

KV Computer Microsystems Teil III Ablaufplanung

Andreas Koch

FG Eingebettete Systeme und ihre Anwendungen Informatik, TU Darmstadt

Sommersemester 2005

Einführung

Ressourcenbeschränkung

Mit Ressourcenbeschränkungen

Houristi

Organisatorisches

- Gesamtdauer von Teil III: 14 Vorlesungsstunden
- Aufgeteilt auf 4+0, 4+0/3+1, 3+1/4+0, 0+2
- 6.7. noch nicht verplant
- 13.7. Klausur

Einführung

Ressourcenbeschränkung

Gliederung

- Einführung
- Ohne Ressourcenbeschränkung
 - ASAP/ALAP
 - Zeitbeschränkungen
- Mit Ressourcenbeschränkungen
 - Exakt
 - Heuristisch

Einführung

Ressourcenbeschränkung ASAP/ALAP

Einführung

Schaltungsmodell

- Sequenzgraph $G_S(V,E)$ (hier: flach!)
- Taktperiode
- Ressourcentyp von v_i ist $T(v_i)$
- Operationsverzögerungen $d_i = d(T(v_i))$ in Takten

Ablaufplanung

- Bestimmt Startzeitpunkte der Operatoren
- Erfüllt Zeit- und Flächenbeschränkungen

Ziel

 Abstimmung von Zeit- und Flächenbedarf (trade-off)

Einführung

onne lessourceneschränkung ^{ASAP/ALAP}

Allgemein

Einführung

Ressou

ASAP/ALAP

Mit Ressourcenbe-

Exakt

Heurist

Ablaufplan

Funktion $\varphi: V \to \mathbf{N}$, mit $\varphi(v_i) = t_i$, so dass

$$\forall (v_i, v_j) \in E : t_j \ge t_i + d_i,$$

Feinere Differenzierung: Ablaufplan ...

...ohne Ressourcenbeschränkung und minimaler Latenz

Ablaufplan mit minimalem t_n .

... mit Ressourcenbeschränkungen und minimaler Latenz

Zusätzlich muss für alle Ressourcetypen $k=1,2,\cdots,n_{res}$ und Ausführungsschritte $l=1,2,\cdots,t_n$ gelten:

$$|\{v_i : T(v_i) = k \wedge t_i \le l < t_i + d_i\}| \le a_k$$

Hinweis: Hier vereinfachtes Flächenmodell, a_k sind die maximalen Anzahlen von Ressourcen des Typs k.

Einführung

Ressourcenbeschränkung ASAP/ALAP

Ablaufplanung ohne Ressourcenbeschränkung

- Dedizierte Ressource für jeden Operator
 - Paradigma der räumlich verteilten Berechnungen
 - Bindung hat vor Ablaufplanung stattgefunden

- Nützlich zur Bestimmung von Latenzuntergrenzen
 - Bei Planung mit beschränkten Ressourcen
 - Kann nicht besser werden als im dedizierten Fall

beschränkung ASAP/ALAP Zeitbeschränkunger Mit Res-

sourcenbeschränkungen Exakt

Heuristis

Ohne Bessourcen-

ASAP Algorithmus

As Soon As Possible - "So früh wie möglich"

$$\mathsf{ASAP}(G_S(V,E))$$

- 1 Starte v_0 bei $t_0^S = 1$;
- 2 repeat
- 3 Wähle v_i dessen Vorgänger alle schon geplant sind
- 4 Starte v_i bei $t_i^S = \max_{(v_j, v_i) \in E} t_j^S + d_j$
- 5 **until** v_n ist geplant

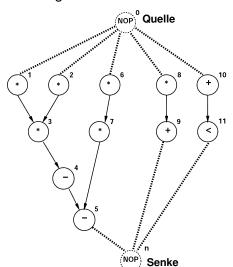
Einführung

Ressourcenbeschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen _{Exakt}

Beispiel Sequenzgraph

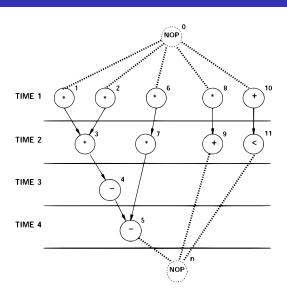
... nur zur Erinnerung



Einführung

Ressourcenbeschränkung ASAP/ALAP

Beispiel: ASAP Ablaufplan



Einführung

Onne Ressourcenbeschränkung ASAP/ALAP

Ablaufplanung mit Latenzbeschränkung

... aber immer noch ohne Ressourcenbeschränkung!

