

KV Computer Microsystems Teil III Bindung und FSMD-Synthese

Andreas Koch

FG Eingebettete Systeme und ihre Anwendungen Informatik, TU Darmstadt

Sommersemester 2005

Organisatoriso

Bindun

ILP-basierte Lösun LEFTEDGE Algorithmus

Maybiad, was as a

Stouorworksynt

Festverdrahtet
Microcode
Kompaktierung

Gliederung

- Organisatorisches
- 2 Bindung
 - Modell
 - ILP-basierte Lösung
 - LEFTEDGE Algorithmus
- Registerbindung
- Verbindungssynthese
- Steuerwerksynthese
 - Festverdrahtet
 - Microcode
 - Kompaktierung
 - Hierarchie
- Zusammenfassung

Organisatorisc

Bindun Modell

> ILP-basierte Lé LEFTEDGE Algorithmus

.

verbindungssy

Festverdrahtet
Microcode
Kompaktierung

Klausur

- Gesonderte Anmeldung bis zum 6.7.2005 erforderlich
 - Unabhängig von Prüfungssekretariat
 - Auch für Diplomis, Nebenfächler, etc.
 - http://www.vlsi.informatik.tu-darmstadt. de/student area/klausur/?klausurid=6
 - Auch von den Vorlesungsseiten verlinkt
- Termin: 13.07.2005, 9:00-11:30 Uhr
 - Echte Klausurdauer: 120 Minuten
- Erlaubte Hilfsmittel: Keine!
 - Aufgabenstellung kann aber Extrahinweise enthalten
 - Alles Papier wird gestellt
- Raumaufteilung: Listen hängen ca. 3 Tage vorher aus

Organisatorisch

Bindung

ILP-basierte Lösun LEFTEDGE Algorithmus

Verbindungssyn

Steuerwerksyr
Festverdrahtet
Microcode

Bindung

- Ordnet Operationen konkrete Instanzen des Ressourcetyps zu
- Kann durchgeführt werden
 - Vor
 - Während
 - Nach (← hier betrachtet)
 - ... Ablaufplanung
- Gemeinsame Ressourcenutzung bei nicht ressource-beschränkten Ablaufplänen
 - Im anderen Fall: Ressourceanzahlen bereits w\u00e4hrend Ablaufplanung bestimmt
- Ergebnis ist Grundlage f
 ür Verbindungssynthese

Organisatorisc

Bindung

ILP-basierte Lösun LEFTEDGE Algorithmus

Verbindungssyr

Steuerwerksynt

Festverdrahtet Microcode Kompaktierung Hierarchie

Grundlegende Annahmen

Bindung

- Ein Ressourcetyp kann unterschiedliche Operationen abdecken
- Wir betrachten ressourcedominierte Schaltungen
- Eine Operation verbleibt während ihrer gesamten Ausführungszeit auf derselben Instanz

Graphbasiertes Modell des Problems

- Sequenzgraph $G_S(V,E)$
- v_0 und v_n spielen keine Rolle mehr (NoOps)
- Ressourcezuordnung $T: V \to R, R = \{r_k : 1 \le k \le n_{res}\}$
- Gesucht Bindung $\beta: V \to R \times N$
 - Zuordnung einer Operation an eine Instanz einer Bessource

Organisatorisc

Modell

ILP-basierte Lösung LEFTEDGE Algorithmus

Verhindungeevr

Charlamiankaria

Festverdrahtet Microcode Kompaktierung

Kompatible Operationen

Zwei Operationen können die selbe Ressourceinstanz nutzen, wenn sie . . .

- ...den gleichen Typ haben und
- ... nicht zur gleichen Zeit ablaufen

Dann heissen sie kompatibel

Kompatibilität

Zwei ablaufgeplante Operationen v_i und v_j sind *kompatibel* wenn gilt:

$$T(v_i) = T(v_j) \wedge ((t_i + d_i \le t_j) \vee (t_j + d_j \le t_i))$$

Konflikt

Zwei ablaufgeplante Operationen stehen in *Konflikt* zueinander, wenn sie nicht kompatibel sind.

