Technische Grundlagen der Informatik – Kapitel 5

Prof. Dr.-Ing. Andreas Koch Fachgebiet Eingebettete Systeme und ihre Anwendungen (ESA) Fachbereich Informatik

WS 12/13

Kapitel 5 : Themenübersicht

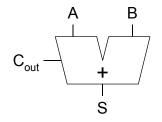
- Einleitung
- Arithmetische Schaltungen
- Zahlendarstellungen
- Sequentielle Grundelemente
- Speicherblöcke
- Programmierbare Logikfelder und -schaltungen

Einleitung

- Grundelemente digitaler Schaltungen:
 - Gatter, Multiplexer, Decoder, Register, Arithmetische Schaltungen, Zähler, Speicher, programmierbare Logikfelder
- Grundelemente veranschaulichen
 - Hierarchie: Zusammensetzen aus einfacheren Elementen
 - Modularität: Wohldefinierte Schnittstellen und Funktionen
 - Regularität: Strukturen leicht auf verschiedene Größen anpassbar
- Grundelemente werden verwendet zum Aufbau eines eigenen Mikroprozessors
 - Kapitel 7

1-Bit Addierer

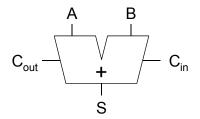
Halbaddierer



Α	В	C_out	S
0	0		
0	1		
1	0		
1	1		

$$S = C_{out} =$$

Volladdierer

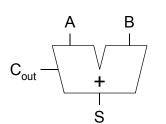


C_{in}	Α	В	C_out	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$S = C_{out} =$$

1-Bit Addierer

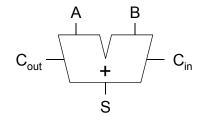
Halbaddierer



Α	В	C_out	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = C_{out} =$$

Volladdierer

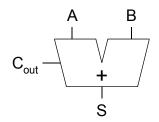


C_{in}	Α	В	C_out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = C_{out} =$$

1-Bit Addierer

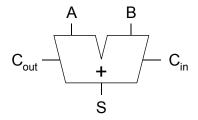
Halbaddierer



Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$
$$C_{out} = AB$$

Volladdierer



C_{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

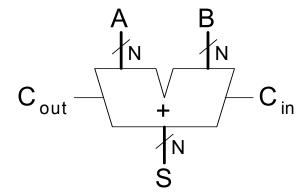
$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Mehrbit-Addierer mit Weitergabe von Überträgen

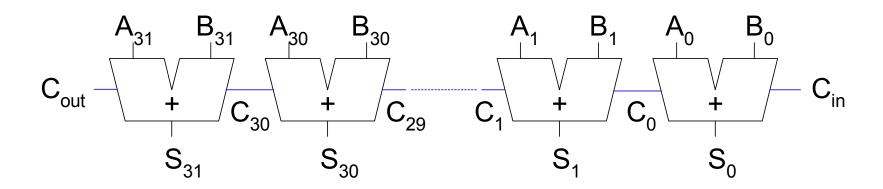
- Carry-propagate adder (CPA)
- Verschiedene Typen
 - Ripple-carry-Addierer (langsam)
 - Carry-Lookahead Addierer (schnell)
 - Prefix-Addierer (noch schneller)
- Carry-Lookahead und Prefix-Addierer sind schneller bei breiteren Datenworten
 - Benötigen aber auch mehr Fläche

Schaltsymbol



Ripple-Carry-Addierer

- Kette von 1-bit Addierern
- Überträge werden von niedrigen zu hohen Bits weitergegeben
 - Rippeln sich durch die Schaltung
- Nachteil: Langsam



Verzögerung durch Ripple-Carry-Addierer

Verzögerung durch einen N-bit Ripple-Carry-Addierer ist

$$t_{\text{ripple}} = N t_{FA}$$

 $t_{\it FA}$ ist die Verzögerung durch einen Volladdierer

Carry-Lookahead-Addierer (CLA)