- Maximale Latenz ist λ̄
- Existenz eines gültigen Ablaufplans testbar mit ASAP
 - ...dann muss gelten $t_n^S t_0^S \leq \bar{\lambda}$
- Falls gültig, spätestmögliche Startzeitpunkte bestimmen

Einführung

Ressourcenbeschränkung ASAP/ALAP

ALAP Algorithmus

As Late As Possible - "So spät wie möglich"

$$\mathsf{ALAP}(G_S(V,E),\bar{\lambda})$$

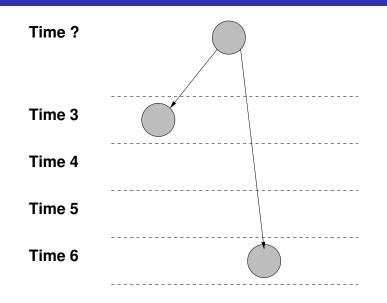
- 1 Starte v_n bei $t_n^L = \bar{\lambda} + 1$;
- 2 repeat
- 3 Wähle v_i dessen Nachfolger alle schon geplant sind
- Starte v_i bei $t_i^L = \min_{(v_i, v_j) \in E} t_j^L d_i$
- 5 **until** v_0 ist geplant

Einführung

Ressourcenbeschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen _{Exakt}

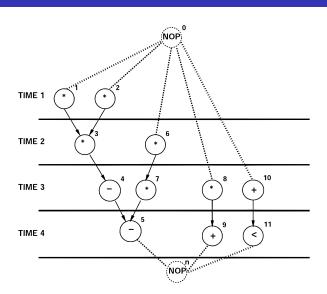
ALAP Idee



Einführung

Ohne Ressourcenbeschränkung ASAP/ALAP

Beispiel: ALAP Ablaufplan



Einführung

Ohne Ressourcenbeschränkung ASAP/ALAP

Mobilität von Operationen

• Mögliche Startzeitpunkte liegen im Intervall $[t_i^S, t_i^L]$

• Mobilität $\mu_i = t_i^L - t_i^S$

 $\mu_i = 0$ Operation v_i kann nur zu einem Zeitpunkt gestartet werden

Operation liegt auf kritischem Pfad

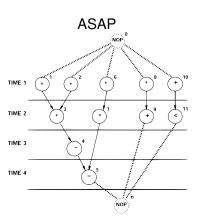
 $\mu_i > 0$ Start von v_i kann beliebig im Intervall geschoben werden

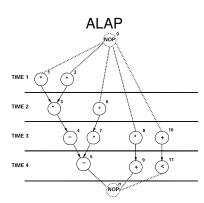
Einführung

Onne Ressourcenbeschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen Exakt Heuristisch

Beispiel: Mobilität





$$\mu = 0 : \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mu = 1 : \{v_6, v_7\}$$

$$\mu = 2 : \{v_8, v_9, v_{10}, v_{11}\}$$

Einführung

Ohne Ressourcenbeschränkung

Ablaufplanung mit Zeitbeschränkungen

 Häufig durch Restsystem vorgegeben
 Absolut Spätester (=Deadline) und frühester (=Releasetime) Startzeitpunkt
 Relativ Zeitliche Relationen zwischen Operatorpaaren

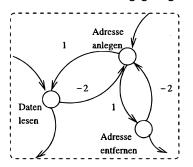
- Absolute sind Spezialfälle von relativen Beschränkungen
 - Werden relativ zum Quellknoten formuliert
- Minimale/maximale Anzahl von Takten zwischen Startzeitpunkten
 - Durch Min=Max auch exakter Zeitpunkt fomulierbar.

Einführung

Ohne Ressourcenbeschränkung ^{ASAP/ALAP} Zeitbeschränkungen

Beispiel: Relative Zeitbeschränkungen

Adresse Muss mindestens 1 Takt, darf aber höchstens 2 Takte anliegen Daten Erscheinen 1 Takt nach Anlegen der Adresse, sind danach 1 Takt lang gültig



Einführung

Ohne Ressourcen-Deschränkung ASAP/ALAP Zeitbeschränkungen

Modellierung von Zeitbeschränkungen

Minimale $l_{ij} \ge 0$, mit $t_j \ge t_i + l_{ij}$ Maximale $u_{ij} \ge 0$, mit $t_j \le t_i + u_{ij}$

Beschränkungsgraph

Erweiterung des Sequenzgraphen um Kantengewichte $w(e) \in \mathbf{Z}$ und zusätzliche Kanten e' für Zeitbeschränkungen.

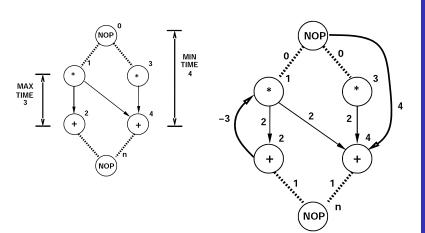
•
$$w(e) = w((v_i, v_j)) = d_i$$

• Neue e' je Zeitbeschränkung zwischen v_i und v_j Minimum $e' = (v_i, v_j)$ mit $w(e') = l_{ij}$ Maximum $e' = (v_j, v_i)$ mit $w(e') = -u_{ij}$

Eintunrung

Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Beispiel: Beschränkungsgraph



Einführung

Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

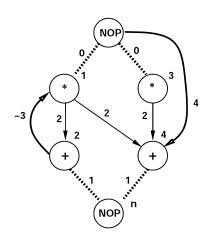
Erfüllbarkeit der Beschränkungen

- Beschränkungen können Ablaufplanung vereiteln
 - Konflikt zwischen *u_{ij}* und Operationslaufzeiten
 - Konflikt zwischen u_{ij} und l_{ij}
- Test auf Existenz einer gültigen Ablaufplanung
 - Bestimme f
 ür jedes u
 i
 j den l
 ängsten Pfad von v
 i nach v
 j
 - Falls Pfad länger als u_{ij} ist, existiert kein gültiger Ablaufplan
 - Beschränkungsgraph darf keine positiven Zyklen haben
 - Durch Graphenalgorithmen überprüfbar
 - Bellman-Ford, Liao-Wong, etc.
 - Diese liefern auch gleichzeitig die ASAP-Startzeitpunkte

