Lab

Writing and Testing Your First
TIE Instruction

LEARNING OBJECTIVES:

u Profiling to find hot spots
| Developing a TIE instruction based on the Fusion technique

u Benchmarking the new TIE instruction and comparing performance

() Lab Duration:
45 min

N
il
g

Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

Lab Prerequisites:

®= How to import a workspace
* How to create, run, debug, and profile am Xtensa C/C++ project

* How to build a processor configuration and use active set

Lab Requirements:

If you are completing this lab in the Tensilica training laboratory, your PC is ready for use.

Otherwise, you may need to ensure your PC is prepared with the necessary licenses. To
follow the procedures in this lab, you need the following licenses:

= ISS
= TIE compiler
= Xtensa Xplorer, Processor Developer’s Edition

Contact your instructor if you have any licensing questions.

2 Customer Training

A
tensilica
r

Lab 6: Writing and Testing Your First TIE Instruction

Lab Flow Diagram

if
|
g

Importing the Lab
Workspace

v

Understanding the
byteswap.c File

v

Running and Profiling
the byteswap.c File

v

Developing a TIE
Instruction

}

Running and Profiling
with the TIE Instruction

)

Comparing Profile
Results

)

Performing a Graphical
Comparison (optional)

|

DONE!

Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

Introduction

In this lab, you will implement a simple BY TESWAP instruction in TIE. The
GOLDEN_BYTESWAP() function is written in C and is developed to perform endian
conversion. This function is often required in systems that interface peripherals of differing
endian formats. The performance of the byteswap function can be a critical bottleneck in a
design.

In this lab, we will optimize the system by replacing the GOLDEN_BYTESWAP() function
with a single TIE instruction. When replacing a function with a TIE instruction, it is important
to test the TIE instruction against a reference function. Byteswap.c provides a test bench to
validate the TIE instruction. The test bench performs 10,000 endian conversions. It can be
used for the GOLDEN_BYTESWAP() function and the TIE implementation. The output of
the GOLDEN_BYTESWAP() function will be used to compare against the TIE instruction.
This tests functional equivalency between the TIE instruction and the C-implementation.

To test your understanding, answer the questions throughout this lab. You can find the
answers in the Answers and Solutions section.

Task 1. Importing the Lab Workspace

STEP 1.1: Start Xtensa Xplorer.
1. Click the shortcut to Basic Training Xtensa LX on the desktop.
2. Open the Lab6 folder.
You will see an Xplorer shortcut and the BasLab6TIEwin.xws workspace.
3. Double-click the shortcut Xplorer to start Xtensa Xplorer.

4. A workspace launcher dialog box appears.

5. Browse to C:\TensilicaTraining\RA2005.2\BasicTraining\Lab6 and click OK.

A
tensilica
r

4 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

Workspace Launcher x|

Select a workspace

“kensa ¥plorer stares wour projects in a direckory called a workspace,
Select the workspace directory ko use For this session,

Wiarkspace: I | j Browse, ,, |

[Use this as the default and do nat ask again

I I Zancel

6. Click on X to remove the welcome screen.

XtensaXplorer

STEP 1.2: Import the lab workspace.
The workspace for this lab is BasLab6 TIEwin.xws. This workspace contains:
® Processor configuration: XtTrain_core(
* Xtensa C/C++ Project: byteswap
1. From the File menu, select Import.

2. Select Import Xtensa Xplorer Workspace and click Next.

Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

x

Select
nbensa Workspace ,

Select an impart source:

;lfcheckuut Projects from CYS
ﬁExisting Praject inta Workspace
IF_—IJFiIe systemn

ﬁlmpnrt as ¥rensa CfC++ Projeck

‘tensa Xplorer
f'ﬁ,Team Project Set
T, Zip File

= Back I Mext = I Fimish | Zancel

3. Browse to and select the workspace for this lab — BasLab6 TIEwin.xws. It is located
at to C:\TensilicaTraining\RA2005.2\BasicTraining\Lab6.

4. Click Finish.

5. Check the processor configuration and software project against the information listed
at the beginning of this task.

tensilica

6 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

N
bl
B

o
e} CJC++ Projects 53 = 0O

El'[::c- bykeswap
- Binaries
= hin
@ bybeswap.c

=R Syskem Orverview X

[=1{z= Configurations
 EZ= WtTrain_core0-params (RA-2005.2)
© el ¥tTrain_cored

Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

Task 2. Understanding the byteswap.c File

We have just imported the workspace with an Xtensa C/C++ project, byteswap. Now we
will look at the source code and discuss what this code does.