Organisatorisc

Modell

ILP-basierte L LEFTEDGE Algorithmus

/erbindunassvn

Steuerwerksyr Festverdrahtet Microcode Kompaktierung

Graphen-basierte Sicht der Relationen

Kompatibilitätsgraph G_+

Ungerichteter Graph $G_+(V,E)$ mit den Operationen als Knoten $V=\{1,\cdots,n_{ops}\}$ und Kanten

$$E = \{\{v_i, v_j\} : v_i \text{ ist kompatibel zu } v_j\}$$

Konfliktgraph G_{-}

Ungerichteter Graph $G_-(V,E,k)$ mit den Operationen als Knoten $V = \{v_i : T(v_i) = k \land 1 \le i \le n_{ops}\}$ und Kanten

$$E = \{\{v_i, v_j\} : v_i \text{ steht in Konflikt zu } v_j\}$$

Organisatorisc

Modell

ILP-basierte Lösung LEFTEDGE Algorithmus

Verbindungssyn

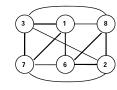
Steuerwerksynt

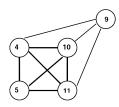
Microcode Kompaktierung Hierarchie

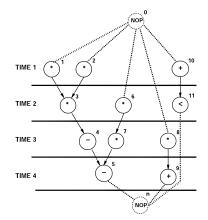
Zusammeniassi

Beispiel: Kompatibilitätsgraph

Bindu Modell

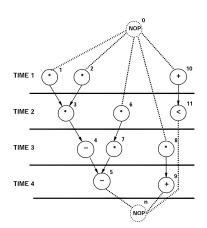

ILP-basierte Lösun LEFTEDGE Algorithmus

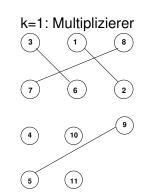

....


Verbindungssy

Festverdrahtet
Microcode

Zucammonface





Beispiel: Konfliktgraphen je Ressource

k=2: ALUs

Organisatoriso

Bindu Modell

ILP-basierte Lösur LEFTEDGE

.

verbindungssyr

Festverdrahtet
Microcode
Kompaktierung

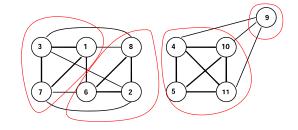
Eigenschaften von G_+

- Kompatibilitätsgraph hat mindestens n_{res} verschiedene disjunkte Teilgraphen
- Untereinander kompatible Operationen bilden Clique
- Ziel von Bindung: Minimiere die Zahl von Ressourcen
- Kompatible Ressourcen können sich Instanz teilen
- Also: Suche nach möglichst wenigen, dafür aber möglichst grossen disjunkten Cliquen
- Grösste Menge untereinander kompatibler Ressourcen ist maximale Clique
- Minimalzahl benötigter Cliquen um ganz V zu partitionieren ist κ(G₊(V,E))

Organisatorisc

Bindun Modell

ILP-basierte Lösun


Variational consequen

Steuerwerksynt

Festverdrahtet Microcode Kompaktierung Hierarchie

Beispiel: Maximale Cliquen

$$\kappa(G_+(V,E)) = 4$$
 { v_1, v_3, v_7 }, { $v_2, v_6, v8$ }, { v_4, v_5, v_{10}, v_{11} }, { v_9 } Ergebnis: 2 Multiplizierer und 2 ALUs

Organisatorisc

Bindui Modell

ILP-basierte Lösung

1 tegisterbiridar

verbindungssyn

Festverdrahtet Microcode Kompaktierung

Eigenschaften von G_-

- Kompatible Operatoren sind nicht durch Kanten verbunden
 - Solche Operatoren bilden unabhängige Mengen
- Durch Kanten verbundene Operatoren müssen auf unterschiedlichen Instanzen realisiert werden
- Idee: Löse das Graphfärbungsproblem, Farben c(v) entsprechen Instanzen
 - $\forall \{v_i, v_j\} \in E : c(v_1) \neq c(v_2)$
- Gesucht: Färbung mit minimaler Anzahl $\chi(G_-(V,E,k))$ von Farben

