Lab

Using Xtensa Software Tools
In Xtensa Xplorer

LEARNING OBJECTIVES:

W Using the Xtensa software tools in Xtensa Xplorer

W Completing a software development flow, including compiling and linking an example
program and running the application on the Instruction Set Simulator (ISS)

W Debugging the program using Xplorer and profiling the code to find hot spots

W Exploring various cache combinations

Lab Duration:
60 min

\

g
o
g

Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Lab Prerequisites:

Before proceeding with this lab, we recommend viewing the Xtensa Xplorer Tutorials to
become familiar with the Xtensa Xplorer application and terminology. To test your
understanding of this lab, answer the questions throughout this lab. The answers are in the
Answers and Solutions section.

Lab Requirements:

If you are completing this lab in the Tensilica training laboratory, your PC is ready for use.
Otherwise, you may need to ensure your PC is prepared with the necessary licenses. To follow
the procedures in this lab, you need the following licenses:

=]SS
= XT-XCC compiler
= Xtensa Xplorer Processor Developer’s Edition

Contact your instructor if you have any licensing questions.

tensifica
2 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Lab Flow Diagram

if
|
g

Compiling the
Application

v

Running the Application

v

Profiling the Code

v

Debugging the Code

!

Optimizing the Compiler

!

Modifying the
Configuration

v

DONE!

Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Introduction

In this lab, you will become familiar with the Xtensa software tools available in Xtensa
Xplorer. This lab also introduces you to the methodology of optimizing your code using the
profiling capabilities of the Xtensa software tools to locate the hot spots in your code. You
will also be introduced to the debugger and learn how to use the Xtensa software tools to
compare the performance of multiple configurations of the basic core or variations on the core
you have designed.

The workspace used in this lab contains a configuration of the Xtensa processor, a system
using this configuration, and an application called byteswap. We will first compile the
byteswap application on the Xtensa configuration and then use a custom TIE instruction to
optimize the application and improve its performance.

In the later labs, you will learn to extend the Xtensa processor with new custom designed
instructions that are described in the Tensilica Extension Language (T1E) language. These
new instructions can often dramatically increase your application performance.

Task 1. Importing the Lab Workspace

STEP 1.1: Start Xtensa Xplorer.
1. Click the shortcut to Basic Training Xtensa LX on the desktop.
2. Open the Lab3 folder.
You will see an Xplorer shortcut and the BasLab3XXSWwin.xws workspace.
3. Double-click the shortcut Xplorer icon to start Xtensa Xplorer.

4. A workspace launcher dialog box appears.

Workspace Launcher x|

Select a workspace

¥kensa ¥plorer skores your projecks in a direckory called a warkspace,
Select the waorkspace directory to use faor this session,

Workspace: I | j Browse. .. |

™ Use this as the default and do not ask again

K I Cancel

5. Browse to C:\TensilicaTraining\RA2005.2\BasicTraining\Lab3 and click OK.

tensifica
4 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

6. Click on X to remove the welcome sctreen.

XtensaXplorer

STEP 1.2: Import the lab workspace.
The workspace for this lab is BasLab3XXSWwin.xws. This workspace contains:
® Processor configuration: XtTrain_core(
* Xtensa C/C++ Project: byteswap
= TIE file: byteswap.tie
1. From the File menu, select Import.

2. Select Import Xtensa Xplorer Workspace and click Next.

Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

x

Select
wtensa Workspace ™,

Seleck an import source;

;.fcheckn:uut Projects From WS
ﬁExisting Project into Workspace
IF_—IJFiIe systemn

ﬁlmpurt as wtensa CfC++ Project

[T, zip file

= Back I Mext = I Finmish | Cancel |

3. Browse to and select the workspace for this lab -- BasLab3XXSWwin.xws. It is
located at to C:\TensilicaTraining\RA2005.2\BasicTraining\Lab3.

4. Click Finish.

5. Check the processor configuration and software project against the information listed
at the beginning of this task.

tensifica
6 Customer Training ~

Lab 3: Using the Xtensa Software Tools in Xplorer

¥ o
6 C/C++ Projects 2 =0

ElI:'::- byteswap
- Einaries
#-= bin
@ brvteswap.c
[Makefile

Bl Sectem Overview X

EHE' Configurations
- Bl WTrain_core0-params (RA-2005.2) (c
: El% wETrain_corel

byteswap. tie

P {= Uninstalled Configs
El-{= TIE Source

Task 2. Understanding the byteswap.c File

We have just imported the workspace with an Xtensa C/C++ project, byteswap. Now we
will look at the source code and discuss what this code does.

STEP 2.1: Open the C/C++ Perspective.

1. Click the C/C++ Perspective icon) |

A perspective is a collection of views. The C/C++ Perspective contains views that
are useful in developing Xtensa C/C++ applications.

STEP 2.2: Open the byteswap.c source code.