STEP 2.1: Open the C/C++ Perspective.

1. Click the C/C++ Perspective icon e |

A perspective is a collection of views. The C/C++ Perspective contains views that
are useful in developing Xtensa C/C++ applications.

STEP 2.2: Open the byteswap.c source code.

1. From the C/C++ Projects View, expand the software project, byteswap.

2. Double-click the C file, byteswap.c.

-,

g
@C,I'C++ Projects &5 =0
5%~

EII::':- byteswap
- Binaries
== hin
- [€] byteswap.c

The byteswap.c source code displays in the Xplorer Editor window, as follows:

tensilica

8 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

(T

I,,-'ww*w*#**w**w*w*#**w**w*n-w#ﬁa-frﬁa-wwn-w#ﬁa-frﬁa-wwww#ﬁwﬁﬁ*wﬁww#ww#ﬁ*wﬁww

Evteswap.c

Thiz exawple compares ah endian-comversion iwplemwented in C and TIE
ww-xww-xxww-xwwwww-xxwwxwwwa-w-a-xw-mm-w-xww-xxwwxww-xww-xxw-xxww-xww-xww-xxwwwwww',-’

#include -<stdio.h>

S % Nuwber of Iterations to run */

#define NUM 10000

/% Random data used to test the byteswvap instruction */

#define N 64

unsigned datal[N] = |
Ox7edblce?, O0x159£51b7, Oxfhl17d999, Oxdesbs3047, OxS5S50bLSk31,
Oxh37db5hs, O0xbb91a3d3, OxO07e9056%9, O0x185flc6ed, OxdASZ21490f,
Oxe3f90331, Oxba2774591b, Ox34iZbh7edd, OxdaSfcZ5Y, Ox3bidedzl,
OxcalbSZ37, 0xa0350575, OxO01096dcs, OxSh43b353dS, Oxf74dalel,
Ox68clehif, O0x6l07S5ed4?, Ox£06900dS, Ox7TedSLfocsd, OxE559a%al,
Oxae37hiold, O0xXZ25033079, Oxfdeh7f9f, OxS5fhife7h, OxeadSlcadl,
O0xf3alSc9l, O0x0eeiBeb?, Oxabhlhi5653, OxL505L£6e8, Ox7Oc9e795,
OxcZ8dicSh, O0xdaSf£i1899, Oxf91bf539, Oxaff7175d, Ox01f9eh3is,
Oxefe750kb1, O0xbdS5398e3, Ox1h9fdlld, Oxccf£358ch, Oxd2Z3dadd,
Oxd273e375, Oxbf33e281, Ox55ffelel, Oxdacdiedl, Oxa27£6353,
Ox6el7ced9, O0x10597955, OxS56eVeSld, O0x5fa9fdbb, OxcaaSc?ald,
Ox70f531ef, OxcOe936c?, OxdieSesbf, OxZ2d3if0act, Oxch7f29cl,
Ox70c704af, O0x0dASh9Z51, Ox6hiZ5%aaS, OxXeZShbl19f5

b

f* globhal states used by the C implewentation */

static unsigned GOLDEN COUNT:

static unsigned GOLDEN SWAP:

% C dmwplementation of byteswap to test against TIE implementation®/
static unsigned

GOLDEN _BYTESWAP (unsigned =)

{
unsigned ss = [(s<<24) | |((=<«<8)&0x££0000) | {(s=>8)&0x££00) | (gs=>24) :
GOLDEN COUNT = GOLDEN COUNT + 1;

STEP 2.3: Understanding the byteswap.c code.

The byteswap.c program contains a loop that invokes GOLDEN_BYTESWAP() 10,000
times. The input to GOLDEN_BYTESWAP() comes from a table of random data. The
data is used to verify GOLDEN_BYTESWAP() and the TIE instruction that we will
create later.

tensifica
Customer Training 9

Lab 6: Writing and Testing Your First TIE Instruction

Task 3. Running and Profiling the byteswap.c File

To find out what TIE instructions we should create, we will first run the code, profile it, and
identify any hot spots. We will then choose an appropriate TIE technique to develop TIE
instructions. These TIE instructions are designed to accelerate the reference code. Following
are instructions to run, profile, and identify hot spots of byteswap.c.

STEP 3.1: Profiling.
1. Before we profile the code, make sure that the correct Active Set is chosen.