- Überträge nicht mehr von Bit-zu-Bit
- Stattdessen: Berechne Übertrag C_{out} aus Block von *k* Bits
 - Nun zwei Signale
 - Generate (erzeuge neuen Übertrag)
 - Propagate (leite eventuellen Übertrag weiter)
- Bits werden in Spalten organisiert
 - Haben wir eben beim Ripple-Carry-Addierer auch schon gemacht
 - War aber nicht spannend: Es gab nur eine Zeile
 - ... ändert sich jetzt

Carry-Lookahead-Addierer: Definitionen

- Eine Spalte (Bit i) produziert einen Übertrag an ihrem Ausgang Ci
 - Wenn sie den Übertrag selbst erzeugt (Generate, G_i)
 - Wenn sie einen von C_{i-1} eingehenden Übertrag weiterleitet (Propagate, P_i)
- Eine Spalte *i* erzeugt einen Übertrag falls *A_i* und *B_i* beide 1 sind.

$$G_i = A_i B_i$$

■ Eine Spalte leitet einen eingehenden Übertrag weiter falls A_i oder B_i 1 ist

$$P_i = A_i + B_i$$

■ Damit ist der Übertrag *C_i* aus der Spalte *i* heraus

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

Addition im Carry-Lookahead-Verfahren

- Schritt 1: Berechne G und P-Signale für einzelne Spalten (Einzelbits)
- Schritt 2: Berechne G und P Signale für Gruppen von *k* Spalten (*k* Bits)
- Schritt 3: Leite *C_{in}* nun nicht einzelbitweise, sondern in *k*-Bit Sprüngen weiter
 - Jeweils durch einen *k*-bit Propagate/Generate-Block

Beispiel: Carry-Lookahead Addierer

- Bestimme $P_{3:0}$ und $G_{3:0}$ Signale für einen 4b Block
- Überlegung: 4b Block erzeugt Übertrag wenn
 - ... Spalte 3 einen Übertrag erzeugt (G₃=1) oder
 - ... Spalte 3 einen Übertrag weiterleitet (P₃=1), der vorher erzeugt wurde

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

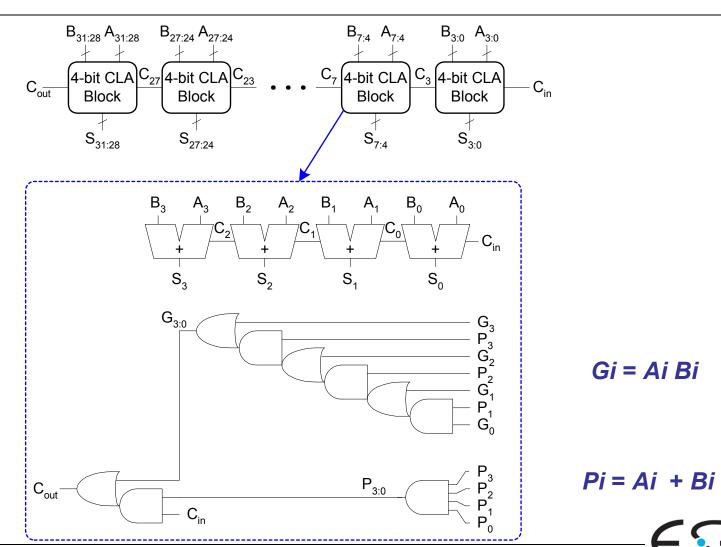
- Überlegung: Der 4b Block leitet einen Übertrag direkt weiter
 - ... wenn alle Spalten den Übertrag weiterleiten

$$P_{3:0} = P_3 P_2 P_1 P_0$$

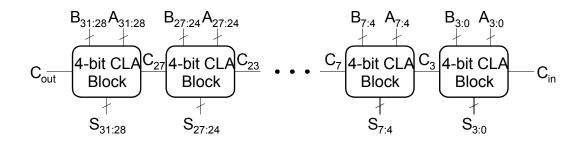
■ Damit ist der Übertrag durch einen i:j Bit breiten Block Ci