1. From the C/C++ Projects View, expand the software project, byteswap. Double-
click the C file, byteswap.c.

tensifica

Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

C++ Projects X =B

-5 byteswap
+-£» Binaries
+-{= hin
GBI byteswap. c|

) Makefile

The byteswap.c source code displays in the Xplorer Editor window, as follows:

E: bytesuap.c X W

Ifﬂ‘1?ﬂ‘1?ﬂ‘?fwﬂ‘1?ﬂ‘ﬁﬂ‘?f1?ﬂ‘1?ﬂ‘ﬁwﬂ‘1?ﬂ‘1?ﬂ‘?fwﬂ‘1?ﬂ‘ﬁﬂ‘?f1?ﬂ‘1?ﬂ‘ﬁﬂ‘ﬂ‘1?ﬂ‘ﬁﬁﬁwﬁﬁﬁﬁﬁﬁwﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁwﬁ

Evteswap.c

Thiz example cowmpares ahn endian-conversionh implewented in © and TIE
ﬂ'ﬁ'ﬁ'1?ﬁ‘ﬁﬁ'ﬂ'1?1?1?ﬁ'ﬁ1?ﬂ'H1?1?wﬂ'Hﬂ'ﬁ'ﬁ'ﬁwﬂ'ﬁ'1?1?ﬁ'ﬁﬁ'ﬂ‘1?1?1?ﬁ'ﬂ‘1?ﬂ'Hﬁ'ﬁwﬁﬁﬁwﬁﬁwﬁﬁﬁwﬁﬁﬁﬁﬁﬁﬁwﬁﬁf

#include <stdio.h>

/% Nunber of Iterations to run */

#define NUM 10000

/% Random data used to test the hyteswap instruction +/

#define N &4q

unsigned datca[lN] = {
OxYedbles?, O0x159£51k7, O0xfb17d999, Oxdeskb3047, O0x580bLOBL3I1,
O0xb&7db5hY, Oxkbh91a3ds3, 0x07e90569, 0Ox155fleeS, O0xd9Z21d4dS0f,
Oxe3f20331, Oxb27?7491k, 0x342b7edd, OxdaSfczi7, O0x3bfdedzb,
Oxocalkh3237, 0xa0350575, 0x01096dcs, OxSkh43hi3dS5, OxfVd4dalel,
Ox68c16h2f, Ox610758e47, O0xf069004%, Ox7ed45f6cs, 0xa2539a9al,
Oxse3?hagld, O0x28033072, Oxfdeb7f£9f, O0xS5fbffeVh, Oxeallcedl,
0xf3al18c91, OxOee59%ebh?, O0xabh0b5683, O0xf505f6eS, O0xX7Y0cS9e795,
Oxc28d2e9bh, O0xdaS£1899, 0xf91b£f5359, Oxaff?7175d, O0x01£f9=b35,
Oxede750bl, 0Oxkbd5398e3, 0x1b9fdlld, Oxcocf358cS, O0xdZZ33add,
0xd273e375, Oxbf33e251, O0x58ffeiel, Oxdacdiedl, O0xa27f£6353,
OxEel77cedS, O0x10597955, OxS5de7efld, OxS5f£affdhb, Oxcaaf9c7al,
O0x70£581ef, OxcOef36c?, O0xd3eSeehf, OxZd3f0act, Oxch7fZScl,
O0x70c7?04af, O0x0d45k59251, O0x6b259aa9, O0xeZShl1S9f5

b

/% global states used by the C implementation */

static unsigned GOLDEN COUNT:

static unsigned GOLDEN SWAP:

ST 2 implementation of bhyteswap to test against TIE implementation®/
static unsigned

GOLDEN EBYVTEZWAP junsigned =)

{
unsigned ss = [(s<<Z4) | [(=3<<8)&0x££0000) | [(s>>5)&0x£L£00) | [gxx2d):
GOLDEN COUNT = GOLDEN COUNT + 1:

STEP 2.3: Understanding the functionality of the byteswap.c program

The byteswap.c program contains a loop that invokes GOLDEN_BYTESWAP() 10,000 times
and compares it to the result returned by the BYTESWAP() function. As the name suggests,

A
tensifica
8 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

GOLDEN_BYTESWAP is the golden model or the pre-verified functional model of this
function. BYTESWAP is the call to the TIE instruction that we will create later. The input to
GOLDEN_BYTESWAP() comes from a table of random data. The data is used to verify the
TIE instruction against the result produced by GOLDEN_BYTESWAP().

The GOLDEN_BYTESWAP function swaps the bytes in a 32-bit word in the following

manner:

Input Word: S d C b a

Output Word: SS a b c d

Review the GOLDEN_BYTESWAP() function and you will find that it consists of a set of
byte shifts and masking steps that achieve the result shown above.

tensifica

Customer Training 9

Lab 3: Using the Xtensa Software Tools in Xplorer

Task 3. Compiling the Application

Description and Terminology: To compile an application or project in Xplorer, you have to
tell Xplorer the project to compile, the processor configuration to compile the project on and
the build target. A build farget is a set of build properties (compiler, assembler, linker options).
We call these the active project, active configuration, and the active target, and together we
refer to them as the Active Set.