C/C++ - byteswap.c - Xtensa Xplorer

File Edit Mavigate Search Run Project ‘Window
J ff - [=]| n J?Q J J P: byteswap * C:XtTrain_core0 = T:Release)« Buid Active = . J Rum - F'rol‘ilgI v|Debug - J @ - J@ Q'-

- = S
(ﬁCICH' Projects &3 W |bryteswap - %Train_core0 - Release |

2. Click Profile. You will find that the code automatically compiles itself and, Xplorer
switches to the Benchmark Perspective for profiling. You will find the profile
information as shown below.

Console aII-GraDh | Compatison ‘ Saved Output | Pipeline |
Function Mame | Tatal cycles (%) | Function cydes | Children cycles I Times called (invocations
_vFprintf_r 15,79 1549 6266 1
_ResetHandler 13.94 1632 0 <spontanenus =
__udivsi3 .5 1112 0 16
__umodsi3 2.04 1058 0 16
__udivdi3 .22 845 1085 4
__umoddiz 5.34 626 1085 4
__shwwrite 3.99 467 603 2
_mallac_r 3.64 450 155 1
_shark 3.19 374 9595 “spontaneous s
_mbkowe_r 2.37 278 0 18
_windowUnderflaws 2.2 258 0 10
_windowCrverflows 2.08 244 0 1o
mermchr 2.02 237 45 3
main 1.67 220 5569 1
MEmmmoye 1.7 200 0 3
fflush 1.7 200 159 4
__sinit 1.43 168 37 1
__smakebuf 1.11 130 764 1
exit 0.94 111 574 1
_fuealk 0.84 99 291 1
printf 0.82 96 8458 1
_sbrk_r 0,82 % 24 z
wFprintf 0.73 86 8347 1
__swsetup 0.66 7 920 1
memset 0.58 [} 0 1
__do_global_dtors_aux 0.58) 13 1
_atexit 0.53 63 a 1
_ sprint 0.48 57 1127 z
_Reset_epilag 0.44 52 10 <spontaneous s
__swribe 0.42 S0 85 1
__do_global_ctars_aux 0.38 45 0 1
isathy 0.38 45 43 1
_write_r 0.34 40 24 1
_Fstat_r 0.3 36 0 2
localecony 0.24 29 41 1
_exit 0.23 28 10 1
unpackdone 0.23 28 0 “spontaneous s
_windowOwverflowd 0.23 27 0 2
_cleanup_r 0.21 25 416 1
Fskat 0.21 25 15 1
_localecony _r 0.14 17 0 1
_windowUnderflaws 012 15 0 1
_Fini 0.11 13 a1 1
_inik 011 13 45 1
_ResetVector 0.09 11 0 “spontaneous s
_xtos_init 0,08 10 0 1
xthal_dcache_all_writeback 0.03 10 0 1
__malloc_lock 0.08 10 0 1
_ malloc_unlock, 0.03 4 0 1

Note that with optimization level set to 2, the xt-xcc compiler automatically
inlines the GOLDEN_BYTESWAP function. That’s the reason why

tensilica

10 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

GOLDEN_BYTESWAP didn’t show up on the profile results above. In order to
view the total cycles consumed by this function, turn inline off.

STEP 3.2: Identify the hot spots.

For the purpose of this lab, turn inlining off by adding a compiler flag —-INLINE:=off. You
should have learned how to set the compiler flag in previously lab. If necessary, please refer to
the previous lab for instructions.

Build Properties |
=2 Global Settings Toclchain and Target

c

(-1 [P

H= ek Ixtensa Tools 6.0 j fake Defaulk Tosl Chain |
IReIease j Manage Targets | [1ake Default Build Target |

Affecting byteswap and all of its children.

Preprocessor OpEimization IWarnings I Language I Assembler I Lirker I

Optimization Level: |2 'l

Ciptimize For: & Speed 7 Size

™ Enable interprocedural optimization ™ Enable automatic vectorization

I Enatle profile-directed campilation

¥ Include debug informakion ™ Keep intermediate compilation files
[~ Don't serislize volatile memory accesses [Enable long calls

I Put literals in kext section

Compiler Flags
’7| -0Z -g -INLINE :=off

1. After turning inlining off, profile the code again. This time, after switching to the
Benchmark perspective, you may be asked whether you want to replace the old profile
results.

Replace Profile Information? x|

Do wou wank ko replace vaur ald prafile information Far "Auto -- byteswap -
#tTrain_cored - Release"?