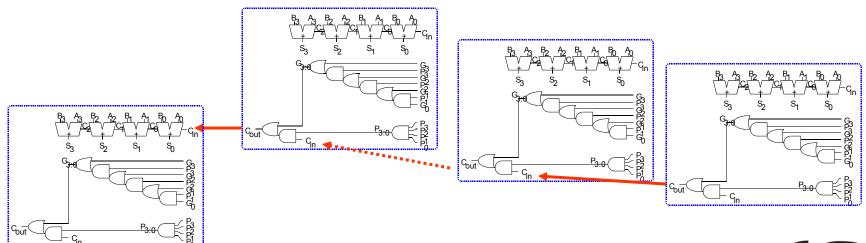
$$C_i = G_{i:j} + P_{i:j} C_{j-1}$$

32-bit CLA mit 4b Blöcken



32-bit CLA mit 4b Blöcken





Carry-Lookahead Addierer

Verzögerung durch N-bit carry-lookahead Addierer mit k-Bit Blöcken

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1) t_{AND_OR} + k t_{FA}$$

wobei

Verzögerung P, G Berechnung für eine Spalte (ganz rechts) • t_{pa} :

Verzögerung P, G Berechnung für einen Block (rechts) \bullet t_{pg} block:

■ *t*_{AND OR}: Verzögerung durch AND/OR je k-Bit CLA Block ("Weiche")

• *k t*_{FA} : Verzögerung zur Berechnung der k höchstwertigen Summenbits

■ Für N > 16 ist ein CLA oftmals schneller als ein Ripple-Carry-Addierer

Aber: Verzögerung hängt immer noch von N ab

Im wesentlichen linear

- Führt Ideen des CLA weiter
- Berechnet den Übertrag C_{i-1} in jede Spalte i so schnell wie möglich
- Bestimmt damit die Summe jeder Spalte

$$S_i = (A_i \oplus B_i) \oplus C_{i-1}$$

- Vorgehen zur schnellen Berechnung aller C_i
 - Berechne *P* und *G* für größer werdende Blöcke
 - 1b, 2b, 4b, 8b, ...
 - Bis die Eingangsüberträge für alle Spalten bereitstehen
- Nun nicht mehr N / k Stufen
- Sondern log₂ N Stufen
 - Breite der Operanden geht also nur noch logarithmisch in Verzögerung ein
- Allerdings: Sehr viel Hardware erforderlich!

- Ein Übertrag wird entweder
 - ... in einer Spalte *i* generiert
 - ... oder aus einer Vorgängerspalte *i*-1 propagiert
- Definition: Eingangsübertrag C_{in} in den ganzen Addierer kommt aus Spalte -1

$$G_{-1} = C_{\rm in}, P_{-1} = 0$$

Eingangsübertrag in eine Spalte i ist Ausgangsübertrag C_{i-1} der Spalte i-1

$$C_{i-1} = G_{i-1:-1}$$

G_{i-1:-1} ist das Generate-Signal von Spalte -1 bis Spalte i-1

- Interpretation: Ein Ausgangsübertrag aus Spalte i-1 entsteht
 - ... wenn der Block *i*-1:-1 einen Übertrag generiert

■ Damit Summenformel für Spalte *i* umschreibbar zu

$$S_i = (A_i \oplus B_i) \oplus G_{i-1:-1}$$

- Deshalb nun Ziel der Hardware-Realisierung:
 - Bestimme so schnell wie möglich $G_{0:-1}$, $G_{1:-1}$, $G_{2:-1}$, $G_{3:-1}$, $G_{4:-1}$, $G_{5:-1}$, ...
 - Sogenannte Präfixe