1. Select the active set using the drop-down menus in the toolbar on the top of Xplorer.

P: byteswap ~ C:XiTrain_cored - T:Release - Build Active -

Release
=0 @byt&swap.c &
Debug
'} - -_.'HHHHHHHHHHHHHHHH Mndif‘rllll SRR R R R R
| Ruteawran o

2. Select byteswap as the active project, XtTrain_core0 as the active configuration, and
Debug as the active target.

3. Click the Build Active button in the toolbar. This starts compiling the active project
on the active configuration using the build properties specified in the active target.

In the lower right corner, the Console view displays the compilation output. Select the
Problems view to see if there are any errors and warnings in the build process. Double-
clicking the error or warning in the Problems view opens the file with the problem in
the C/C++ Editor to the corresponding line.

tensifica
10 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Task 4. Running the Application

Purpose: In this task, we will execute the byteswap application that we compiled in the last
task. The application is executed on the Xtensa Instruction Set Simulator (ISS) and we will
explore some of the profiling options available in this simulator.

Terminology and description: Xtensa Xplorer uses the concept of a "launch" as a way to
remember how a binary is to be executed. It collects together all the run time settings (e.g. ISS
settings, profiling and command arguments), and gives them a name so you can easily run (or
debug) that launch again.

Note that a launch includes more than just the executable. The ability to specify multiple
launches for a single executable is very powerful because the same executable with different
datasets is a very effective way of analyzing performance of those datasets with the Benchmark
perspective.

There are three buttons in the toolbar of Xplorer labeled Run, Profile, and Debug.
Run = Profle = Debug -

Clicking on any of these buttons launches a default run launch created by Xplorer known as
the “Auto Launch” for that button. The auto launch associated with the Ru#z button executes
the binary of the application on the ISS with no profiling and no memory modeling. The auto
launch associated with the Pryfile button has profiling and memory modeling enabled and the
auto launch associated with the Debxg button launches the debugger.

You can create your own run launches when you want to specify arguments to your
application or change the default simulator settings that the Auto Launches use.

STEP 4.1: Executing the application using Auto Launches.

1. Click Run on the main menu toolbar of Xplorer.

Profile = Debug -

This launches the Auto Launch associated with the Run button. Xplorer executes the
application and the output of the run is shown in the Console View. You should see a
message that reflects that your TIE worked correctly.

tensifica

Customer Training 11

Lab 3: Using the Xtensa Software Tools in Xplorer

STEP 4.2. Creating your own Run Launch.

Purpose: We will show you how to create your own run launches, so that you can add your
own simulator flags or arguments to the program. In this step, we will add the “pchistory” flag

to simulator options.

1.

12

Select “Profile...” from the Profile drop-down menu in the toolbar (or “Run...”
from the Run drop-down menu) to open the Profile dialog box.

JRun'F‘rDFiIe'Debug'J@*J[g‘ﬁ;'J 0w |

55 1 Auko -- byteswap - ¥tTrain_cored - DebugOpk

Py Praofile As r

ersion m
Qrganize Favorites. ..

TEEFTEEN :

In the Profile dialog box, select byteswap_profile under the Xtensa Single Core
Launch configuration.

Profile x|

Create, manage, and run configurations
Set the project and executable to launch. @

Configurations: Marme: |byteswapjrnfile
EHEE #tensa Single Core La
BT AukertTrEmwar _
L F E |(><1= Arguments Simulatu:url = Cu:ummu:unl
Projeck:

| byteswap Browse. .. |
CIC++ Application: /\

II:uin,l'single_system_,l’matrix1,l'XtTrain_u:u:ureD,fDeI:ug,fl:uyteswap (Search... |,

See Help for an explanation of different launch options Help |
0 i
I | Delete Apply | Rewverk |
ok | cese |
r A
tensiiica
r

Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Select the Main tab, click Search, and then select the byteswap-
[single_system | XtTrain_core0 | Debug] program.

If not already enabled, select the Simulator tab and enable the Profile Execution and
the Enable memory performance modeling options.

As a demonstration of how to invoke ISS Client packages through the specification of
command line arguments, enter “--pchistory=5" in the Additional Arguments
section. This invokes the “pchistory” client package when this run launch is invoked.

The pchistory client package stores the history of the last N program counter (PC) values.
Here we specify that we want to store the last five PC values.

Profile x|

Create, manage, and run configurations

Specify how the simulator is to run @

Configurations: Mame: |bvteswapgrofi|e
E-ES ¥tensa Single Core Laur

55 Auko -- byteswap -
oy -_-:'-'.-'-.'-Ell:lJ:lr'l:lfi|E Main I t= .ﬁ.rguments @ | EI CIZII'ﬂI'ﬂl:II'II

—155 Execution Options
¥ Profile Executio Cycle Counting Methad: IF‘ipeIine Model j

[~ Trace Execution |3 vI ItraceFiIe.txt
[Start with counting off

—Memaory Modeling Options
I¥ Enable memary performance modeling Memary Waitstates (cvdes) I 1]

Repeat Block Waitstates (oycles) I 1]
Cverride write buffers IdeFault 'l

—IiCache Options —DCache Options
[~ owerride XPG Cache Settings [~ owerride ¥PG Cache Settings

Size (bykes) IXF‘G default ""I Size (bytes) IXF‘G default "I

Line Size (bytes) IXF‘G default "I Line Size (bytes) IXF‘G default "I

Associativity (ways) |1 "I Associativity (wavs) Il "I
e =

dditional &rguments {comma sepam&)\

I --pchiskary=5 /
lI—I ﬂ \V/

Mety | Delete | Apply | Rewerk |

Frofile I Close |

6. Click Apply and then Profile.

tensifica

Customer Training 13

14

Lab 3: Using the Xtensa Software Tools in Xplorer

Xplorer changes to the Benchmark Perspective and the program executes with the
output displayed in the Console view. Once the program has finished execution, the

function-by-function profile of the program is displayed in the Profile view in the
Benchmark perspective.