Selecting Mo will cancel wour profile run,

2. Click Yes to Continue. The profile information now contains the
GOLDEN_BYTESWAP function.

tensifica
Customer Training 11

Lab 6: Writing and Testing Your First TIE Instruction

Consale NN i= e, Zall-Graph | Comparison | Saved Qukput | Pipeline
Function Mame | Total cvcles (%) | Function cycles | Children cvcles | Times called {invocations)
GOLDEM_BYTESWAP E=- T T
main 3213 100149 208589 1
wFprintf_r 0.59 1863 6243 1
_ResetHandler n.sz 1632 1] <spontaneous =
_udivsi3 0.35 1110 0 16
__umodsi3 0.33 1055 0 16
_udivdi3 0.27 945 1054 4
__umoddi3 0.2 644 1054 4
_malloc_r 0.14 445 148 1
__sPvwrite 014 445 615 Z
_skark 0.1z 374 309535 <sponktaneous =
rernchr 0.058 254 47 3
_mbkowe_r 0.05 Pl 1] 15
_WindowUnderFlows n.07 243 1] 10
_windowwCrser Flows 0.07 239 1] 10
MEMMnyY e N na 20N n =

This view contains several pieces of useful profiling information.

3. Click the Comparison tab to chart the benchmark data.

Console | Profile | Call-Graph ?Emm atison X Saved Output|P\peI|ne| ijﬁ i_!! v = 0O
Cycles
300,000 —
m DCache Miss Cycles
250,000 « Total Cycles
200 000 = Branch Delay Cycles
2 T - u Interlock Cycles
% 150,000 ICache Miss Cycles
& e
100,000_
50,000_
0

Auto-byteswap-2tTrain_corel-Release

The chart shows the data cache miss cycles, total cycles taken by the code, branch
delay cycles, interlock cycles and instruction cache miss cycles.

Question 1. Which function takes the most number of cycles?

tensilica

12 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

Task 4. Developing a TIE Instruction

There are several mask and shift instructions in the GOLDEN_BYTESWAP() function. In
addition, there is an add operation to increment the GOLDEN_COUNT value. This value
shows how many times this operation is executed. We will use the fusion technique to
combine these operations.

When you think in terms of hardware, the mask and shift operations are “re-wiring” certain
bits from the input to the output. In this task, we will develop a TIE instruction that
implements this “re-wiring”. This TIE instruction will also fuse the “rewiring” operation with
the add operation. The add operation increments GOLDEN_COUNT.

STEP 4.1. Create a TIE file.
1. Open the C/C++ Perspective.

2. From the System Overview View, right-click TIE Source and select New TIE File
to open the Create TIE File dialog box.

[E-{z= Configurations
: EH?_—} AETrain_carel-pararms

------ A WETrain_cored

3. Type the TIE file name, byteswap.tie, and click Next.
4. From the Select a Configuration dialog box, select <none> and click Finish.

At this point of the lab, we will not attach the TIE file to the XtTrain_core(processor
configuration. Instead, we will make a clone of the XtTrain_core0 processor configuration
and then attach this TIE file to the clone. This way we keep the original processor
configuration for comparison.

You will see byteswap.tie in the Xplorer’s Editor View. This view contains the following tabs
at the bottom of the window: TIE Overview, TIE source, and Construct Details. Later we
will click the TIE source tab to develop the TIE instruction.

tensifica
Customer Training 13

Lab 6: Writing and Testing Your First TIE Instruction

ﬁ

Overview of TIE Source

TIE nat attached ko a configuration with a walid buoild
Aktach TIE to a configuration ko populate the owerview

Operations States Register Files

Marne | Area Marne | Bits | Marne | W D

A H . E

Ports Functions

Marme: | Eiks | Marne | Ares

1| | o e | | |l | B

Checkl Zompile | frea | Select active Xtensa Configuration: I 'I
TIE Overviewj TIE source | Construct Details

STEP 4.2: Clone a processor configuration and attach the TIE file.

We are cloning a processor configuration to be able to keep the original configuration for
development purposes.

1. From the System Overview View, expand Configurations and right-click
XtTrain_core0-params, select Clone Config with TIE, and then select
byteswap.tie.

