
Lab 

6 
Writing and Testing Your First 
TIE Instruction 

L E A R N I N G  O B J E C T I V E S :  

 Profiling to find hot spots 

 Developing a TIE instruction based on the Fusion technique 

 Benchmarking the new TIE instruction and comparing performance 

 
 

 Lab Duration: 
45 min 
 

 Customer Training 1 



Lab 6: Writing and Testing Your First TIE Instruction 

Lab Prerequisites: 

 How to import a workspace 

 How to create, run, debug, and profile am Xtensa C/C++ project 

 How to build a processor configuration and use active set 

Lab Requirements: 

If you are completing this lab in the Tensilica training laboratory, your PC is ready for use.  
Otherwise, you may need to ensure your PC is prepared with the necessary licenses.   To 
follow the procedures in this lab, you need the following licenses: 

 ISS 

 TIE compiler 

 Xtensa Xplorer, Processor Developer’s Edition  

Contact your instructor if you have any licensing questions. 

2 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

Lab Flow Diagram 
 

Importing the Lab
Workspace

Understanding the
byteswap.c File

Running and Profiling
the byteswap.c File

Developing a TIE
Instruction

Running and Profiling
with the TIE Instruction

DONE!

Comparing Profile
Results

Performing a Graphical
Comparison (optional)

 
 
 

 Customer Training 3 



Lab 6: Writing and Testing Your First TIE Instruction 

Introduction 
In this lab, you will implement a simple BYTESWAP instruction in TIE. The 
GOLDEN_BYTESWAP() function is written in C and is developed to perform endian 
conversion. This function is often required in systems that interface peripherals of differing 
endian formats. The performance of the byteswap function can be a critical bottleneck in a 
design. 

In this lab, we will optimize the system by replacing the GOLDEN_BYTESWAP() function 
with a single TIE instruction. When replacing a function with a TIE instruction, it is important 
to test the TIE instruction against a reference function. Byteswap.c provides a test bench to 
validate the TIE instruction. The test bench performs 10,000 endian conversions.  It can be 
used for the GOLDEN_BYTESWAP() function and the TIE implementation. The output of 
the GOLDEN_BYTESWAP() function will be used to compare against the TIE instruction.  
This tests functional equivalency between the TIE instruction and the C-implementation.  

To test your understanding, answer the questions throughout this lab. You can find the 
answers in the Answers and Solutions section. 

Task 1. 

STEP 1.1: 

Importing the Lab Workspace 

Start Xtensa Xplorer. 

1. Click the shortcut to Basic Training Xtensa LX on the desktop. 

2. Open the Lab6 folder.  

You will see an Xplorer shortcut and the BasLab6TIEwin.xws workspace. 

3. Double-click the shortcut Xplorer to start Xtensa Xplorer. 

4. A workspace launcher dialog box appears. 

5. Browse to C:\TensilicaTraining\RA2005.2\BasicTraining\Lab6 and click OK. 

4 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

 

6. Click on X to remove the welcome screen. 

 

 

STEP 1.2: Import the lab workspace. 

The workspace for this lab is BasLab6TIEwin.xws. This workspace contains: 

 Processor configuration: XtTrain_core0 

 Xtensa C/C++ Project: byteswap 

1. From the File menu, select Import. 

2. Select Import Xtensa Xplorer Workspace and click Next. 

 Customer Training 5 



Lab 6: Writing and Testing Your First TIE Instruction 

 

3. Browse to and select the workspace for this lab – BasLab6TIEwin.xws.  It is located 
at to C:\TensilicaTraining\RA2005.2\BasicTraining\Lab6. 

4. Click Finish. 

5. Check the processor configuration and software project against the information listed 
at the beginning of this task. 

 

6 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

 
 

 Customer Training 7 



Lab 6: Writing and Testing Your First TIE Instruction 

Task 2. 

STEP 2.1: 

Understanding the byteswap.c File 

We have just imported the workspace with an Xtensa C/C++ project, byteswap.  Now we 
will look at the source code and discuss what this code does. 

Open the C/C++ Perspective. 

1. Click the C/C++ Perspective icon . 

A perspective is a collection of views.  The C/C++ Perspective contains views that 
are useful in developing Xtensa C/C++ applications. 