STEP 4.3. Analyze the output of the byteswap_profile launch.

1. From the Benchmark perspective, click the Console view tab at the bottom of the
Xplorer window to review the output from the program run.

tensifica

Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Question 1.

tensifica

What version of the ISS are you using and what does ISS stand for?

What is the data cache size? What percentage of data cache reads are data
cache misses?

How can you increase the data cache size for your simulation? Hint Review the
Stmmulator section of the launch.

What was the last value of the program counter (PC)? What about the last five
PCs, and what option did we use to display that value?

What does memory performance modeling do, as the memory we model is
zero wait states? Hint: Modzfy the launch to remove the memory modeling. Pay attention
to the cache misses.

Customer Training 15

Lab 3: Using the Xtensa Software Tools in Xplorer

Task 5. Viewing the Profiling Results

Purpose: We will now examine the profiling results obtained from running the application on
the simulator in the last task.

1. In the Benchmark perspective, click the Profile view tab at the bottom of the Xplorer
window to access the statistics of the byteswap_profile run launch we executed. The
title bar of the Profile View contains six icons, as shown from left to right below:

Execution Cycle count statistics TN
Instruction cache misses

Data cache misses >_

Interlock cycles

Branch Delay cycles

_

¥ Output profile data

Console x Call-Graph | Comparison | Saved Qutput | Pipeline hd |
Function Mame | Total cydes (%) | Function cydes | Children cydes | Times called (invocations) | -
GOLDEM_BYTESWAP 58.13 4300860 o] 10000
mair 38.21 310252 498527 1
_vfprintf_r 0.59 4333 12841 3
__udivsi3 0.27 2214 0 32

Dirmmd e 2 n e el [ut=] n 2 b

Question 8. Which routine of our application takes the most cycles? How many times was
it called?

Question 9. How many times did main() have an instruction cache miss? Hint: To sor7 a
column, click the head of the colummn.

tensifica
16 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

STEP 5.2: Analyze the TIE instruction byteswap.
1. Select the Execution Cycle Count Statistics icon (shown above).
2. Select the main function in the Profile view.

3. In the Profile Disassembly view (right side of the Xplorer window), scroll through the
assembly code and select the TIE instruction, byteswap.

4. 'The first column in the Profile Disassembly view, Count, displays the cycle count for
each instruction. Note that in the Editor view, the C Source line is within a loop of
10,000.

Eﬁ] Profile Disassembly X XPRES Analysis = O

Count | Address Instruction 4_\

20000 a00011e3 addx4 al0, 210, a1l

10096 600011e6 [3%.na10, 210, 0

10000 600011e3 53d.nald, al, 3

10000 a00011ea [32%.n a9, al, 8

600011ec byteswap a8, a 1

10003 600011ef 534.n a8, al, 12

10000 a00011f1 [3%i.nal0, al, 8
main+0x33

10000 6000113 call@ 60001160 <GOLDEM_B
main+0x 36

30000 6000115 [3%3i.nall, al, 12 b

L | ¥

Question 10. How many cycles did the byteswap instruction take in the cycle count? How
many bubbles (interlocks) did it produce?
Hint: Switch to the interlock statistics and select main() to access the Profile
Disassembly listing. Take note of the address of the instruction.

STEP 5.3: Use the Pipeline view.
1. Click the Pipeline view tab at the bottom of the Xplorer window.

The Pipeline View displays a statistical view of how each instruction flows through the
processor pipeline.

2. The second column in the Pipeline view lists the instructions. Find the byteswap
instruction in this column and double-click it. This will draw the pipeline diagram for
this instruction to the beginning of the third column.

tensifica

Customer Training 17

Lab 3: Using the Xtensa Software Tools in Xplorer

Console Profie | Call-Graph | Comparison | Saved Output m =0

[I
50001186 3%.nal, ald, 0 —m A
£0001123 532i.nall, al, 8

E00011ea 3%i.nag, al, 8 m

byteswap a8, a9
E00011ef £32i.n a8, al, 12
500011F1 32i.nall, al, 8 T =

6000113 calls 60001160 <GOLDEN_BYTESWAP = 5

|

Question 11. Does this view explain why the byteswap TIE instruction accumulated twice as
many cycles as the “for loop” called for? Why is there an intetlock?

18 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Task 6.

Debugging the Code

Purpose: We will now learn how to debug our application code in Xplorer. We will single
step through the instructions during the debug session and also learn how to watch the values
of expressions during debugging.