Einführung

Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Beispiel: Ablaufplanung mit Zeitbeschränkungen



Knoten	Startzeitpunkt
v_0	1
v_1	1
v_2	3
v_3	1
v_4	5
v_n	6

Einführung

Offine Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Ablaufplanung mit Ressourcenbeschränkungen

- Feste Obergrenze für Fläche, minimiere Latenz
 - Flächen werden durch maximale Ressourcenanzahlen a_k beschränkt
- Problem ist N P-hart
- Exakte Lösung mit ganzzahliger linearer Programmierung (ILP)
- Exakte Lösung in P unter stark eingeschränkten Umständen
- Allgemeinere Heuristiken in P

Einführung

Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkunger

Grundlagen des ILP-Modells

Allgemeine exakte Lösung des Problems

- ullet Es gibt eine geschätzte Obergrenze für die Latenz $ar{\lambda}$
 - In der Regel durch Heuristik bestimmt
- Entscheidungsvariablen $x_{il} \in \{0,1\}$, für alle
 - Operatoren $1 \le i \le n_{ops}$
 - Schritte $1 < l < \bar{\lambda} + 1$
- $x_{il} = 1$ genau dann, wenn $t_i = l$.
 - Alternativ mit Kronecker-Symbol: $x_{il} = \delta_{t_i,l}$
- Aus ASAP/ALAP: $x_{il} = 0$ für $l < t_i^S \lor l > t_i^L$

Einführung

Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkunger

Formulierung des Programmes 1

Als Ungleichungssystem

Jede Operation darf nur einmal gestartet werden

$$\sum_{l=t_i^S}^{t_i^L} x_{il} = 1, \ \forall v_i \in V$$

Umrechnung von Entscheidungsvariablen in Startzeitpunkt

$$\sum_{l=t_i^S}^{t_i^L} l \cdot x_{il} = t_i, \ \forall v_i \in V$$

Einführung

Onne Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkunger

Formulierung des Programmes 2

Oatenabhängigkeiten einhalten

$$t_i \ge t_j + d_j, \ \forall (v_j, v_i) \in E$$

Von jeder Ressource k werden in jedem Zeitschritt l maximal ak benutzt

$$\sum_{\{i:T(v_i)=k\}} \sum_{m=l-d_i+1}^{l} x_{im} \le a_k ,$$

$$\forall 1 \le k \le n_{res}, 1 \le l \le \bar{\lambda} + 1$$

o Optimierungsziel minimale Latenz: minimiere t_n

Einführung

Onne Ressourcenbeschränkung ASAP/ALAP

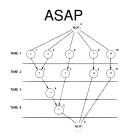
Beispiel: ILP - Annahmen

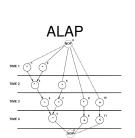
- Sequenzgraph zu diffeq()
- $r_1 = *, r_2 = +, d(r_1) = d(r_2) = 1$
- Ressourcenbeschränkung $a_1 = a_2 = 2$
- Heuristik (kommt später . . .) liefert Obergrenze $\bar{\lambda}=4$ Schritte
- ASAP/ALAP-Algorithmen aus Problem ohne Ressourcenbeschränkung liefern Startintervalle

Einführung

Offine
Ressourcenbeschränkung
ASAP/ALAP
Zeitbeschränkungen

Beispiel: ILP - Basisdaten





Knoten	Intervall
v_0	[1,1]
v_1	[1,1]
v_2	[1,1]
v_3	[2,2]
v_4	[3,3]
<i>v</i> ₅	[4,4]
v_6	[1,2]
<i>v</i> ₇	[2,3]
v_8	[1,3]
v ₉	[2,4]
v_{10}	[1,3]
v_{11}	[2,4]
$v_n = v_{12}$	[5,5]

Einführung

Ohne Ressourcenbeschränkung ASAP/ALAP

Beispiel: ILP - Gleichungen 1

Operationen dürfen nur einmal starten

$$x_{0,1} = 1$$
 (1)

$$x_{1,1} = 1$$
 (2)

$$x_{2,1} = 1$$

$$x_{3,2} = 1$$

$$x_{4,3} = 1$$

$$\begin{array}{rcl}
 x_{5,4} & = & 1 \\
 x_{6,1} + x_{6,2} & = & 1
 \end{array}$$

$$x_{7,2} + x_{7,3} = 1$$

$$x_{8,1} + x_{8,2} + x_{8,3} = 1$$

 $x_{9,2} + x_{9,3} + x_{9,4} = 1$

$$x_{10,1} + x_{10,2} + x_{10,3} = 1$$

$$x_{11,2} + x_{11,3} + x_{11,4} = 1$$

$$x_{n,5} = 1$$

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)(11)

(12)

(13)

Exakt

Beispiel: ILP - Gleichungen 2

Datenabhängigkeiten (nur nicht-triviale!)