A

14 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

= - Ox70f£551ef, Oxc0e936c7?, Oxd3ose
System Overview xﬁ Ox70c704af, O0x0dSh9251, Oxekhz59

E{E' Zonfigurations Y

EE’W P S Wy SEO afates used by the C inpl

o % #ETrair Clone Config From Build d GOLDEN COUNT;:

. = Uninstallec Clone Config From Build with TIE ®
== TIE Source

----- @3 bykeswap. tie

S C implementation of hyteswap to
static unsigned

GCOLDEN EYTESWAP (unsigned =)

{

2. For the New Config Name, enter XtTrain_core0_tie, then click OK to close the
dialog box.

x|

Clone Configuration from Build {with byteswap.tie)

Enter the name of the config ko be created

Mew Config Mame: | AETrain_core0_tie
™| Greate default #tensa @ Project (Hella World)
™| Create default system for the mew configuration

[~ add Command Shell ko Stark Menu

Ik I Cancel

tensifica
Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

The name of the original processor configuration is XtTrain_core(. The clone
processor configuration name is XtTrain_core(0_tie. These two processor
configurations are shown under XtTrain_core0-params in the System Overview

View’s Configurations folder.

Bl Swstem Overview X

B{= ;:fn:nnhgur'at||:|r|~_:
- B ¥iTrain_cored-params
o il WTrain_core0

E {E, ninstalled Configs
[Fl-{z= TIE Source

----- @3 bvteswap.tie

STEP 4.3: Develop the TIE instruction.

1.

16

Expand TIE Source in the System Overview View, and double-click byeswap.tie to
open the file in Xplorer’s Editor View.

Click the TIE soutce tab.

1

o

TIE O\fervieQ TIE source DConstruck Dekails

Customer Training

tensilica

Lab 6: Writing and Testing Your First TIE Instruction

This is where you will develop your TIE instruction.

Following are some hints to help you develop your TIE instruction (see the Original C
Source Code on page 76 of this document):

It should be a single “operation” statement

The input to the operation should come from an AR register
The output of the operation should go to an AR register
Use “assign” and bit selection to perform the “rewiring”

Create a 32-bit storage for COUNT that is used to store how many times this TIE
instruction has been used

Add into the operation the incrementing of COUNT

3. Save the file.

STEP 4.4. Compile the created TIE.

1.

tensifica

Click the TIE Overview tab in the Editor View.

Customer Training 17

Lab 6: Writing and Testing Your First TIE Instruction

2.

18

,

Overview of TIE Source

wtensa configuration {withouk TIE) is approz, 76,000 gates estimated at 320 MHz {1300k, \Worsk)
ea approx. 1,451 gates, of which 470 is decode, muxing etc, and 981 is instructions, skates, regfile

Cperations | 212 (14%%)

Skates : 7A9 (52%:)

Reqgister Files 0 (0%:)

Marme | Area

Marne I Eiks | .

Mame I'-.-'-.-',I'D

BYTESW AP 193
RUR., COUMT 7
WP, COUNT 7

< |

2

COUNT 32

i

Ports 1 0 {0%)

rr .

Functions : 0 {0%)

Marne | Eits |]

Marne | Ares

e

i

Checkl Compile | Area | Select active ¥tensa Configuration: IxtTrain_n:DreEI_tie jl

TIE Cwverview | TIE source | Conskruct Details |

Customer Training

If not already selected, select XtTrain_core0 as the active Xtensa Configuration
option. This ensures that the TIE Compiler (tc) will compile your TIE for the correct
configuration.

Click Check to check the TIE. Correct any errors in your TIE.

Compiling a TIE file creates the necessary updates for the software tools.

Click Compile to compile the TIE for the processor configuration. Correct any errors
in your TIE. Check your TIE against the example in the back of the document.

tensilica

Lab 6: Writing and Testing Your First TIE Instruction

Task 5. Running and Profiling with the New TIE Instruction

To use the new TIE instruction, we need to make changes to the C-code. These changes
facilitate profiling and benchmark comparison later in the lab. We will also create @ new
launch for this new binary.

STEP 5.1: Modify byteswap.c to use the TIE instruction.

When compiling a software project in Xtensa Xplorer, a compiler flag referring to the
specific processor configuration is automatically included. This compiler flag can be very
useful. The compiler flag uses the form of CONFIG_<processor configuration name>. In this
case, the compiler flag is CONFIG_XtTrain_core(_tie.

First, we need to instruct the C compiler that we are using the new TIE instruction. To do
so, we include the TIE header file.

1.

Add these lines to the beginning of byteswap.c

#ifdef CONFIG_XtTrain_coreO_tie
#include <xtensa/tie/byteswap.h>
#endif

2. Then we initialize the storage element, COUNT, in our TIE instruction by using the

rF 4
tensifica
r

C-intrinsics, WUR_<user-defined state> and RUR_<user-defined state>. These
C-intrinsics are automatically created when a state has the add_read_write modifier.