Terminology and description: The Xtensa Xplorer debugger is built on top of Xt-gdb, the
command line debugger. The debugger launch definitions are the same launches as those
created for execution. When using the debugger, it is better to set the compiler optimization
level to zero. This is because compiler optimization strategies can create binary code that is
difficult for the debugger to map back into the C source code.

STEP 6.1. Start the Debugger.

tensifica

From Xplorer toolbar, click Debug.

Fun - Profie

This opens the Debug perspective and launches xt-gdb on the executable using a

debug Auto Launch.

Debug - byteswap.c - Xtensa ¥plorer

File Edit Mavigate Search Run Project Window Help

[Nwits NE

J P: byteswap = O ¥ETrain_cored ~ T:Debug ~ Build Active - .

J Run ~ Profile = Debug - J & J -

-l ¥R

| % | B

=0l x|

mi[% &

<

/* Initialize C & T.IT.E COUNTERS to D_i:l
»

#&Debug &3 =08 @reakpoints | Expressions | Reqisters | Tie Wires | Memory| =08
- L% KRk
Ok N = T
E| GOE byvteswap(Xk Train_corel) session I;I
{ g Thread [0]{Suspended)
2main{) at ..b.4 0 byteswa
= 1 _start(}
1| 155 CiixtensalXtDevToolshinstalltools|R
foep) Debug Console u] =
<| | | o
(B byteswap.c &2 O ﬁc;c++ Projects &3 Disassemblyl =0
GOLDEN COUNT = GOLDEN COUNT + 1: Al =R
return =3;
¥
int maini)
¢ |
> unsigned =, i, fail = 0:

El consale 52

Bl |t B-=0

Auka -- byteswap - ¥ETrain_cored - Debug [¥tensa Single Core Launch] 1SS CiixtensalxtDevToalshinstallitoolsiRA-2005. 2-win32 ¥tensaToalsibinls

4 |

Cihxtensal EtDevToolsh installl toolsy RA-2005. 2-win32\ EtensaTools\binh xt-run ——xtensa—cord

il

Customer Training

19

Lab 3: Using the Xtensa Software Tools in Xplorer

You can access the debugger control options using one of three methods:
®» From the icons in this view
* From the Run menu options, or

® Using keyboard shortcuts

STEP 6.2: Use a single step to navigate the code.

1. In the title bar of the Debug view, click the Step Into icon 2| o single step through
the program. Keep single stepping until you enter the GOLDEN_BYTESWAP
function.

2. Select the Variables tab in the upper right corner view of the Debug perspective. This
view displays the current values of the local variables and the arguments. In the
GOLDEN_BYTESWAP function, two variables (ss and s) should be present in the
Variables view.

-
()=Yariables &3 Breakpoints | Expressions | Reqgisters | Tie Wires | Memary

K7

3. Continue single stepping until you reach the return line in the
GOLDEN_BYTESWAP function.

Question 12. Looking at the values of s and ss, what function does
GOLDEN_BYTESWAP perform?
Hint. Right click each variable and change the format to Hexadecimal.

STEP 6.3: Work with expressions.

1. Set a breakpoint at the GOLDEN_COUNT increment line of
GOLDEN_BYTESWAP function by double clicking on the column just left of the
text editor window, next to this line of code. This creates a breakpoint marker at this
line

tensifica
20 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

S0 glopal STates UuSed bY Che o 1mplementatlon -/
static unsigned GOLDEN COUNT:
static unsigned GOLDEN SWAF;

J* C implementation of byteswap to test against TIE implementation®/
static unsigned
GOLDEN BYTESWAP (unsigned s)
{
unsigned sz = (s<<24) | | (s<<8)&0x££0000) | ((=>=>5)&0x££00) | [s>=24) 2
GOLDEN COUNT = GOLDEN COUNT + 1:
E@ return =s;

int maini)

unsigned s, i, fail = 0O;

/% Initialize € & TIE COUNTERS to 0O */
GOLDEN COUNT=0;:

ol

2. Click the Resume button L-

breakpoint.

or press F8 until you reach the newly created

3. Double-click, then right-click the GOLDEN_COUNT variable and select Add
Watch Expression to open the Add Watch Expression dialog box, and then click
OK. This displays the value of the global variable, GOLDEN_COUNT, in the
Expressions view.

"add Watch Expression |

Expression ko watch:

LOLDEN COLINT

Ik IE I Cancel |

Question 13. Bonus: Can you locate the register that computes the incremented
GOLDEN_COUNT and then confirm its value in the Register browser?
Hint: Click the Disassembly view to examine the assembly code.

C/C++ Projecks [N [IBEEEm= m e
?ﬁibeDDEIllaf <GOLDE EYTESWAP+79

tensifica

Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Question 14. Bonus: Can you locate the memory location used to hold the value of
GOLDEN_COUNT and then confirm its value in the Memory browser?
Hint:: Click the Disassenbly On/ Off icon and select the Registers tab and the Memory
tab.

tensifica
22 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Task 7. Compiling with Optimizations

Purpose: We will now create a new compiler build target to show how the performance of the
code changes when using compiler optimizations.

STEP 7.1. Create a new build target.