$$2x_{7,2} + 3x_{7,3} \ge 1x_{6,1} + 2x_{6,2} + 1 \tag{14}$$

$$2x_{9,2} + 3x_{9,3} + 4x_{9,4} \ge 1x_{8,1} + 2x_{8,2} + 3x_{8,3} + 1 \tag{15}$$

$$2x_{11,2} + 3x_{11,3} + 4x_{11,4} \ge 1x_{10,1} + 2x_{10,2} + 3x_{10,3} + 1$$
 (16)

$$4x_{5,4} \geq 2x_{7,2} + 3x_{7,3} + 1 \tag{17}$$

$$5x_{n,5} \ge 2x_{9,2} + 3x_{9,3} + 4x_{9,4} + 1$$

$$5x_{n,5} \ge 2x_{11,2} + 3x_{11,3} + 4x_{11,4} + 1$$
 (19)

Trivial: Beide Operationen haben feste Zeit

$$2x_{3,2} \geq 1x_{1,1} + 1 \tag{20}$$

$$2 \cdot 1 \geq 1 + 1 \tag{21}$$

$$2 \geq 2 \tag{22}$$

Einführung

Ressourcenbeschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen Exakt

(18)

Beispiel: ILP - Gleichungen 3

Ressourcenbeschränkungen

Multiplizierer			(23)
$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1}$	\leq	2	(24)
$x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2}$	\leq	2	(25)
$x_{7,3} + x_{8,3}$	\leq	2	(26)
ALUs			(27)
$x_{10,1}$	\leq	2	(28)

 $x_{9,2} + x_{10,2} + x_{11,2} \leq 2$

Einführung

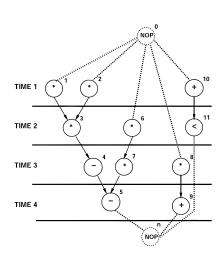
Ressourcenbeschränkung

Mit Ressourcenbeschränkungen Exakt

(29)

Beispiel: ILP - Lösung mit Solver

Var.	Wert
xn_5	1
x0_1	1
x1_1	1
x2_1	1
x3_2	1
x4_3	1
x5_4	1
x6_1	0
x6_2	1
x7_2	0
x7_3	1
x8_1	0
x8_2	0
x8_3	1
x9_2	0
x9_3	0
x9_4	1
x10_1	1
x10_2	0
x10_3	0
x11_2	1
x11_3	0
x11_4	0



Einführung

Ohne Ressourcenbeschränkung ASAP/ALAP

Relative Zeitbeschränkungen im ILP

Können modelliert werden.

Minimale Zeitbeschränkung l_{ij} zwischen v_i und v_j

$$\sum_{l=t_{j}^{S}}^{t_{L}^{L}} l \cdot x_{jl} \ge \left(\sum_{l=t_{i}^{S}}^{t_{l}^{L}} l \cdot x_{il} \right) + l_{ij}$$

Maximale Zeitbeschränkung u_{ij} zwischen v_i und v_j

$$\sum_{l=t_j^S}^{t_j^L} l \cdot x_{jl} \le \left(\sum_{l=t_i^S}^{t_i^L} l \cdot x_{il}\right) + u_{ij}$$

Einfuhrung

Ressourcenbeschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen Exakt Heuristisch

Duales Problem

Minimale Fläche mit Latenzbeschränkung

- Formeln 1,2,3,4 bleiben
 - In 4 sind die a_k jetzt aber freie Variablen
- Zusätzlich

$$\sum_{l=t_n^{\bar{\lambda}}}^{\bar{\lambda}+1} l \cdot x_{nl} \le \bar{\lambda} + 1$$

 Minimiere nun echte Flächen, z.B. bei Fläche(Mult)=5 und Fläche(ALU)=1

minimiere :
$$5 \cdot a_1 + 1 \cdot a_2$$

Einführung

Ressourcenbeschränkung ASAP/ALAP

Algorithmus von Hu

Problem: Lösung von ILPs ist \mathscr{NP} -hart Für eingeschränktere Eingaben aber schneller möglich

- Ignoriert v₀
- G_S ohne v_0 ist ein Baum
- Alle Operationen haben denselben Typ
- Es gibt a Ressourcen des Typs, alle mit Verzögerung 1

Vorbereitung:

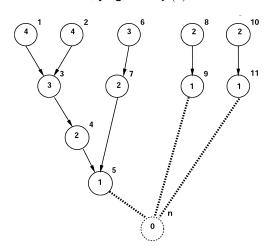
Beschrifte Knoten $v \in V \setminus \{v_0\}$ mit ihrer Entfernung $p(v) \in N_0$ von der Senke v_n .

Einführung

Ressourcenbeschränkung ASAP/ALAP

Beschriftungsphase von Hus Algorithmus

p(v) wirken als *Priorität*, je größer p(v) desto höher.



