursuing in the near future. 
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