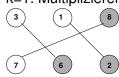
Organisatorisc

Modell

ILP-basierte Löst

Algorithmus

Registerbindun


Verbindungssyr

Festverdrahtet
Microcode
Kompaktierung

Beispiel: Minimale Graphfärbung

$$\chi(G_{-}(V,E,1)) = 2,$$

{ v_1, v_3, v_7 }, { v_2, v_6, v_8 },

k=2: ALUs

$$\chi(G_{-}(V,E,2)) = 2$$

 $\{v_4, v_5, v_{10}, v_{11}\}, \{v_9\}$

Ergebnis: 2 Multiplizierer und 2 ALUs

$$\sum_{k=1}^{n_{res}} \chi(G_{-}(V,E,k)) = \kappa(G_{+}(V,E))$$

Organisatorisc

Bindur

ILP-basierte Lösung
LEFTEDGE
Algorithmus

Vorbindungssy

Steuerwerksynt

Microcode Kompaktierung Hierarchie

Lösung der Aufgabe

Lösung beider Probleme

- Partitionierung durch maximale Cliquen
- Einfärbung mit minimaler Farbenzahl

in $\mathcal{N} \mathcal{P}$ für den allgemeinen Fall

Organisatorisc

Bindu

ILP-basierte Lösur LEFTEDGE Algorithmus

Manufation allows are according

Steuerwerksvnt

Festverdrahtet Microcode Kompaktierung

Ein Ansatz: ILP-basiert

a_k Anzahl von Instanzen des Ressourcetyps k

•
$$B = \{b_{i,r} : 1 \le i \le n_{ops}, 1 \le r \le a_k\}$$

- $b_{ir} = 1$, wenn Operation v_i auf Instanz r des Ressourcetyps k ausgeführt wird, sonst 0
- Bedeutet Bindung: $\beta(v_i) = (k, r)$
- $X = \{x_{i,l} : 1 \le i \le n_{ops}, 1 \le l \le \lambda\}$
- $x_{i,l} = 1$, wenn Operation v_i in Schritt l gestartet wird, 0 sonst

Organisatorisc

Bindun

ILP-basierte Lösung LEFTEDGE Algorithmus

Vaulainadi na mana

verbindungssyr

Festverdrahtet Microcode Kompaktierung

ILP für Bindungsproblem

Für jeden Ressourcetyp k muss gelten:

• Jede Operation v_i muss auf genau einer Instanz ausgeführt werden

$$\sum_{r=1}^{a_k} b_{i,r} = 1 \quad , \forall 1 \le i \le n_{ops}$$

② Auf jeder Instanz r kann im Zeitschritt l nur eine Operation v_i ablaufen

$$\sum_{\{v_i:T(v_i)=k\}} b_{i,r} \sum_{m=l-d_i+1}^l x_{i,m} \le 1 \quad , \forall 1 \le l \le \lambda, 1 \le r \le a_k$$

Organisatorisc

Bindung Modell

ILP-basierte Lösung LEFTEDGE Algorithmus

Verbindungssyr

Steuerwerksynt

Festverdrahtet Microcode Kompaktierung Hierarchie

Annahmen: Ressourcetypen 1 (=Mult) und 2 (=ALU), $d_i = 1$ Aus Schedule: Instanzanzahlen $a_1 = a_2 = 2$, $\lambda = 4$

Hier gerechnet für Multiplizierer $\{v_1, v_2, v_3, v_6, v_7, v_8\}$

Jede Operation auf genau einer Instanz

$$b_{1,1} + b_{1,2} = 1$$

$$b_{2,1} + b_{2,2} = 1$$

$$b_{3,1} + b_{3,2} = 1$$

$$b_{6,1} + b_{6,2} = 1$$

$$b_{7,1} + b_{7,2} = 1$$

$$b_{8,1} + b_{8,2} = 1$$

Organisatorisc

Bindung

ILP-basierte Lösung LEFTEDGE Algorithmus

Verhindungssy

Oteronicalisasy

Festverdrahtet Microcode Kompaktierung Hierarchie

Vorgegebener Ablaufplan

Organisatorisc

Bindun

ILP-basierte Lösung LEFTEDGE Algorithmus

Steuerwerksyr

Festverdrahtet Microcode Kompaktierung

Zusammenfassı

 x_{il} durch Scheduling bereits festgelegt, Werte einsetzen

Auf jeder Instanz nur eine Operation pro Zeitschritt

$$b_{1,1} + b_{2,1} \le 1$$
 : $l = 1$ $b_{1,2} + b_{2,2} \le 1$: $l = 1$ $b_{3,1} + b_{6,1} \le 1$: $l = 2$ $b_{3,2} + b_{6,2} \le 1$: $l = 2$ $b_{7,1} + b_{8,1} \le 1$: $l = 3$ $b_{7,2} + b_{8,2} \le 1$: $l = 3$