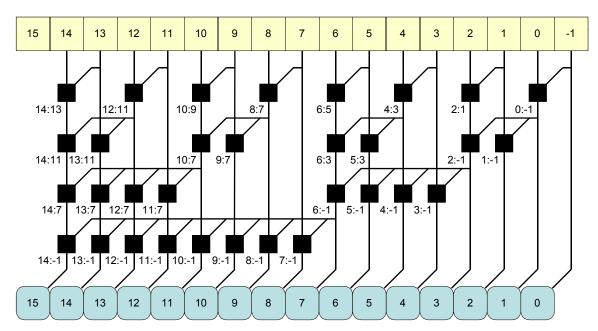
- Berechnung von P und G für variabel großen Block
 - Höchstwertiges Bit: i
 - Niederwertiges Bit: j
 - Unterteilt in zwei Teilblöcke (i:k) und (k-1:j)
- Für einen Block i:j

$$G_{i:j} = G_{i:k} + P_{i:k} G_{k-1:j}$$

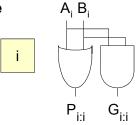
 $P_{i:j} = P_{i:k} P_{k-1:j}$

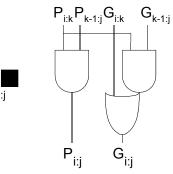
- Bedeutung
 - Ein Block erzeugt einen Ausgabeübertrag, falls
 - ... in seinem oberen Teil (i:k) ein Übertrag erzeugt wird oder
 - ... der obere Teil einen Übertrag weiterleitet, der im unteren Teil (k-1:j) erzeugt wurde
 - Ein Block leitet einen Eingabeübertrag als Ausgabeübertrag weiter, falls
 - Sowohl der untere als auch der obere Teil den Übertrag weiterleiten

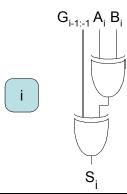
Aufbau eines Präfix-Addierers



$$S_i = (A_i \oplus B_i) \oplus G_{i-1:-1}$$







Verzögerung durch Präfix-Addierer

Verzögerung durch einen N-bit Präfix-Addierer

$$t_{PA} = t_{pg} + (\log_2 N) t_{pg_prefix} + t_{XOR}$$

wobei

- t_{pg}: Verzögerung durch P, G-Berechnung für Spalte i (ein AND bzw. OR-Gatter)
- *t*_{pg prefix}: Verzögerung durch eine Präfix-Stufe (AND-OR Gatter)
- t_{XOR}: Verzögerung durch letztes XOR der Summenberechnung

Vergleich von Addiererverzögerungen

- Szenario: 32b Addition mit Ripple-Carry, Carry-Lookahead (4-bit Blöcke),
 Präfix-Addierer
- Verzögerungen von Komponenten
 - Volladdierer t_{FA} = 300ps
 - Zwei-Eingangs Gatter $t_{AND} = t_{OR} = t_{XOR} = 100$ ps

$$t_{\text{ripple}}$$
 = $N t_{FA}$
= t_{CLA} = $t_{pg} + t_{pg_block} + (N/k - 1) t_{AND_OR} + k t_{FA}$
= = t_{PA} = $t_{pg} + (\log_2 N) t_{pg_prefix} + t_{XOR}$
= = =

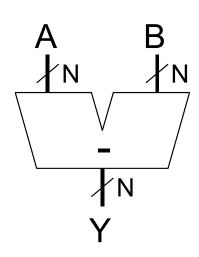
Vergleich von Addiererverzögerungen

- Szenario: 32b Addition mit, Ripple-Carry, Carry-Lookahead (4-bit Blöcke),
 Präfix-Addierer
- Verzögerungen von Komponenten
 - Volladdierer t_{FA} = 300ps
 - Zwei-Eingangs Gatter $t_{AND} = t_{OR} = t_{XOR} = 100$ ps