Einführung

onne Ressourcen-Jeschränkung ASAP/ALAP Zeitbeschränkungen

Ablauf von Hus Algorithmus

Minimiere Latenz bei Ressourcenbeschränkungen

```
\mathsf{HU}(G_S(V,E),a)
```

- 1 Beschrifte Knoten $V \setminus \{v_0\}$ mit Priorität;
- 2 l = 1;
- 3 repeat
- 4 *U* ist Menge aller Knoten ohne Vorgänger oder nur mit geplanten Vorgängern;
- 5 Wähle $S \subseteq U$, so dass $|S| \le a$ und $\sum_{v \in S} p(v)$ maximal;
- Plane Operationen in S bei Schritt l durch $t_i = l \ \forall v_i \in S$;
- 7 l = l + 1;
- 8 **until** v_n ist geplant;

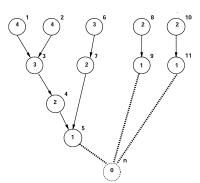
Vorgehen: Greedy-Schema

Einführung

Ohne Ressourcenbeschränkung

Beispiel: Hus Algorithmus

Minimiere Latenz mit a = 3 Ressourcen



$$S = \{v_1, v_2, v_6\}$$

$$S = \{v_3, v_7, v_8\}$$

$$S = \{v_5, v_{11}\}$$

Optimales Ergebnis in O(|V|).

Einführung

Ressourcenbeschränkung

Listen-basierte Ablaufplanung

- Familie von Heuristiken in P
- Auch bei Sequenzgraphen, mehreren Ressourcetypen und längeren Ausführungszeiten
 - Minimiere Latenz bei Ressourcenbeschränkungen
 - Minimiere Ressourcen bei Latenzbeschränkungen
- Erweitern Hus Algorithmus
- Erreichen aber nicht immer das Optimum

Einführung

Onne Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Mit Ressourcenbeschränkungen Exakt

Heuristisch

Algorithmenskelett bei Ressourcenbeschränkung


```
LISTSKEL(G_S(V,E),\mathbf{a})
       l = 1;
       repeat
  3
                for Ressource k \in \{1, \dots, n_{res}\} do
                        Bestimme Kandidaten
                         U_{l,k} = \{v_i \in V : T(v_i) = k \land t_i + d_i \le l \forall (v_i, v_i) \in E\}
  5
                        Bestimme nicht-beendete Operationen
                         T_{l,k} = \{ v_i \in V : T(v_i) = k \land t_i + d_i > l \};
                        Wähle S_k \subseteq U_{l,k}, so dass |S_k| + |T_{l,k}| < a_k;
                        Plane Operationen in S_k bei Schritt l
                         durch t_i = l \ \forall v_i \in S_k:
  8
  9
                l = l + 1:
 10
         until v_n ist geplant:
```

Einführung

onne Ressourcen-Jeschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen ^{Exakt} Heuristisch

Listen-basierte Ablaufplanung zur Latenzminimierung

- LISTSKEL hat O(|V|) und beachtet bereits Ressourcenbeschränkung
- Versucht aber nicht, die Latenz zu minimieren
- Fehlt: Beachtung der Dringlichkeit von Operationen
- Eine Lösung: LISTMINLAT $(G_S(V,E),\mathbf{a})$
 - Gleicher Aufbau wie LISTSKEL
 - Zeile 6: Knoten nach absteigender Entfernung zur Senke wählen
- Bei $n_{res} = 1$ und $d(r_1) = 1$: Identisch zu Hus Algorithmus

Einfunrung

Onne Ressourcen-Deschränkung ASAP/ALAP Zeitbeschränkunger

Umgang mit relativen Zeitbeschränkungen

Listen-basierte Ablaufplanung unterstützt Zeitbeschränkungen

Minimale Verzögere die Aufnahme eines Kandidaten v_j nach S_k solange, bis ein l erreicht ist, bei dem alle l_{ij} erfüllt sind.

Maximale Berechne die Priorität eines Kandidaten v_j aus der *Nähe* zu seiner spätesten Ausführungszeit, bestimmt durch das anwachsende l und die u_{ij} .

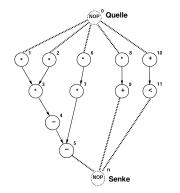
Einführung

Ohne Ressourcenbeschränkung ASAP/ALAP

Beispiel: Listen-basierte Ablaufplanung

Annahmen

- $a_1 = 3$ Multiplizierer mit $d(r_1) = 2$
- $a_2 = 1$ ALU mit $d(r_2) = 1$
- Priorität entspricht Pfadlänge zur Senke



Startzeit	Multiplizierer	ALU
1	$\{v_1, v_2, v_6\}$	v_{10}
2		v_{11}
3	$\{v_3, v_7, v_8\}$	_
4		_
5		v_4
6		v_5
7	_	v9

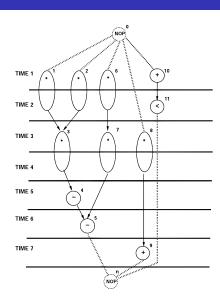
Einführung

Ressourcenbeschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen

Heuristisch

Beispiel: Listen-basierte Ablaufplanung

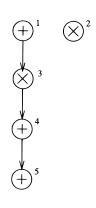


Einführung

Ressourcenbeschränkung

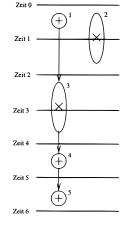
Mit Ressourcenbeschränkunger ^{Exakt} Heuristisch

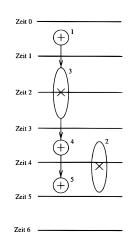
Suboptimalität bei listen-basierter Ablaufplanung