Add these lines at the correct location in byteswap.c

#ifdef CONFIG_XtTrain_coreO_tie
WUR_COUNT(0);
#endif

Now, instead of replacing GOLDEN_BYTESWAP() with the TIE instruction
BYTESWAP, we will verify the TIE instruction BY TESWAP against
GOLDEN_BYTESWAP(). We will do this by adding a comparison check inside the
loop to compare the result of the TIE instruction, BYTESWAP, against
GOLDEN_BTESWAP).

Replace the following code
GOLDEN_BYTESWAP(S);
with
#ifdef CONFIG_XtTrain_coreO_tie
if (GOLDEN_BYTESWAP(S) != BYTESWAP(S)) fail++;
#else

GOLDEN_BYTESWAP(s) ;
#endi

Customer Training 19

Lab 6: Writing and Testing Your First TIE Instruction

4. Replace the following code
printf(“Swapped %d words \n”, 1);
with
#ifdef CONFIG_XtTrain_coreO_tie

printf(“State COUNT=%d\n”’, RUR_COUNTQ));
printf(“Swapped %d words \n”, i);

printf(“%s\n”, fail ? “Mismatch detected” : “Your TIE works!””);
#else

printf(“Swapped %d words \n”, i);
#endif

5. Save the file.

STEP 5.2: Build the modified byteswap.c file in the new system.
First, we need to set up the build for the new system.

1. Change the active configuration from XtTrain_core0 to XtTrain_core(_tie.

?:ﬂ J J P: byteswap = C: ¥tTrain_core0 = T: Release = Build Active = |

e | @ -

#ifdef CONF IG_XtTrain_cDreD_t ie
WOE_COUNT (0] :
#endif

f% 0 Tnirdialise O & TTE COTMTERS

We need to tell Xplorer that we want to build the software project byteswap for the
core XtTrain_core(_tie in the new system.

2. Click Build Active.

E J P: bwteswap = O ¥ETrain_cored_tie + TiRelease (= Build Active Z , J Fum = Profile = De

= 0O @ byteswap.c &3 @abyteswap.tie s

SLOLCLLY WS LYILTW WL LN L SUUN L

3 <=
= ¥ static unsigned GOLDEN SWAP:

Xplorer builds the project. Correct any build errors at this time.

3. Click Profile to view the Benchmark results.

A
tensilica
r

20 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

Task 6. Comparing Profile Results

Now we have the profiling information for both processor configurations. We can compare
the performance gain from the TIE instruction.

STEP 6.1: Find out how many cycles the TIE instruction takes.

In the Profile view:

1. Click the Function cycles column in the Profile view to sort data on function cycles.

Can you find the number of cycles spent on the TIE instruction? Do you know the
reason?

The TIE instruction is a single cycle instruction. BYTESWAP() is a C macro that is
translated into an assembly instruction, BY TESWAP, during compilation. Itis nota
real function.

To see how many cycles are spent on the TIE instruction, BYTESWAP, use the
Profile Disassembly view.

2. Click on the function main in the Profile view, and the Profile Disassembly view

opens on the right side of the Xplorer window. If it does not open, from the Window

menu, select Show View, then Profile Disassembly.

The Profile Disassembly view displays the assembly instructions that correspond to the
function that you have selected in the Profile view. You are now seeing the assembly
instructions generated for the function main().

Look for the TIE instruction BYTESWAP.

tensifica
Customer Training

21

Lab 6: Writing and Testing Your First TIE Instruction

Question 3. How many cycles are spent in the TIE instruction BYTESWAP through the
entire application?

You will see that even though this single cycle BYTESWARP is executed 10,000 times, the
number of cycles associated to the execution of BY TESWARP is more than 10,000 cycles.
There is pipeline interlock penalty associated to the execution of BYTESWAP. Could you
identify it? One way to try to remove the interlock penalty is by using a higher degree of
optimization. You could optionally try to raise the optimization level to 3 and profile this code
again.

A
tensilica
r

22 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

Task 7. Performing a Graphical Comparison (optional)

The profiling information contains information such as cache misses and pipeline interlocking.
We will modify the code slightly so that we can graphically compare the TIE byteswap with
the original C implementation of byteswap.

STEP 7.1: Make a change in the software project.

1. Replace this portion of the code

#ifdef CONFIG_XtTrain_coreO_tie
iT (GOLDEN_BYTESWAP(s) != result) fail++;
#else

with
#ifdef CONFIG_XtTrain_coreO_tie
// if (GOLDEN BYTESWAP(S) != result) fail++;

BYTESWAP(S);
#else

2. Save the file (using CTRL-S).

STEP 7.2. Recompile the software project.