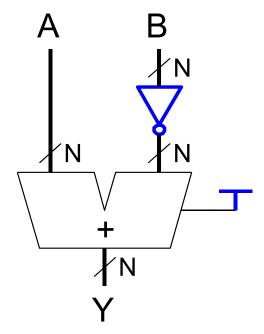
$$t_{\text{ripple}}$$
 = $N t_{FA}$ = 32 (300 ps)
= 9,6 ns
 t_{CLA} = $t_{pg} + t_{pg_block} + (N/k - 1) t_{AND_OR} + k t_{FA}$
= $[100 + 600 + (7) 200 + 4 (300)]$ ps
= 3,3 ns
 t_{PA} = $t_{pg} + (\log_2 N) t_{pg_prefix} + t_{XOR}$
= $[100 + (\log_2 32) 200 + 100]$ ps
= 1.2 ns

Subtrahierer

Symbol

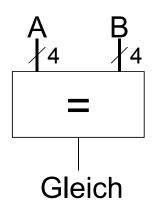


Implementierung

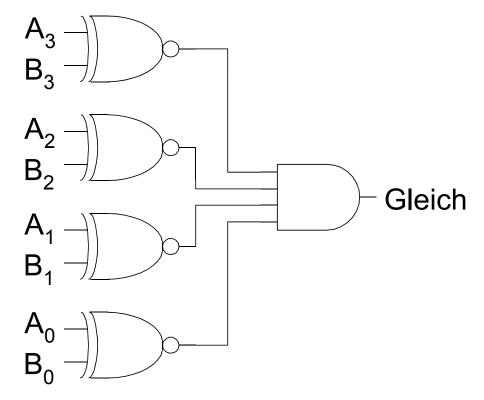


Vergleicher: Gleichheit

Symbol

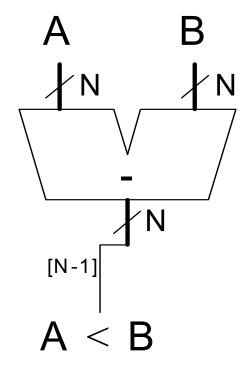


Implementierung

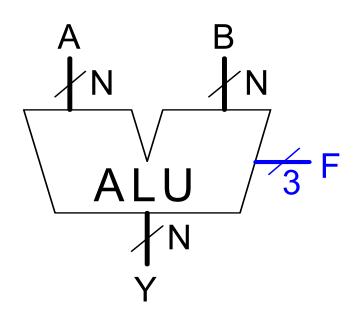


Vergleicher: Kleiner-Als

■ Für vorzeichenlose Zahlen

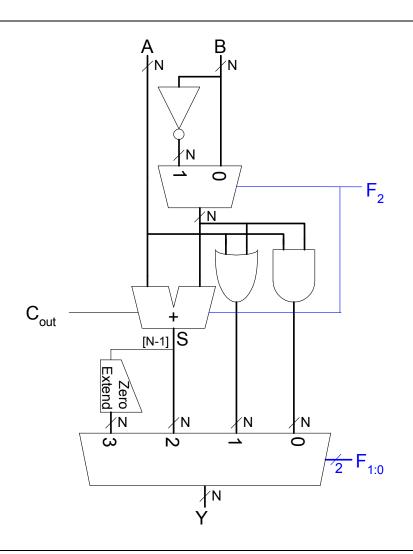


Arithmetisch-logische Einheit (arithmetic logic unit, ALU)



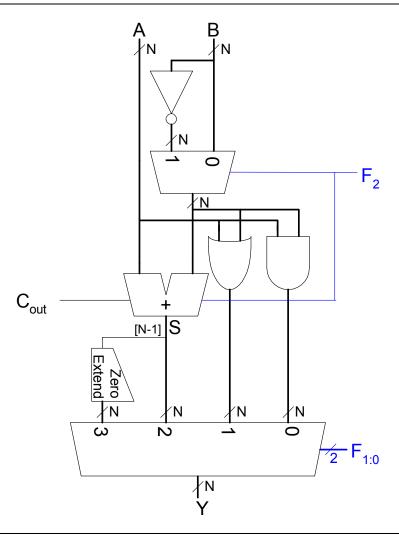
F _{2:0}	Funktion
000	A & B
001	A B
010	A + B
011	Nicht verwendet
100	A & ~B
101	A ~B
110	A - B
111	SLT