STEP 2.2: Open the byteswap.c source code. 

1. From the C/C++ Projects View, expand the software project, byteswap. 

2. Double-click the C file, byteswap.c. 

 

 
The byteswap.c source code displays in the Xplorer Editor window, as follows: 

8 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

 

 

 

STEP 2.3: Understanding the byteswap.c code. 

The byteswap.c program contains a loop that invokes GOLDEN_BYTESWAP() 10,000 
times.  The input to GOLDEN_BYTESWAP() comes from a table of random data. The 
data is used to verify GOLDEN_BYTESWAP() and the TIE instruction that we will 
create later.   

 Customer Training 9 



Lab 6: Writing and Testing Your First TIE Instruction 

Task 3. 

STEP 3.1: 

Running and Profiling the byteswap.c File 

To find out what TIE instructions we should create, we will first run the code, profile it, and 
identify any hot spots.  We will then choose an appropriate TIE technique to develop TIE 
instructions.  These TIE instructions are designed to accelerate the reference code.  Following 
are instructions to run, profile, and identify hot spots of byteswap.c.  

Profiling. 

1. Before we profile the code, make sure that the correct Active Set is chosen.  

 

2. Click Profile. You will find that the code automatically compiles itself and, Xplorer 
switches to the Benchmark Perspective for profiling. You will find the profile 
information as shown below. 

 
Note that with optimization level set to 2, the xt-xcc compiler automatically 
inlines the GOLDEN_BYTESWAP function. That’s the reason why 

10 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

GOLDEN_BYTESWAP didn’t show up on the profile results above. In order to 
view the total cycles consumed by this function, turn inline off.  

STEP 3.2:  Identify the hot spots. 

For the purpose of this lab, turn inlining off  by adding a compiler flag –INLINE:=off.  You 
should have learned how to set the compiler flag in previously lab.  If necessary, please refer to 
the previous lab for instructions. 

 

1. After turning inlining off, profile the code again. This time, after switching to the 
Benchmark perspective, you may be asked whether you want to replace the old profile 
results. 

 

2. Click Yes to Continue. The profile information now contains the 
GOLDEN_BYTESWAP function. 

 Customer Training 11 



Lab 6: Writing and Testing Your First TIE Instruction 

 
This view contains several pieces of useful profiling information. 

3. Click the Comparison tab to chart the benchmark data. 

 

The chart shows the data cache miss cycles, total cycles taken by the code, branch 
delay cycles, interlock cycles and instruction cache miss cycles. 

Question 1. Which function takes the most number of cycles? 

………………………………………………………………………… 

Question 2. How many cycles does that function take? 

………………………………………………………………………… 

12 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

Task 4. 

STEP 4.1: 

Developing a TIE Instruction 

There are several mask and shift instructions in the GOLDEN_BYTESWAP() function.  In 
addition, there is an add operation to increment the GOLDEN_COUNT value. This value 
shows how many times this operation is executed.  We will use the fusion technique to 
combine these operations. 

When you think in terms of hardware, the mask and shift operations are “re-wiring” certain 
bits from the input to the output.  In this task, we will develop a TIE instruction that 
implements this “re-wiring”.  This TIE instruction will also fuse the “rewiring” operation with 
the add operation.  The add operation increments GOLDEN_COUNT.   

Create a TIE file. 

1. Open the C/C++ Perspective. 

2. From the System Overview View, right-click TIE Source and select New TIE File 
to open the Create TIE File dialog box. 
 

 

3. Type the TIE file name, byteswap.tie, and click Next. 

4. From the Select a Configuration dialog box, select <none> and click Finish. 

At this point of the lab, we will not attach the TIE file to the XtTrain_core0 processor 
configuration.  Instead, we will make a clone of the XtTrain_core0 processor configuration 
and then attach this TIE file to the clone.  This way we keep the original processor 
configuration for comparison. 

You will see byteswap.tie in the Xplorer’s Editor View.  This view contains the following tabs 
at the bottom of the window: TIE Overview, TIE source, and Construct Details.  Later we 
will click the TIE source tab to develop the TIE instruction. 