 $a_+ = a_* = 1$,

d(+) = 1, d(*) = 2





Einfunrung

Ressourcenbeschränkung

Listen-basierte Ablaufplanung zur Ressourcenminimierung

 \ldots bei Latenzbeschränkung $ar{\lambda}$

Ideen:

- Beginne mit $a_k = 1$ für alle Ressourcetypen k
- Berechne den Schlupf jedes Operators v_i zur Zeit l als $s_{i,l} = t_i^L l$
- Wenn $s_{i,l} = 0$, muss der Operator zu diesem Zeitpunkt ausgeführt werden
- Auch, wenn dafür eine zusätzliche Ressource aufgebracht werden muss

Einführung

Ressourcenpeschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen ^{Exakt} Heuristisch

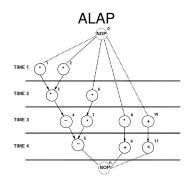
Algorithmus LISTMINRES


```
LISTMINRES(G_S(V, E), \bar{\lambda})
      a_k = 1 \ \forall k \in \{1, \cdots, n_{res}\};
   2 Berechne t_i^L durch ALAP(G_S(V,E),\bar{\lambda});
        if t_0^L < 0 then
   4
                 return 0:
   5
        l = 1:
        repeat
   8
                 for Ressource k \in \{1, \dots, n_{res}\} do
   9
                          Bestimme Kandidaten
                               U_{l,k} = \{ v_i \in V : T(v_i) = k \land t_i + d_i \le l \, \forall (v_i, v_i) \in E \};
  10
                          Bestimme nicht-beendete Operationen
                               T_{l,k} = \{v_i \in V : T(v_i) = k \land t_i + d_i > l\};
  11
                          Berechne Schlupf s_{i,l} = t_i^L - l \ \forall v_i \in U_{l,k};
  12
                          Plane Operationen aus S_{l,k} = \{v_i : s_{i,l} = 0\} in Schritt l;
  13
                          Setze Ressource auf a_k = \max(a_k, |S_{l,k}| + |T_{l,k}|);
  14
                          Plane a_k - (|S_{l,k}| + |T_{l,k}|) weitere Operationen A_{l,k} \subseteq (U_{l,k} \setminus S_{l,k}) in l;
  15
  16
                 l = l + 1:
  17
          until v_n ist geplant:
```

Einführung

Ohne Ressourcenbeschränkung ASAP/ALAP

Beispiel: LISTMINRES



Schritt	$U_{l,1}$	$S_{l,1}$	$A_{l,1}$	a_1	$U_{l,2}$	$S_{l,2}$	$A_{l,2}$	a_2
1	$\{v_1, v_2, v_6, v_8\}$	$\{v_1, v_2\}$	Ø	2	$\{v_{10}\}$	Ø	$\{v_{10}\}$	1
2	$\{v_3, v_6, v_8\}$	$\{v_3, v_6\}$	Ø	2	$\{v_{11}\}$	Ø	$\{v_{11}\}$	1
3	$\{v_7, v_8\}$	$\{v_7, v_8\}$	Ø	2	$\{v_4\}$	$\{v_4\}$	Ø	1
4	0	0	Ø	2	$\{v_5, v_9\}$	$\{v_5, v_9\}$	Ø	2

Einführung

Onne Ressourcenbeschränkung ASAP/ALAP

Verfeinerung: Kräftegesteuerte Ablaufplanung

- Idee: Aktualisiere Prioritäten während des Ablaufs
- Berücksichtige Abhängigkeiten über Datenfluss hinaus
- Führt im allgemeinen zu besseren Ergebnissen
- Kann beide Probleme lösen
 - Minimiere Latenz bei Ressourcenbeschränkungen
 - Minimiere Ressourcen bei Latenzbeschränkungen

Zunächst einige Definitionen . . .

Einführung

Onne Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Grundlegende Definitionen

■ Mobilitätsintervall M_i einer Operation $v_i \in V$ bestimmt via ASAP/ALAP

$$M_i = [t_i^S, t_i^L]$$

2 Ausführungswahrscheinlichkeit $p_{i,l}$ einer Operation v_i zum Zeitpunkt l ist

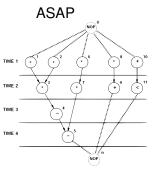
$$p_{i,l} = \begin{cases} \frac{1}{\mu_i + 1} & : \quad \forall l \in M_i \\ 0 & : \quad sonst \end{cases}$$

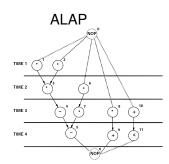
Belegung $q_{k,l}$ des Ressourcetyps r_k zum Zeitpunkt l

$$q_{k,l} = \sum_{\{v_i: T(v_i) = k\}} p_{i,l}$$

Ohne Ressourcenoeschränkung ASAP/ALAP

Beispiele für diffeq()