Entwurf einer ALU



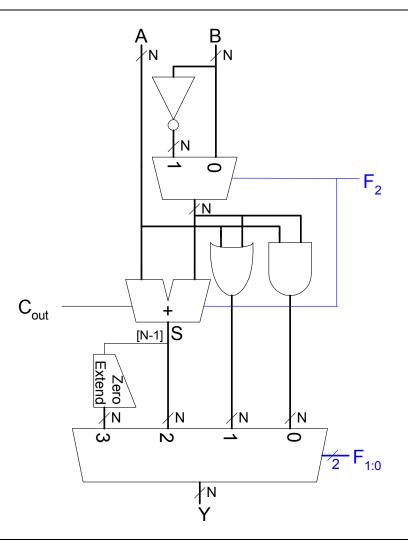
F _{2:0}	Funktion
000	A & B
001	A B
010	A + B
011	Nicht verwendet
100	A & ~B
101	A ~B
110	A - B
111	SLT

Beispiel: Set Less Than (SLT)



- Konfiguriere 32b ALU für SLT-Berechnung
 - Annahme: *A* = 25, *B* = 32

Beispiel: Set Less Than (SLT)



- Konfiguriere 32b ALU für SLT-Berechnung
 - Annahme: *A* = 25, *B* = 32
- Erwartete Ausgabe
 - A < B, also Y = 32'b1
- Steuereingang für SLT: $F_{2:0}$ = 3'b111
- F₂ = 1'b1 konfiguriert Addierer als Subtrahierer
 - S = 25 32 = -7
 - Im Zweierkomplement
 -7 = 32'h0xfffffff9 → msb S₃₁ = 1
- $F_{1:0}$ = 2'b11 wählt $Y = S_{31}$ als Ausgabe
- $Y = S_{31}$ (zero extended) = 32'h00000001.

Schiebeoperationen (shifter)

Logisches Schieben: Wert wird eine Bitposition verschoben, leere Stellen mit 0 aufgefüllt

■ Beispiel: 11001 >> 2 =

Beispiel: 11001 << 2 =</p>

 Arithmetisches Schieben: wie logisches Schieben. Verwende aber beim Rechtsschieben alten Wert des msb zum Auffüllen leerer Stellen

Beispiel: 11001 >>> 2 =

Beispiel: 11001 <<< 2 =</p>

 Rotierer: rotiert Bits im Kreis, herausgeschobene Bits tauchen am anderen Ende wieder auf

Beispiel: 11001 ROR 2 =

■ Beispiel: 11001 ROL 2 =

Schiebeoperationen (shifter)

Logisches Schieben: Wert wird eine Bitposition verschoben, leere Stellen mit 0 aufgefüllt

Beispiel: 11001 >> 2 = 00110

■ Beispiel: 11001 << 2 = 00100

 Arithmetisches Schieben: wie logisches Schieben. Verwende aber beim Rechtsschieben alten Wert des msb zum Auffüllen leerer Stellen

Beispiel: 11001 >>> 2 = 11110

Beispiel: 11001 <<< 2 = 00100</p>

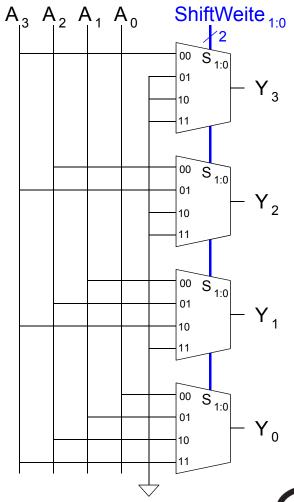
 Rotierer: rotiert Bits im Kreis, herausgeschobene Bits tauchen am anderen Ende wieder auf