Keine Multiplikation mehr in Zeitschritt l = 4

Organisatorisc

Bindur Modell

ILP-basierte Lösung LEFTEDGE Algorithmus

Maybiadi wasan

Steuerwerksynt

Festverdrahtet
Microcode
Kompaktierung

Organisatoriso

Modell

ILP-basierte Lösung LEFTEDGE Algorithmus

....

verbilluurigssyr

Festverdrahtet Microcode

Kompaktierung Hierarchie

Zusammentassi

Demo mit lp_solve

Ergebnis aus ILP-Solver

b11

b12

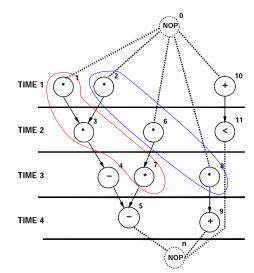
b21

b22 0

b31

b32

b61


b62 0 b71 0

b72

0/2

b81 1

b82

Organisatorisc

Bindung Modell

ILP-basierte Lösung LEFTEDGE Algorithmus

....

Stouerworksynt

Festverdrahtet
Microcode
Kompaktierung
Hierarchie

Bessere Lösung

- Lösung von ILP ist in NP
- Nicht überraschend, andere allgemeine Lösungen sind auch in \mathcal{N}
- Aber:
 - Im Fall von Intervallgraphen lässt sich das Problem in polynomieller Zeit exakt lösen!

Intervallgraph

Ein ungerichteter Graph G(V,E) heisst Intervallgraph genau dann, falls jedem Knoten $v_i \in V$ ein Intervall $[l_i,r_i)$, mit $l_i,r_i \in \mathbf{Z} \wedge l_i \leq r_i$, zugeordnet werden kann und eine Kante $\{v_i,v_j\} \in E$ genau dann existiert, wenn sich die Intervalle $[l_i,r_i)$ und $[l_j,r_j)$ überlappen.

Konfliktgraphen G_{-} sind Intervallgraphen.

Organisatorisc

Bindung

ILP-basierte Lösur LEFTEDGE Algorithmus

/orhindungseyr

Steuerwerksyn: Festverdrahtet Microcode Kompaktierung

LEFTEDGE Algorithmus

- Eingabe: Liste I von Intervallen
- Ausgabe: Überlappungsfreie Farbzuordnung der Intervalle
- Idee
 - Sortiere Intervalle nach aufsteigender Untergrenze
 - Que Gehe Liste durch und weise nicht-überlappenden Intervallen die gleiche Farbe zu
 - Nimm die n\u00e4chste Farbe und wiederhole f\u00fcr ungef\u00e4rbte Intervalle

Organisatorisc

Modell

ILP-basierte Lösun LEFTEDGE Algorithmus

Verhindungssy

- .

Festverdrahtet
Microcode
Kompaktierung
Hierarchie

Algorithmus LEFTEDGE

Optimales überlappungsfreies Einfärben von Intervallen I

```
LEFTEDGE(I)
      Sortiere Elemente von I aufsteigend nach l_i in Liste L;
      i = 0;
      while L \neq \emptyset do
  4
              S = \emptyset;
  5
              r=0; /* rechter Rand von Elementen in S */
  6
              while \exists i \in L : l_i > r do
                      i = Element aus L mit kleinsten l_i > r;
  8
                      S = S \cup \{i\};
                      r = r_i:
 10
                      L = L \setminus \{i\};
 11
 12
              i = i + 1;
              for i \in S do
 13
 14
                      c(i) = j; /* Farbe des Intervalls setzen */
```

Organisatorisc

Bindung

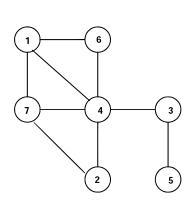
Modell

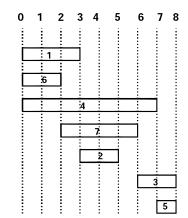
ILP-basierte Lösu

LEFTEDGE

Algorithmus

riogistorbindari


verbindungssyr


Festverdrahtet
Microcode
Kompaktierung
Hierarchie

Beispiel: LEFTEDGE Algorithmus

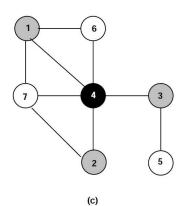
Eingabe

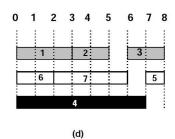
Organisatorisc

Bindung Modell

Modell
ILP-basierte Lösur
LEFTEDGE
Algorithmus

Registerbindun


Verbindungssy


Festverdrahtet
Microcode
Kompaktierung
Hierarchie

Beispiel: LEFTEDGE Algorithmus

Ausgabe

Organisatoriscl

Bindung Modell

ILP-basierte Lösur LEFTEDGE Algorithmus

....