1. Terminate the Debug by hitting the Terminate button on the top of Debug
Perspective.

2. Open the C/C++ Development perspective.

3. To open the Build Properties dialog box, click the Active Target drop-down menu,
and click Modify...

I P: byteswap « C: ®ETrain_cored - T:Debug = Build Active - J
Release
Debig —
ftttttttttttt#'. FTEEEESTTITFTSF
Evytezswap.c M!y
Thiz examnple compares an endiah-co
o o e ol

J
4

4. In the Build Properties dialog box, expand Global Settings on the left side and select
the byteswap project.

5. Click Manage Targets, and then type DebugOpt in the Add and Remove Targets
text box of the Build Target Manager dialog box.

tensifica

Customer Training 23

Lab 3: Using the Xtensa Software Tools in Xplorer

¥4 Build Properties

[=1-1=* Global Settings ~Toolchain and Target

5l 5 byteswap [eersa Too

IDebug ;I Manage Targets |

;I Make Default Tool Chain

Make Default Build Target

Affecting byteswap and all of its children.

Preprocessor | optimization | Warnings | Lanuage | Assembler | Linker |

i~ Indude Paths (comma separated)

—Defines {comma separated)

¥4 Build Target Manager

Releaze
Debug

IDebugOLJt Add Target | Delete Target |

{ Add and Remove Targets

[

TIP: Do not use punctuation in this box. Xplorer enables the Add Target

 button only when there is a valid name.

6. Click Add Target to define the DebugOpt target options for the byteswap SW
project and then click OK. The newly created DebugOpt target should automatically

be selected in the Build Properties dialog box.

STEP 7.2. Select the Build Target options.

1. Select the Optimization tab in the Build Properties dialog box and select the
“Include debug information” option — this selects the “-g” compiler flag.

24 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

B Build Properties

- Glgbal Settings ~Toolchain and Target -
[+-1== byteswap 1 _j

1DebugD|:|t

Affecting byteswap and all of its children.

Preprocessor Optimization]Wamings] Language Assembler1 Linker]

Optimization Level: [E
Optimize for; i+ Speed [Size
[Enable interprocedural optimization [” Enable automatic vectorization
[~ Enable profile-directed compilation
W Indude debug information [Keep intermediate compilation files
[Don't serialize volatile memory accesses | Enable long calls
™ Putliterals in text section
i~ Compiler Flags

|-02g

2. Click OK to accept the new settings.

\

g
o
g

Customer Training

25

Lab 3: Using the Xtensa Software Tools in Xplorer

STEP 7.3. Profiling with the new Build Target.
1. Select DebugOpt. as the active target as shown below.

C/C++ - byteswap.c - Xtensa Xplorer

File Edit Mavigate Search Run Project Window Help

- | oo J?@. J J P bvteswap = CoxtTrain_cored = T:Debug = Build Active ~ . J Run = Profile ~ Debug ~
= 5[6l byteswap.c 2 m

AL QdluL L, Release p DACHILL UL DAL L UE D A

Oxc28d2e9h, Debug , Oxf91kf539, Oxaff7178d, Ox01:

OxeSe750m1, Mudfy.. | gyipofdiid, Oxcof3Sscs, Oxdz

"-O Binaries 0xdZ73e375, Oxbf33ezsl, OxS8ffezZel, Oxdacdzedl, Oxaz’

2. Click the Build Active button to compile the project for the new build target.

3. Click the Profile button.

J Run = Profile | «| Debug - J G - J[g & J

HhE
—ll:-';.-'teswap - ¥tTrain_corel - DebugOpk I_

e e e e e e e i e e

Xplorer changes to the Benchmark Perspective and executes the binary for the active
set.

4. In the Profile view at the bottom of the Xplorer window in the Benchmark

perspective, click main to open the Profile Disassembly for the main() function in
the top right corner of the Xplorer window.

Question 15. What is the cycle count for the byteswap TIE instruction now? How is this
different from the previous cycle count?

tensifica

26 Customer Training ~

Lab 3: Using the Xtensa Software Tools in Xplorer

Task 8. Modifying Core Configurations

Purpose: We will now learn how to modify the configuration of the Xtensa processor core
and examine the impact of these modifications on the performance results for our application
code. We will also learn how to view the comparisons between different configurations.

Terminology and description: Because our example is not data intensive, you may wonder
how small we can make the cache and what are the effects of this change. The ISS permits us
to change these configuration parameters for simulation purposes. In addition, Xplorer
includes a valuable tool that enables visualization of comparisons between multiple processor
configurations.

STEP 8.1: Run Cache Explorer .