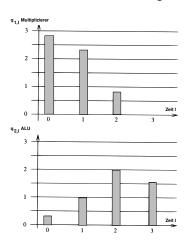
$$\begin{split} \bar{\lambda} &= 4 \\ \mu_1 &= 0, M_1 = [1,1], p_{1,1} = 1, p_{1,2} = p_{1,3} = p_{1,4} = 0 \\ \mu_2 &= 0, M_2 = [1,1], p_{2,1} = 1, p_{2,2} = p_{2,3} = p_{2,4} = 0 \\ \mu_6 &= 1, M_6 = [1,2], p_{6,1} = 1/2, p_{6,2} = 1/2, p_{6,3} = p_{6,4} = 0 \\ \mu_8 &= 2, M_8 = [1,3], p_{8,1} = 1/3, p_{8,2} = 1/3, p_{8,3} = 1/3, p_{8,4} = 0 \\ q_{1,1} &= 1 + 1 + 1/2 + 1/3 = 2.8\bar{3} \end{split}$$

Einführung

Onne Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Belegungsgraph

Stellt $q_{k,l}$ für alle Ressourcen k für l auf ganzer Latenz dar



Einführung

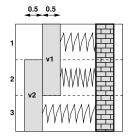
Ohne Ressourcenbeschränkung ^{ASAP/ALAP} Zeitbeschränkungen

Mit Ressourcenbeschränkungen ^{Exakt} Heuristisch

Gleichmäßige Verteilung \rightarrow bessere Auslastung.

Idee: Mechanisches Modell

Federkraft F = cx (Hookesches Gesetz)



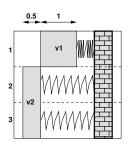
Ungespannter Zustand

$$p_{1,1} = p_{1,2} = 1/2, p_{1,3} = 0$$

$$p_{2,1} = 0, p_{2,2} = p_{2,3} = 1/2$$

$$q_{1,1} = 1/2, q_{1,2} = 1, q_{1,3} = 1/2$$

$$c \approx q$$



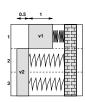
 v_1 probeweise in Schritt 1 $x \approx$ Änderung der $p_{i,l}$

$$F_{i,l}^S = \sum_{m=t_i^S}^{t_i^L} q_{T(v_i),m}(\delta_{l,m} - p_{i,m})$$

Einführung

Onne
Ressourcenbeschränkung
ASAP/ALAP
Zeitbeschränkungen

Selbstkraft



$$F_{1,1}^{S} = \sum_{m=t_{i}^{S}}^{t_{i}^{L}} q_{T(v_{i}),m} \left(\delta_{l,m} - p_{i,m}\right)$$

$$= q_{1,1}(1 - p_{1,1}) + q_{1,2}(0 - p_{1,2})$$

$$= 1/2 \cdot (1 - 1/2) + 1 \cdot (0 - 1/2)$$

$$= 1/4 - 1/2 = -1/4$$

Einführung

Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Umformung Selbstkraftformel

$$F_{i,l}^{S} = \sum_{m=t_{i}^{S}}^{t_{i}^{L}} q_{T(v_{i}),m} (\delta_{l,m} - p_{i,m})$$

$$= \sum_{m=t_{i}^{S}}^{t_{i}^{L}} q_{T(v_{i}),m} (\delta_{l,m} - \frac{1}{\mu_{i} + 1})$$

$$= q_{T(v_{i}),l} - \frac{1}{\mu_{i} + 1} \sum_{m=t_{i}^{S}}^{t_{i}^{L}} q_{T(v_{i}),m}$$

Interpretation: Nach Probeplanung von v_i auf Zeitpunkt l die Änderung zur durchschnittlichen Belegung der Ressource k im Mobilitätsintervall von v_i .

Einführung

Ohne Ressourcen-Deschränkung ASAP/ALAP Zeitheschränkungen

Beispiel: Selbstkraft auf v_6 in diffeq()

Zur Erinnerung:
$$M_6 = [1, 2], q_{1,1} = 2.8\overline{3}, q_{1,2} = 2.\overline{3}$$

O Plane v_6 probeweise auf l=1:

$$F_{6,1}^S = 2.8\overline{3} \cdot (1 - 1/2) + 2.\overline{3} \cdot (0 - 1/2) = 0.25$$

Interpretation: Über der durchschnittlichen Belegung, höherer Grad an Parallelität und damit Ressourcenbedarf.

2 Plane v_6 probeweise auf l=2

$$F_{6,2}^S = 2.8\overline{3} \cdot (0 - 1/2) + 2.\overline{3} \cdot (1 - 1/2) = -0.25$$

Interpretation: Unter durchschnittlicher Belegung, braucht nicht mehr Ressourcen.

Einführung

onne Ressourcen-Jeschränkung ASAP/ALAP Zeitbeschränkungen

Auswirkungen auf andere Operationen

- Probeweises Planen eines Operators i auf Schritt I schränkt Mobilitätsintervalle seiner Vorgänger und Nachfolger ein
 - Frühester Start von Nachfolger i

$$\tilde{t}_i^S = \max(t_i^S, t_i + d_i)$$

$$\bullet \ \ \tilde{\tilde{M}}_j = [\tilde{t}_i^S, t_i^L]$$

Spätester Start von Vorgänger i

$$\tilde{t}_i^L = \min(t_i^L, t_i - d_i)$$

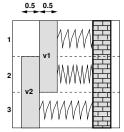
$$\bullet \ \tilde{M}_i = [t_i^S, \tilde{t}_i^L]$$

- Analog: Berechnung von $ilde{\mu_j}$
- Modelliere Effekte durch Vorgänger- und Nachfolgerkräfte

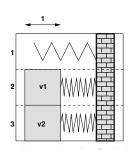
Einführung

Ohne Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Beispiel: Mechanisches Modell



Annahme: $(v_1, v_2) \in E$



v₁ probeweise in Schritt 2Mobilitätsintervall von v₂eingeschränkt

$$M_2 = [2,3] \rightarrow \tilde{M}_2 = [3,3]$$

 $q_{1,3}$ erhöht sich!