Make sure you are building the correct Active Set.

keswap * O ¥tTrain_corel t@nld Ackive T J Run - F‘ru:uFlIg[v|Debug ~

Click Profile to begin profiling the binary.

STEP 7.3: View profiling information graphically.

1. Click the Comparison tab at the bottom.

Console | Frafile | Cal-Graph Bleee e Saved Output|PipeIine| B bl = =0
Cycles
70,000
60,000 u DCache Miss Cycles
. » Total Cytles
50 -DDD_ Branch Delay Cycles
2 40,000 u Interlock Cycles
=3 = ICache Miss Cycles
& 30,000
20,000
10,000 _
o
T
Auto--byteswap-#tTrain_corel_tie-Release

2. Compare the chart results with the one for the original code shown earlier.

tensifica

~ Customer Training 23

Lab 6: Writing and Testing Your First TIE Instruction

Conclusion

In this lab, we have created our first TIE instruction to do a byteswap. As we have seen, using
typical processor operations to implement a byteswap function requires around 20 cycles. TIE
is used here to accelerate byteswap. The result is a single cycle operation to compute the
byteswap. This TIE instruction achieves 20 times speed up.

We have also employed a methodology to identify a hot spot in an algorithm for acceleration.
We benchmarked the original C code, found the hot spot to be the byteswap function, and
then developed TIE to accelerate it. This methodology helps us focus on the part of the
program that could benefit the most from TIE development.

A
tensilica
r

24 Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

Original C Source Code

/*************************7\'***************************************

Byteswap.c
This example compares an endian-conversion implemented in C and TIE

**/

#include <stdio.h>

/* Number of Iterations to run */
#define NUM 10000

/* Random data used to test the byteswap instruction */

#define N 64

unsigned data[N] = {
Ox7edb1c67, 0x159f51b7, Oxfb17d999, Oxdeab3047, 0x580b9b31,
0xb87db5b9, 0xbb91a3d3, 0x07e90569, 0x185F16e9, 0xd921d90f,
0xe3190331, 0xb277491b, 0x342b7edd, Oxda8fc287, 0x3bfd6d2b,
Oxcalb8237, 0xa0350575, 0x01096dc5, 0x9b43b3d5, Oxf74daleb,
0x68c16b2f, 0x61078e47, 0xF06900d9, Ox7e45F6c3, 0x2889a9al,
0xae37b263, 0x28033079, Oxfdeb7fo9f, Ox5fbffe7b, Oxea81lc641,
0x¥3al8c91, 0x0ee59%eb7, 0xab0b5683, O0xf505f6e9, 0x70c9e795,
0xc28d2c9b, O0xda8f1899, Oxf91bf539, Oxaff7178d, 0x01f9eb35,
0xe8e750b1, 0xbd5398e3, 0x1b9fdlld, Oxccf358c5, 0xd2233add,
0xd273e375, Oxbf33e281, 0x58ffe2e5, Ox4acd2e4l, 0xa27f6353,
Ox6el7ce89, 0x10597985, 0x56e7e81d, Ox5fFa9f6bb, Oxcaa9c7a3,
0x70f581ef, 0xc0e936¢7, 0xd365eebf, 0x2d3fOacf, Oxcb7¥29cl,
0x70c704af, 0x0d5b9251, Ox6b259aa9, 0xe25b19f5

};

/* global states used by the C implementation */

static unsigned GOLDEN_COUNT;

static unsigned GOLDEN_SWAP;

/* C implementation of byteswap to test against TIE implementation*/
static unsigned
GOLDEN_BYTESWAP(unsigned s)

{

unsigned ss = (s<<24) | ((s<<8)&0xFFf0000) | ((s>>8)&0xFf00) |
(s>>24);

GOLDEN_COUNT = GOLDEN_COUNT + 1;

return ss;
}

int main(Q)

{

unsigned s, i, fail = 0;

tensifica
Customer Training

Lab 6: Writing and Testing Your First TIE Instruction

/* Initialize C & TIE COUNTERS to 0O */
GOLDEN_COUNT=0;

for (i = 0; i < NUM; i++) {
s = data[i % N];

GOLDEN_BYTESWAP(S);

}

printf(**'Swapped %d words \n",GOLDEN_COUNT) ;