 

 Customer Training 13 



Lab 6: Writing and Testing Your First TIE Instruction 

 

STEP 4.2: Clone a processor configuration and attach the TIE file. 

We are cloning a processor configuration to be able to keep the original configuration for 
development purposes. 

1. From the System Overview View, expand Configurations and right-click 
XtTrain_core0-params, select Clone Config with TIE, and then select 
byteswap.tie. 

14 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

 
2. For the New Config Name, enter XtTrain_core0_tie, then click OK to close the 

dialog box. 

 

 Customer Training 15 



Lab 6: Writing and Testing Your First TIE Instruction 

The name of the original processor configuration is XtTrain_core0.  The clone 
processor configuration name is XtTrain_core0_tie.  These two processor 
configurations are shown under XtTrain_core0-params in the System Overview 
View’s Configurations folder. 

 

STEP 4.3:  Develop the TIE instruction. 

1. Expand TIE Source in the System Overview View, and double-click byeswap.tie to 
open the file in Xplorer’s Editor View. 

2. Click the TIE source tab. 
 

 

16 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

This is where you will develop your TIE instruction.   

Following are some hints to help you develop your TIE instruction (see the Original C 
Source Code on page 76 of this document): 

 It should be a single “operation” statement 

 The input to the operation should come from an AR register 

 The output of the operation should go to an AR register 

 Use “assign” and bit selection to perform the “rewiring”  

 Create a 32-bit storage for COUNT that is used to store how many times this TIE 
instruction has been used 

 Add into the operation the incrementing of COUNT 

3. Save the file. 

STEP 4.4: Compile the created TIE. 

1. Click the TIE Overview tab in the Editor View.  
 

 Customer Training 17 



Lab 6: Writing and Testing Your First TIE Instruction 

 
 

2. If not already selected, select XtTrain_core0 as the active Xtensa Configuration 
option. This ensures that the TIE Compiler (tc) will compile your TIE for the correct 
configuration. 

3. Click Check to check the TIE.  Correct any errors in your TIE. 

4. Click Compile to compile the TIE for the processor configuration.  Correct any errors 
in your TIE.  Check your TIE against the example in the back of the document.   

Compiling a TIE file creates the necessary updates for the software tools.  

18 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

Task 5. 

STEP 5.1: 

Running and Profiling with the New TIE Instruction 
To use the new TIE instruction, we need to make changes to the C-code.  These changes 
facilitate profiling and benchmark comparison later in the lab.  We will also create a new 
launch for this new binary.   

Modify byteswap.c to use the TIE instruction. 

When compiling a software project in Xtensa Xplorer, a compiler flag referring to the 
specific processor configuration is automatically included.  This compiler flag can be very 
useful.  The compiler flag uses the form of CONFIG_<processor configuration name>.  In this 
case, the compiler flag is CONFIG_XtTrain_core0_tie.   

First, we need to instruct the C compiler that we are using the new TIE instruction.  To do 
so, we include the TIE header file. 

1. Add these lines to the beginning of byteswap.c  

#ifdef CONFIG_XtTrain_core0_tie 

#include <xtensa/tie/byteswap.h>  

#endif 

2. Then we initialize the storage element, COUNT, in our TIE instruction by using the 
C-intrinsics, WUR_<user-defined state> and RUR_<user-defined state>.  These 
C-intrinsics are automatically created when a state has the add_read_write modifier.  

Add these lines at the correct location in byteswap.c 

#ifdef CONFIG_XtTrain_core0_tie  

WUR_COUNT(0); 

#endif 

3. Now, instead of replacing GOLDEN_BYTESWAP() with the TIE instruction 
BYTESWAP, we will verify the TIE instruction BYTESWAP against 
GOLDEN_BYTESWAP().  We will do this by adding a comparison check inside the 
loop to compare the result of the TIE instruction, BYTESWAP, against 
GOLDEN_BTESWAP().   