Oten and a second

Festverdrahtet Microcode Kompaktierung

Lebenszeit von Variablen

- Jede Kante zwischen zwei Operatoren braucht Variablen für Datentransfer
- Lebensdauer einer Variablen.

Geburt Zeitpunkt an dem Wert an
Operatorausgang anliegt
Tod Letzter Zeitpunkt an dem der Wert an
einem Operatoreingang benötigt wird

- Variablen müssen für ihre Lebensdauer gespeichert werden.
- Unterschiedliche technische Realisierungsmöglichkeiten
 - Speicher: Ein- oder Multi-Port
 - Register: Alle parallel zugreifbar ← hier betrachtet

Organisatorisc

Bindun

ILP-basierte Lösur LEFTEDGE Algorithmus

Registerbindung

Charramanantarina

Festverdrahtet
Microcode
Kompaktierung
Hierarchie

Zusammentassi

Registerbindung

- Register speichern . . .
 - Eingabewerte
 - Zwischenergebnisse
 - Ausgabwerte
- Vereinfachung hier
 - Dedizierte Register f
 ür Ein- und Ausgabewerte
- Aber optimierbar: Register für Zwischenergebnisse

Organisatorisc

Bindur Modell

ILP-basierte Lösun LEFTEDGE Algorithmus

Registerbindung

Charlamiankaria

Festverdrahtet Microcode Kompaktierung

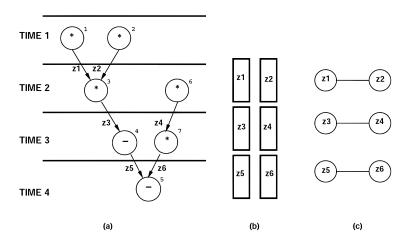
Verfahren zur Registerbindung

- Gegeben: Ein Ablaufplan
- Daraus bestimmbar: Lebenszeiten
- Überlappende Lebenszeitintervalle implizieren separate Register
- Lösung mit Konfliktgraph und Einfärbung
 - Knoten: Variablen
 - Kanten: Überlappende Lebenszeiten
 - Gesucht: Minimale Anzahl von Registern für Zwischenergebnisse
 - Lösen mit LeftEdge-Algorithmus

Organisatorisc

Bindun

ILP-basierte Lösun LEFTEDGE Algorithmus


Registerbindung

Verbindungssyi

Festverdrahtet
Microcode
Kompaktierung

Beispiel: Registerbindung

Organisatorisc

Bindun

ILP-basierte Lösur LEFTEDGE Algorithmus

Registerbindun

Verbindungssyn

Festverdrahtet Microcode Kompaktierung

Verbindungssynthese

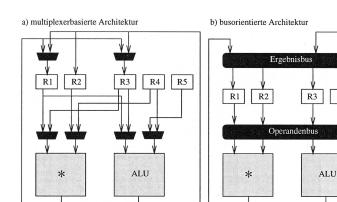
Erstellen von Verbindungen

- zwischen Ressourceinstanzen und Registern
- zwischen Registern
- zur Schnittstelle zum Steuerwerk
- zu den Ein-/Ausgabe-Ports zum Restsystem

Organisatorisc

Bindui

ILP-basierte Lösun LEFTEDGE Algorithmus


Manufaction also are as as as

Verbindungssyn

Festverdrahtet Microcode Kompaktierung

Verbindungsarchitekturen

Organisatoriso

Bindun

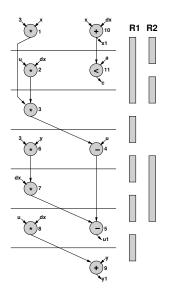
ILP-basierte Lösur LEFTEDGE Algorithmus

Registerbindur

Verbindungssyr

Festverdrahtet
Microcode

R5


Kompaktierung Hierarchie

Zusammenfassı

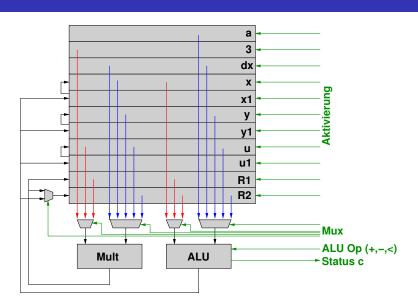
Mehr Parallelität ./. einfacherer Aufbau