26 Customer Training

A
tensilica
r

Lab 6: Writing and Testing Your First TIE Instruction

TIE Source Code

tensifica

// declare state SWAP and COUNT
state COUNT 32 add_read_write

operation BYTESWAP {out AR outR, in AR inpR}{inout COUNT}

{
assign outR = {inpR[7:0],inpR[15:8], inpR[23:16], inpR[31:24]};
assign COUNT = COUNT + 1;

}

Customer Training

27

Lab 6: Writing and Testing Your First TIE Instruction

Modified C Source Code

28

/
Byteswap.c

*

ELE S

E R

This example compares an endian-conversion implemented in C and TIE

#include <stdio.h>
#ifdef CONFIG_XtTrain_coreO_tie
#include <xtensa/tie/byteswap.h>

#endif

*

/* Number of Iterations to run */
#define NUM 10000
/* Random data used to test the byteswap instruction */

#define N 64

unsigned data[N] = {
0x159f51b7, Oxfbl17d999,
Oxbb91a3d3, 0x07e90569,
0xb277491b, 0x342b7edd,
0xa0350575, 0x01096dc5,
0x61078e47, 0xf06900d9,
0x28033079, Oxfdeb7fof,
0x0ee59%eb7, 0Oxab0b5683,
O0xda8f1899, 0xf91bf539,
0xbd5398e3, 0x1b9fdlid,
O0xbf33e281, 0x58ffe2e5,
0x10597985, 0x56e7e81d,
0xc0e936¢c7, 0xd365eebf,
0x0d5b9251, 0x6b259aa9,

Ox7edbl1c67,
0xb87db5b9,
0xe3f90331,
0Oxcalb8237,
0x68cl16b2f,
0xae37b263,
0xf3al8c91,
0xc28d2c9b,
0xe8e750b1,
0xd273e375,
0x6el7ce89,
0x70f581ef,
0x70c704af,

}:

ELE L

Oxdeab3047,
0x185f16€9,
Oxda8fc287,
0x9b43b3d5,
Ox7e45f6c3,
Ox5fbffe7b,
0xf505f6e9,
Oxaff7178d,
Oxccf358c5,
Ox4acd2e4l,
0x5fa9f6bb,
0x2d3fOact,
0xe25b19f5

/* global states used by the C implementation */
static unsigned GOLDEN_COUNT;

E R

0x580b9b31,
0xd921d90f,
0x3bfd6d2b,
Oxf74daleb,
0x2889a9a1l,
Oxea81c641,
0x70c9e795,
0x01f9eb35,
0xd2233add,
0xa27f6353,
Oxcaa9c7a3,
Oxcb7f29c1,

/* C implementation of byteswap to test against TIE implementation*/
static unsigned
GOLDEN_BYTESWAP(unsigned s)

{

unsigned ss
(s>>24);

(s<<24) | ((s<<8)&0xFF0000) | ((s>>8)&0xFF00) |

GOLDEN_COUNT = GOLDEN_COUNT + 1;

return ss;

}

int mainQ)

{

unsigned s,

fail

0;

Customer Training

-
tensilica
r

Lab 6: Writing and Testing Your First TIE Instruction

/* Initialize C & TIE COUNTERS to O */
GOLDEN_COUNT=0;

#ifdef CONFIG_XtTrain_coreO_tie
WUR_COUNT(0);

#endif

for (i = 0; i < NUM; i++) {
s = data[i % N];
#ifdef CONFIG XtTrain_coreO_tie
iT (GOLDEN_BYTESWAP(s) != BYTESWAP(s)) fail++;
#else
GOLDEN_BYTESWAP(S) ;
#endif

}
#ifdef CONFIG XtTrain_coreO_tie

printf('State COUNT=%d\n",RUR_COUNT());

printf(C'%s\n*, fail ? "Mismatch detected” : "Your TIE works!');
#else

printf('Swapped %d words \n", 1);
#endif

tensifica
Customer Training

29

Lab 6: Writing and Testing Your First TIE Instruction

Answers / Solutions]

Question 1. Which function takes the most number of cycles?

Answer: GOLDEN_BYTESWAP()

Question 2. How many cycles does that function take?

Answer: 200,025 cycles

Question 3. How many cycles are spent in the TIE instruction BYTESWAP through the
entire application?

Answer: 20,000 cycles due to interlock penalty (10,000 cycles if using —O3)

Question 4. What is the performance gain by using TIE instructions?

Answer: 10 times speed up; 20 times if using O3

tensilica

30 Customer Training

	Lab Flow Diagram
	 Introduction
	Conclusion

	Original C Source Code
	TIE Source Code
	Modified C Source Code
	Answers / Solutions]