Ohne Ressourcenbeschränkung ASAP/ALAP

Vorgänger-/Nachfolgerkräfte für v_j

... wenn v_i probeweise auf Schritt l geplant ist.

ldee: Berechne die Änderung der *mittleren* Belegung von $T(v_j)$ von M_j zu \tilde{M}_j ,

$$F_{j,l}^{N} = \frac{1}{\tilde{\mu} + 1} \sum_{m=\tilde{t}_{j}^{S}}^{\tilde{t}_{j}^{L}} q_{T(v_{j}),m} - \frac{1}{\mu_{j} + 1} \sum_{m=t_{j}^{S}}^{t_{j}^{L}} q_{T(v_{j}),m}$$

Interpretation: Wie stark ändert sich durch die Probeplanung von v_i die mittlere Nachfrage nach den Ressourcen seiner Vorgänger / Nachfolger?

Einführung

Ohne Ressourcenbeschränkung ASAP/ALAP

Beispiel: diffeq()

- Probeweise Planung von v₈ auf Schritt 2
- v_9 ist Nachfolger, da $(v_8, v_9) \in E$
- $M_9 = [2,4]$, aber jetzt $t_9^S < t_8 + d_8$
- $\tilde{M}_9 = [3,4]$

Damit

$$F_{9,1}^{N} = \frac{1}{2} (q_{2,3} + q_{2,4}) - \frac{1}{3} (q_{2,2} + q_{2,3} + q_{2,4})$$

= $0.5 \cdot (2 + 1.\overline{6}) - 0.\overline{3} \cdot (1 + 2 + 1.\overline{6})$
= $0.2\overline{7}$

Die Nachfrage nach Ressource 2 steigt also.

Einführung

Ressourcenbeschränkung ASAP/ALAP Zeitbeschränkungen

Gesamtkraft auf v_i geplant in Schritt l

Summe von Selbst-, Vorgänger- und Nachfolgerkräften

$$F_{i,l} = F_{i,l}^S + \sum_{(v_j, v_i) \in E} F_{j,l}^N + \sum_{(v_i, v_j) \in E} F_{j,l}^N$$

Beispiel diffeq():

- Probeweise Planung von v₆ in Schritt 2
- Impliziert Planung von v₇ in Schritt 3
- $F_{7,2}^N = q_{1,3} 1/2 (q_{1,2} + q_{1,3}) = -0.75$
- $F_{6,2} = F_{6,2}^S + F_{7,2}^N = -0.25 0.75 = -1$

Einführung

Ressourceneschränkung ASAP/ALAP

Mit Ressourcenbeschränkungen ^{Exakt}

Heuristisch

Kräftegesteuerte Listenablaufplanung

- Berechnet Ablaufplan mit minimaler Latenz bei beschränkten Ressourcen
- Grobstruktur wie LISTSKEL, also Vorgehen in Zeitschritten
- Selektion der $S_k \subseteq U_{l,k}$ nun kräftegesteuert
 - Verzögere Operationen mit kleinen $F_{i,l}$ solange, bis a_k eingehalten werden
 - Verzögern geschieht durch Verkürzen der M_i
- Idee: Maximale Parallelität (niedrige Latenz) unter Wahrung der Ressourcenbeschränkungen
- Bei jedem Zeitschritt müssen Kräfte neu berechnet werden, $O(|V|^2)$
- Falls Operationen mit $\mu=0$ verzögert werden müssen, erhöhe $\bar{\lambda}$ um 1 und berechne damit Kräfte noch ungeplanter Operationen neu

Einführung

Ohne Ressourcen-Jeschränkung ASAP/ALAP Zeitheschränkungen

Kräftegesteuerte Ablaufplanung

- Berechnet Plan mit minimalen Ressourcen bei Latenzbeschränkung
- Geht operationsweise vor, $O(|V|^3)$, mit Trick $O(|V|^2)$

FORCEDIRECTED($G_S(V,E), \bar{\lambda}$)

repeat

Bestimme M_i aller noch nicht geplanten v_i

Bestimme $p_{i,l}$ und $q_{k,l}$ für alle l und k

Berechne $F_{i,l}$ aus $F_{i,l}^{S}$ und $F_{i,l}^{N}$ für alle i und l

5 Plane v_i mit der geringsten Kraft $F_{i,l}$ in Schritt l6

until alle Operationen sind geplant

Idee: Minimiere Parallelität (=Ressourcen) bei garantierter Einhaltung der Latenzbeschränkung (alle *v_i* werden *immer* innerhalb ihrer M_i geplant).

Heuristisch

Einführung

Ressourcenbeschränkung

Zeitbeschränkung

Mit Ressourcenbeschränkunger

Heuristisch

Komplettes Beispiel in Übung!