Beispiel: Verbindungssynthese

Ablaufplan mit 1 Multiplizierer, 1 ALU

Diesmal: Mit Ein-/Ausgabewerten und Registerlebenszeiten Organisatorisc

Bindu


ILP-basierte Lösun LEFTEDGE Algorithmus

Verbindungssyn

Steuerwerksyn: Festverdrahtet Microcode

Beispiel: Verbindungssynthese

Organisatoriso

Bindur

ILP-basierte Lösun LEFTEDGE Algorithmus

, rogiotoromidani

Verbindungssyr

Festverdrahtet Microcode

Steuerwerksynthese

- Verhaltenssicht: Synchrone FSM
- Zunächst: Vereinfachte Sicht
 - Flache Sequenzgraphen
 - Datenunabhängige Verzögerungen
- Auf unterschiedliche Arten realisierbar
 - Festverdrahtete FSM
 - Microcode (ROM, PLA)
 - Verteilte FSM

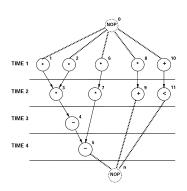
Organisatorisc

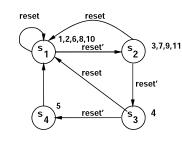
Bindur

ILP-basierte Lösun LEFTEDGE Algorithmus

Verhindungssy

Steuerwerksynt


Microcode


Kompaktierung

Beispiel: Festverdrahtete FSM

Annahme: Dedizierte Ressourcen mit Verzögerung 1.

Direkt in Flip-Flops und Gatter umsetzbar.

Organisatoriso

Bindun

ILP-basierte Lösung LEFTEDGE Algorithmus

Verhindungssyr

Steuerwerksynt Festverdrahtet

Microcode Kompaktierung Hierarchie

Microcode

- Kleine Programme, gespeichert in ROMs oder PLAs
- Horizontaler Microcode
 - Ein Bit pro Aktivierungs/Steuersignal (z.B. Muxe)
 - Ein Microcode-Wort pro Zeitschritt
 - Maximale Parallelität → niedrige Latenz
 - Breite Worte (mehr Verdrahtung)
- Vertikaler Microcode
 - Ein kodiertes Microcode-Wort pro Ressource
 - Schmalere Worte (weniger Verdrahtung)
 - Auch mehrere Worte pro Zeitschritt erforderlich
 - Weniger Parallelität

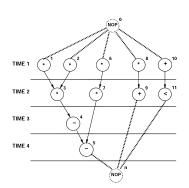
Organisatorisc

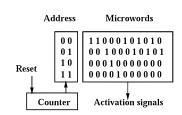
Bindun Modell

ILP-basierte Lō: LEFTEDGE Algorithmus

Verbindungssyr

Steuerwerksyn


Microcode Kompaktierung


Hierarchie

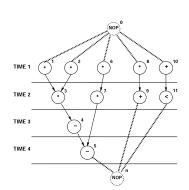
38/49

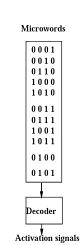
Beispiel: Horizontaler Microcode

Organisatorisc

Bindun

ILP-basierte Lösur LEFTEDGE Algorithmus


verbindungssyr


Festverdrahtet
Microcode

Kompaktierung Hierarchie

Beispiel: Vertikaler Microcode

Organisatoriso

Bindun

ILP-basierte Lösu LEFTEDGE Algorithmus

Vorbindungseyr

Steuerwerksynt

Festverdrahtet
Microcode
Kompaktierung

Kompromiss

- Beobachtung: Horizontaler Microcode enthält viele Nullen
- Breite Microworte lohnen sich nur bei echter Parallelität
- Finde Teile mit paralleler Ausführung
 - Steuere diese parallel an (horizontaler Ansatz)
- Für sequentielle Teile
 - Benutze kompaktere kodierte Darstellung (vertikaler Ansatz)