1. In the Benchmark perspective, click the Open New Cache Explorer Panel button.

Benchmark - byteswap.c - Xtensa Xplorer

File Edit Mavigate Search Run Project ‘Window Help

J - | 010 J?@, J J P: byteswap = C: XETrain_cored = T: DebugOpt =

[€] byteswap.c 52

N i
larer Panel| Oxczad;
Oxede?.
OxdZ75
Oxeel™
Ox70OL5:
Ox70e7

b

2. To select a launch to be evaluated for different cache configurations, select Auto—
byteswap-XtTrain_core0-DebugOpt and click Next.

tensifica

Customer Training 27

Lab 3: Using the Xtensa Software Tools in Xplorer

Cache Explorer x|

Select Launches

Select the launches ko use For evaluating the cache configurations.
Hold =ikl = while selecting ko choose mulkiple launches.,

cored - Debugiopk

< Bach: Mexk = | Finish I Cancel

For a more realistic analysis, we will add the memory and repeat block wait states as 5 in both
cases:

= Casel: Icache(Direct, 1K 16 bytes/line), Dcache(Direct, 1K 16 bytes/line)

= Case2: Icache(Direct, 4K 16 bytes/line), Dcache(Direct, 4K 16 bytes/line)

STEP 8.2: Create Case 1.
1. Type Casel in the Configuration Name field.

2. Select the cache and memory parameters listed above and then click Apply.

tensifica
28 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

STEP 8.3: Create Case 2.
1. Click New and type Case2 as the configuration name.

2. Enter the cache and memory parameters as listed previously and then click Apply.

3. Select the checkboxes for Casel and Case2 in the Cache Configurations section, and
then click Finish.

Cache Explorer |

Create, Manage, and Select Cache and Memory Configurations

Ilse the check boxes to select one or more cache/memory configurations, You may also create new configurations by using
the Mew or Duplicate butkons, or modify an existing conguration by selecting i,

—Cache Configurations —Cache and Memaory Parameters

Case Configuration Mame | Casel
Case?
—ICache Associativity —————————— ~DCache Associativity ——————————————
|
2 2
4 4
3 &)
—ICache Size —DCache Size
20458 2045
4096 40965
g102 192
163554 16354
32768 32768
rICache Line Size —DiCache Line Size

32 32
64 64

—Memory Modeling Options

remary \Waitstates (cycles) I 5

4| | ﬂ Repeat Elock Waitstates {cycles) I 5

Mew | Duplicatel Delete I Apply Rewvert

< Back. | Iexk = I Finish I Cancel

Xplorer executes the program with the defined memory and cache parameters. After a
few seconds both Casel and Case2 runs become available. The Benchmark Projects

view will contain an entry for Cache Explorer with Casel and Case2.

Note: The selection order is important.

tensifica

Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

STEP 8.4. Create a comparison graph.

1. Click the Compare all Cache Configurations button in the Cache Explorer Panel to
compare benchmark results for configuring cache differently.

{@Benchmark Results &3 Ed | == R =l

EPCache Explorer

Casel ﬁl ':'l Eil

Ei% futo--byteswap-2ETrain corel-DebugOpt K |

Case? ﬁl '='| EEI

Ei% Subo--bebeswap-tTrain core0-DebugOpk [|

2. The comparison chart showing both cases appears in the Comparison view.

3. Double-click the title bar to maximize the Comparison view. Notice the row of icons
on the title bar.

4. Use the drop-down menu on the right side of the graph to display the Cache Misses
and Application Size comparison chart.

Question 17. What information does each of the graphs display? (Hint: Check the Cycles,
Cache Misses and Application Size)

Question 18. How much performance degradation occurred with Case 1? How about the
cache misses?

tensifica
30 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Answers / Solutions

Question 1.

Answer:

Question 2.

What version of the ISS are you using and what does ISS stand for?

ISS version 6.0.2
ISS stands for Instruction Set Simulator

How long does the simulation take?

Answers vary for this question. This is the amount of wall clock time your computer

Question 3.

Answer:

Question 4.

Answer:

Question 5.

Answer:

Question 6.

Answer:

A
tensifica

needs to complete the simulation.

How many cycles does the simulation run?

811,821 cycles. The answer can vary. Check the console output.

What is the data cache size? What percentage of data cache reads are data
cache misses?

Data Cache: 1,024 bytes (1KB), direct mapped, 16-byte line size

0.05% of data cache reads are data cache misses.

How can you increase the data cache size for your simulation?

Although you need to create a new processor configuration on the Xtensa
Processor Generator to change the cache size, for simulation purposes you
can change the simulator’s cache size to gain insight into what is the
optimal cache size for your application.

The Simulator tab of the Run Launch Dialog contains these switches. For

data and instruction cache, we can select the size, number of ways, and the
size of the line to change the simulation cache parameters.

What was the last value of the program counter (PC)? What about the last
five PCs, and what option did we use to display that value?

From the Console output, we can see that the last PC value is part of the

Customer Training 31

Lab 3: Using the Xtensa Software Tools in Xplorer

normal summary.

current pc = 0x60005d9d

The last five PC values come from the —pchistory=>5 simulator option. The last
five PC values are:

Backtrace of the last 5 PCs for core example_corel:
0x6000c6a7
0x60005d91
0x60005d94
0x60005d97
0x60005d9a
The above result can vary. Check the console output.

Question 7. What does memory performance modeling do, since the memory we model
is zero wait stats?

Answer: Memory performance modeling enables memory subsystem modeling,
including simulation of caches and internal RAM/ROM behavior (not only
the external memory). Therefore, cache miss penalties are taken into
account in the simulation.

Question 8. What routine of our application takes the most cycles? How many times
was it called?