Replace the following code 

GOLDEN_BYTESWAP(s); 

with 

#ifdef CONFIG_XtTrain_core0_tie 

   if (GOLDEN_BYTESWAP(s) != BYTESWAP(s)) fail++; 

#else 

   GOLDEN_BYTESWAP(s); 

#endif 

 Customer Training 19 



Lab 6: Writing and Testing Your First TIE Instruction 

4. Replace the following code  

printf(“Swapped %d words \n”, i); 

with 

#ifdef CONFIG_XtTrain_core0_tie 

   printf(“State COUNT=%d\n”, RUR_COUNT()); 

   printf(“Swapped %d words \n”, i); 

   printf(“%s\n”, fail ? “Mismatch detected” : “Your TIE works!”); 

#else 

   printf(“Swapped %d words \n”, i); 

#endif 

5. Save the file. 

STEP 5.2: Build the modified byteswap.c file in the new system. 

First, we need to set up the build for the new system. 

1. Change the active configuration from XtTrain_core0 to XtTrain_core0_tie. 

 

 
We need to tell Xplorer that we want to build the software project byteswap for the 
core XtTrain_core0_tie in the new system.  

 

2. Click Build Active. 
 

 
 
Xplorer builds the project. Correct any build errors at this time. 
 
3. Click Profile to view the Benchmark results. 

20 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

Task 6. 

STEP 6.1: 

Comparing Profile Results 

Now we have the profiling information for both processor configurations.  We can compare 
the performance gain from the TIE instruction. 

Find out how many cycles the TIE instruction takes. 

In the Profile view: 

1. Click the Function cycles column in the Profile view to sort data on function cycles. 

Can you find the number of cycles spent on the TIE instruction?  Do you know the 
reason? 

The TIE instruction is a single cycle instruction.  BYTESWAP() is a C macro that is 
translated into an assembly instruction, BYTESWAP, during compilation.  It is not a 
real function. 

To see how many cycles are spent on the TIE instruction, BYTESWAP, use the 
Profile Disassembly view. 

2. Click on the function main in the Profile view, and the Profile Disassembly view 
opens on the right side of the Xplorer window.  If it does not open, from the Window 
menu, select Show View, then Profile Disassembly.  

 
 

The Profile Disassembly view displays the assembly instructions that correspond to the 
function that you have selected in the Profile view.  You are now seeing the assembly 
instructions generated for the function main().   

Look for the TIE instruction BYTESWAP.   

 Customer Training 21 



Lab 6: Writing and Testing Your First TIE Instruction 

Question 3. How many cycles are spent in the TIE instruction BYTESWAP through the 
entire application? 

………………………………………………………………………… 

Question 4. What is the performance gain by using TIE instruction? 

………………………………………………………………………… 

You will see that even though this single cycle BYTESWAP is executed 10,000 times, the 
number of cycles associated to the execution of BYTESWAP is more than 10,000 cycles.  
There is pipeline interlock penalty associated to the execution of BYTESWAP.  Could you 
identify it?   One way to try to remove the interlock penalty is by using a higher degree of 
optimization.  You could optionally try to raise the optimization level to 3 and profile this code 
again. 

22 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

Task 7. 

STEP 7.1: 

Performing a Graphical Comparison (optional) 

The profiling information contains information such as cache misses and pipeline interlocking. 
We will modify the code slightly so that we can graphically compare the TIE byteswap with 
the original C implementation of byteswap.   

Make a change in the software project. 

1. Replace this portion of the code 

#ifdef CONFIG_XtTrain_core0_tie 

   if (GOLDEN_BYTESWAP(s) != result) fail++; 

#else 

 

with 

#ifdef CONFIG_XtTrain_core0_tie 

  // if (GOLDEN_BYTESWAP(s) != result) fail++; 

   BYTESWAP(s); 

#else 

2. Save the file (using CTRL-S). 

STEP 7.2: Recompile the software project. 

1. Make sure you are building the correct Active Set. 

 

 Click Profile to begin profiling the binary. 

STEP 7.3:  View profiling information graphically. 

1. Click the Comparison tab at the bottom. 
 

 

2. Compare the chart results with the one for the original code shown earlier.  

 Customer Training 23 



Lab 6: Writing and Testing Your First TIE Instruction 

Conclusion 
In this lab, we have created our first TIE instruction to do a byteswap.  As we have seen, using 
typical processor operations to implement a byteswap function requires around 20 cycles.  TIE 
is used here to accelerate byteswap.   The result is a single cycle operation to compute the 
byteswap.  This TIE instruction achieves 20 times speed up.  