Organisatorisc

Modell

ILP-basierte Lösung LEFTEDGE Algorithmus

Vorbindungssyr

Steuerwerksy

Festverdrahtet Microcode Kompaktierung Hierarchie

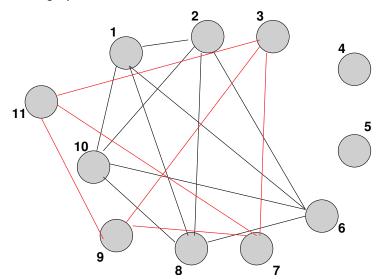
Microcode-Kompaktierung

Ein Ansatz:

- Baue Konfliktgraph von parallelen Steuersignalen auf
 - Kante existiert bei paralleler Ausführung
- Dann minimales Einfärbeproblem lösen
 - Kein Intervallgraph mehr
 - Heuristik verwenden (Verfahren hier nicht behandelt)
- Jede Farbe entspricht einer Gruppe von Steuersignalen
- Innerhalb der Gruppe: Sequentielle Ausführung
- Gruppen untereinander: Parallele Ausführung

Organisatorisc

Modell


ILP-basierte Lösung LEFTEDGE Algorithmus

Verbindungssyn

Festverdrahtet
Microcode
Kompaktierung

Konfliktgraph

Organisatorisc

Bindun Modell

ILP-basierte Lösun; LEFTEDGE Algorithmus

Verbindungssyr

Steuerwerks
Festverdrahtet
Microcode
Kompaktierung

Minimal eingefärbter Konfliktgraph

Organisatorisc

Bindur

иоден LP-basierte Lösur .EFTEDGE Algorithmus

Varhindungaava

Steuerwerks: Festverdrahtet Microcode

Microcode Kompaktierung Hierarchie

field	ор	code
Α	1	01
A	3	10
A	4	11
В	2	1
С	6	01
\cup \cup \cup	7	10
C	5	11
D	8	01
D	9	10
E	10	01
E	11	10

Organisatorisc

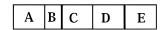
Bindu

ILP-basierte Lösur LEFTEDGE Algorithmus

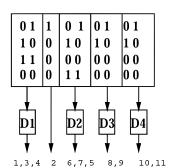
Vorbindungssyr

Steuerwerks
Festverdrahtet
Microcode

Kompaktierung Hierarchie


Zusammenfass

Beachte: Braucht Code für NoOp, hier 00.



Damit jetzt schmalere Microworte ohne Parallelitätsverlust

Microword format

Microwords

Organisatorisc

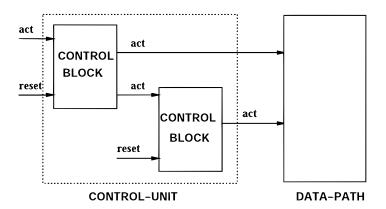
Bindun Modell

ILP-basierte Lösun LEFTEDGE Algorithmus

Verhindungssyr

Steuerwerks Festverdrahtet

Microcode


Kompaktierung

Hierarchie

Hierarchische Steuerwerke

Für hierarchische Sequenzgraphen

Organisatorisc

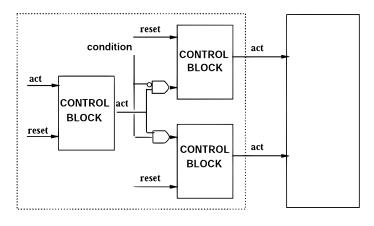
Bindun

Modell
ILP-basierte Lösun
LEFTEDGE

\/------

Charramandrama

Festverdrahtet Microcode Kompaktierung


Hierarchie

Hierarchische Steuerwerke

CONTOL-UNIT

Mit Verzweigung

Hierarchie

Zusammenfassung

- Grundlagen der Architektursynthese
- Modelle
- Ablaufplanung
- Bindung
- Konnektivitätssynthese
- Steuerwerksynthese

Noch nicht

- Logiksynthese
- Sequentielle Optimierung
- Bibliotheksabbildung
- Layoutsynthese ← im Wintersemester :-)

Organisatorisc

Bindun Modell

ILP-basierte Lõ LEFTEDGE Algorithmus

.

o. . .

Festverdrahtet Microcode Kompaktierung Hierarchie