Answer: From the Profile display on the cycle count statistics view, we can see that
the function with the largest cycle count is GOLDEN_BYTESWAP with
480060 cycles and 59.13% of the accumulated cycles. This function was
called 10,000 times.

In the Call-Graph view, we can identify that main is the only function that
calls GOLDEN_BYTESWAP.

Question 9. How many times did main() have an instruction cache miss?

Answer: From the Profile display on the I-cache miss count statistics view, we can
see that the main function had six cache misses in itself. In addition, the
functions it called (children) had 867 I-cache misses. To locate the statistics
for main()easily, click the Function Name header to sort the statistics by
function name.

tensifica
32 Customer Training

Lab 3: Using the Xtensa Software Tools in Xplorer

Question 10. How many cycles did this instruction take in the cycle count? How many

Answer:

Question 11.

Answer:

Question 12.

Answer:

Question 13.

Answer:

Question 14.

Answer:

bubbles (interlocks) did it produce?

The TIE instruction byteswap took 20,000 cycles total. It produced 10,000
interlock cycles.

Does this explain why the byteswap TIE instruction accumulated twice as
many cycle as the for loop called for? Why is there an interlock?

The Pipeline Preview shows that there is a resource interlock in the
byteswap instruction. The register it uses is loaded in the previous
instruction. Therefore, a bubble needs to be inserted to wait for the register
to be loaded.

Looking at the values of s and ss, what is the function performed by
GOLDEN_BYTESWAP?

The function swaps the bytes within a 32-bit word, so byte 0 swaps with
byte 3 and byte 1 swaps with byte 2. So in the second data sample,
s=0x159f51b7 and the output is ss=0xb7519f15.

Bonus. Locate the register that is used to compute the incremented
GOLDEN_COUNT and then confirm its value in the Register browser.

In the Disassembly view, a few lines above the retw.n instruction locate the
addi.n a4, a4, 1 instruction. The register A4 is used to compute
GOLDEN_COUNT. In the Register tab of the top right corner view, open
the AR register (current window), where a4 should be equal to 1.

Bonus. Locate the memory location used to hold the value of
GOLDEN_COUNT and then confirm its value in the Memory browser.

In the Disassembly view, a few lines above the retw.n instruction locate the
s32i.n a4, a5, 0 instruction right below the addi.n a4, a4, 1 instruction. The
register A5 is used to point to the memory location holding
GOLDEN_COUNT. In the Register tab of the top right corner view, open
the AR register (current window), where A5 should be equal to 0x6000d278.
In the Memory view, select a Memoryl tab and give the address
0x6000d278. Confirm that the value is 01.

Customer Training 33

Lab 3: Using the Xtensa Software Tools in Xplorer

Question 15. What is now the cycle count for the byteswap TIE instruction? How is this
different from the previous cycle count?

Answer: The byteswap instruction now takes only 10,000 cycles. It no longer has a
bubble because the input data is not loaded in the immediately preceding
instruction.

Question 16. What happened to the call to GOLDEN_BYTESWAP?

GOLDEN_BYTESWAP was optimized and now is inline. Notice the code right before the
byteswap TIE instruction. That code is the GOLDEN_BYTESWAP function.

Question 17. What information does each of the graphs display? (Hint: Check the Cycles,
Cache Misses and Application Size)

Answer: The cycles graph shows all the statistics (cycle count, Icache misses in cycles,
Dcache misses in cycles, the branch delays in cycles, and the interlocked
cycles) for both Casel and Case2. The Cache Miss graph shows the Cache
misses per occurrence, both Icache and Dcache. The Application Size graph
shows initialized data size, literals size, read-only data size, uninitialized data
size (bss) and text size.

Console | Profile | Call-Graph EECDI’H arison Saved Output|Pipe\ine| %’E » =0

Cache Explorer - Cycles

200 0o | I
» DCache Miss Cycles

= Total Cycles
150'000- = Branch Delay Cycles
un Interlock Cycles
100,000 ICache Miss Cycles

582470

50,000

0

Casel Cage2

=3

Console | Profile | Call-Graph omparison X Saved Output|Pipe\ine| % 11l = =0

Cache Explorer - Cache Misses
500

w DCache Misses
m |Cache Misses

SASSIP AYIED J0 Jagquinpy
| S N T Ty Y)
o T s N e Y N e Y Y e |
o o o o o o O

100

=]

Casel Case?

tensifica

34 Customer Training ~

Lab 3: Using the Xtensa Software Tools in Xplorer

Console | Profile | Call-Graph EEF’ npariso Saved Output|Pipe|ine| i...... %m + =08
Cache Explorer - Application Size
250
w Initialized Data Size
205_ = Literals Size
Read-Only Data Size
m 150_ w Uninitialized Data Size
= Text Size
@ 100
50
0
1
byteswap-¥tTrain_core0-DebugOpt

Question 18. How much performance degradation do we get with Casel? How about the
cache misses?

Case 1 is slightly slower, but either cache configuration will take about 200,000 cycles
to execute the code. The cache misses for both Icache and Dcache are about 50%
higher in Casel than in Case2.

tensifica
r

Customer Training 35

	 Lab Flow Diagram
	Introduction

	Answers / Solutions