We have also employed a methodology to identify a hot spot in an algorithm for acceleration. 
We benchmarked the original C code, found the hot spot to be the byteswap function, and 
then developed TIE to accelerate it.  This methodology helps us focus on the part of the 
program that could benefit the most from TIE development.  

24 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

Original C Source Code 
 

/***************************************************************** 

  Byteswap.c 

  This example compares an endian-conversion implemented in C and TIE 

 ******************************************************************/  

 

#include <stdio.h> 

 

/* Number of Iterations to run */ 

#define NUM 10000   

 

/* Random data used to test the byteswap instruction */ 

#define N 64 

unsigned data[N] = { 

 0x7edb1c67, 0x159f51b7, 0xfb17d999, 0xdeab3047, 0x580b9b31, 

 0xb87db5b9, 0xbb91a3d3, 0x07e90569, 0x185f16e9, 0xd921d90f, 

 0xe3f90331, 0xb277491b, 0x342b7edd, 0xda8fc287, 0x3bfd6d2b, 

 0xca1b8237, 0xa0350575, 0x01096dc5, 0x9b43b3d5, 0xf74da1eb, 

 0x68c16b2f, 0x61078e47, 0xf06900d9, 0x7e45f6c3, 0x2889a9a1, 

 0xae37b263, 0x28033079, 0xfdeb7f9f, 0x5fbffe7b, 0xea81c641, 

 0xf3a18c91, 0x0ee59eb7, 0xab0b5683, 0xf505f6e9, 0x70c9e795, 

 0xc28d2c9b, 0xda8f1899, 0xf91bf539, 0xaff7178d, 0x01f9eb35, 

 0xe8e750b1, 0xbd5398e3, 0x1b9fd11d, 0xccf358c5, 0xd2233add, 

 0xd273e375, 0xbf33e281, 0x58ffe2e5, 0x4acd2e41, 0xa27f6353, 

 0x6e17ce89, 0x10597985, 0x56e7e81d, 0x5fa9f6bb, 0xcaa9c7a3, 

 0x70f581ef, 0xc0e936c7, 0xd365eebf, 0x2d3f0acf, 0xcb7f29c1, 

 0x70c704af, 0x0d5b9251, 0x6b259aa9, 0xe25b19f5 

}; 

/* global states used by the C implementation */ 

static unsigned GOLDEN_COUNT; 

static unsigned GOLDEN_SWAP; 

 

 

/* C implementation of byteswap to test against TIE implementation*/ 

 static unsigned  

GOLDEN_BYTESWAP(unsigned s) 

{ 

 unsigned ss = (s<<24) | ((s<<8)&0xff0000) | ((s>>8)&0xff00) |   
(s>>24); 

 GOLDEN_COUNT = GOLDEN_COUNT + 1; 

 return ss; 

} 

 

int main() 

{ 

 unsigned s, i, fail = 0; 

 Customer Training 25 



Lab 6: Writing and Testing Your First TIE Instruction 

 

 /*  Initialize C & TIE COUNTERS to 0 */ 

 GOLDEN_COUNT=0;    

     

 for (i = 0; i < NUM; i++) { 

  s = data[i % N]; 

 

  GOLDEN_BYTESWAP(s); 

   

   

 } 

 

 printf("Swapped %d words \n",GOLDEN_COUNT); 

} 

26 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

TIE Source Code 
// declare state SWAP and COUNT 

state COUNT 32 add_read_write 

 

operation BYTESWAP {out AR outR, in AR inpR}{inout COUNT} 

{ 

  assign outR = {inpR[7:0],inpR[15:8],inpR[23:16],inpR[31:24]}; 

  assign COUNT = COUNT + 1; 

} 

 Customer Training 27 



Lab 6: Writing and Testing Your First TIE Instruction 

Modified C Source Code 
/***************************************************************** 

  Byteswap.c 

  This example compares an endian-conversion implemented in C and TIE 

 ******************************************************************/  

 

#include <stdio.h> 

#ifdef CONFIG_XtTrain_core0_tie 

#include <xtensa/tie/byteswap.h> 

#endif 

 

/* Number of Iterations to run */ 

#define NUM 10000   

/* Random data used to test the byteswap instruction */ 

#define N 64 

unsigned data[N] = { 

 0x7edb1c67, 0x159f51b7, 0xfb17d999, 0xdeab3047, 0x580b9b31, 

 0xb87db5b9, 0xbb91a3d3, 0x07e90569, 0x185f16e9, 0xd921d90f, 

 0xe3f90331, 0xb277491b, 0x342b7edd, 0xda8fc287, 0x3bfd6d2b, 

 0xca1b8237, 0xa0350575, 0x01096dc5, 0x9b43b3d5, 0xf74da1eb, 

 0x68c16b2f, 0x61078e47, 0xf06900d9, 0x7e45f6c3, 0x2889a9a1, 

 0xae37b263, 0x28033079, 0xfdeb7f9f, 0x5fbffe7b, 0xea81c641, 

 0xf3a18c91, 0x0ee59eb7, 0xab0b5683, 0xf505f6e9, 0x70c9e795, 

 0xc28d2c9b, 0xda8f1899, 0xf91bf539, 0xaff7178d, 0x01f9eb35, 

 0xe8e750b1, 0xbd5398e3, 0x1b9fd11d, 0xccf358c5, 0xd2233add, 

 0xd273e375, 0xbf33e281, 0x58ffe2e5, 0x4acd2e41, 0xa27f6353, 

 0x6e17ce89, 0x10597985, 0x56e7e81d, 0x5fa9f6bb, 0xcaa9c7a3, 

 0x70f581ef, 0xc0e936c7, 0xd365eebf, 0x2d3f0acf, 0xcb7f29c1, 

 0x70c704af, 0x0d5b9251, 0x6b259aa9, 0xe25b19f5 

}; 

/* global states used by the C implementation */ 

static unsigned GOLDEN_COUNT; 

 

/* C implementation of byteswap to test against TIE implementation*/ 

 static unsigned  

GOLDEN_BYTESWAP(unsigned s) 

{ 

 unsigned ss = (s<<24) | ((s<<8)&0xff0000) | ((s>>8)&0xff00) |   
(s>>24); 

 GOLDEN_COUNT = GOLDEN_COUNT + 1; 

 return ss; 

} 

 

int main() 

{ 

 unsigned s, i, fail = 0; 

 

28 Customer Training  



Lab 6: Writing and Testing Your First TIE Instruction 

 /*  Initialize C & TIE COUNTERS to 0 */ 

 GOLDEN_COUNT=0; 

#ifdef CONFIG_XtTrain_core0_tie 

    WUR_COUNT(0); 

#endif     

     

 for (i = 0; i < NUM; i++) { 

  s = data[i % N]; 

#ifdef CONFIG_XtTrain_core0_tie 

 if (GOLDEN_BYTESWAP(s) != BYTESWAP(s)) fail++; 

#else 

  GOLDEN_BYTESWAP(s); 

#endif   

   

 } 

#ifdef CONFIG_XtTrain_core0_tie 

 printf("State COUNT=%d\n",RUR_COUNT()); 

 printf("%s\n", fail ? "Mismatch detected" : "Your TIE works!"); 

#else 

    printf("Swapped %d words \n", i); 

#endif  

 

 

} 

 

 Customer Training 29 



Lab 6: Writing and Testing Your First TIE Instruction 

Answers / Solutions] 

Question 1. Which function takes the most number of cycles? 

Answer: GOLDEN_BYTESWAP() 

Question 2. How many cycles does that function take? 

Answer: 200,025 cycles 

Question 3. How many cycles are spent in the TIE instruction BYTESWAP through the 
entire application? 

Answer: 20,000 cycles due to interlock penalty (10,000 cycles if using –O3)  

Question 4. What is the performance gain by using TIE instructions? 

Answer: 10 times speed up; 20 times if using –O3 

 

30 Customer Training  


	Lab Flow Diagram
	 Introduction
	Conclusion

	Original C Source Code
	TIE Source Code
	Modified C Source Code
	Answers / Solutions]