Beispiel: 11001 ROR 2 = 01110

Beispiel: 11001 ROL 2 = 00111

Aufbau von Shiftern





Shifter als Multiplizierer und Dividierer

- Logisches Schieben um N Stellen nach links multipliziert den Zahlenwert mit 2^N
 - Beispiel : $00001 << 2 = 00100 (1 \times 2^2 = 4)$
 - Beispiel: $11101 << 2 = 10100 (-3 \times 2^2 = -12)$
- Arithmetisches Schieben um N Stellen nach rechts dividiert den Zahlenwert durch 2^N
 - Beispiel : $01000 >>> 2 = 00010 (8 \div 2^2 = 2)$
 - Beispiel: $10000 >>> 2 = 11100 (-16 \div 2^2 = -4)$

Multiplizierer

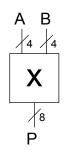
- Schrittweise Multiplikation in Dezimal- und Binärdarstellung:
 - Multiplizieren des Multiplikanden mit einzelner Stelle des Multiplikators
 - Berechnet ein Teilprodukt (auch partielles Produkt genannt)
 - Entsprechend der Wertigkeit der aktuellen Multiplikatorstelle nach links verschobene partielle Produkte werden aufaddiert

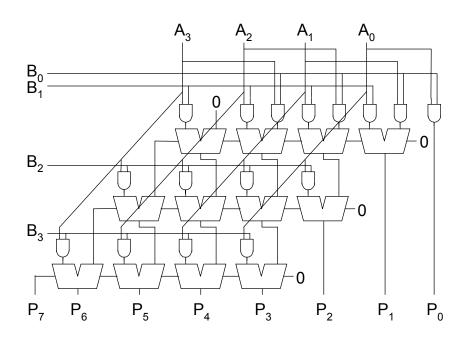
Dezimal		Binär
230 x 42	Multiplikand Multiplikator	0101 x 0111
460 + 920 9660	partielle Produkte	0101 0101 0101
	Ergebnis	<u>+ 0000</u> <u>0100011</u>

 $5 \times 7 = 35$

 $230 \times 42 = 9660$

4 x 4 Multiplizierer





Multiplikation von *k*-bit Zahlen hat 2*k*-bit breites Produkt

Division

- Leidlich einfach, dann aber sehr langsam
- Sehr kompliziert, dann wenigstens etwas schneller
 - Aber immer noch deutlich langsamer als z.B. Multiplikation
- Für Einführungsveranstaltung eher ungeeignet
 - Beschreibung im Buch auch ziemlich schlecht ...
- Hier nur aus dem Orbit gestreift
 - Auszug aus

Behrooz Parhami

Computer Arithmetic: Algorithms and Hardware Designs Oxford U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6

Idee: Quotient ziffernweise bestimmen

2487:10=

- Von höher- zur niederwertigen Stellen
 - 100er, 10er, 1er

Notation für Erklärung der Division

z	Dividend	$Z_{2k-1}Z_{2k-2}$	$Z_3 Z_2 Z_1 Z_0$
d	Divisor		$d_{k-1} d_{k-2} \dots d_1 d_0$
q s	Quotient Rest, $z - (d q)$		$q_{k-1}q_{k-2} \dots q_1q_0$ $s_{k-1}s_{k-2} \dots s_1s_0$

Dividiere vorzeichenlose Zahlen

durch	Dividend Divisor	z d	(2k Bit breit) (k Bit breit)
Ergebnis			
G	Quotient	q	(k Bit breit)
	Rest	S	(k Bit breit)

Es gilt

$$z = q d + s$$

Auftreten von Überläufen

- Beispiel k=8:
- Problem: Damit nicht alle Ergebniswerte repräsentierbar
 - Operanden: z = , d =
 - Ergebnis: q =
 - s =

Auftreten von Überläufen

■ Beispiel k=8: 16b Dividend, 8b Divisor, 8b Quotient, 8b Rest

Problem: Damit nicht alle Ergebniswerte repräsentierbar

■ Operanden: z = 65534, d = 2

■ Ergebnis: q = 32767 nicht mehr in 8b darstellbar, Überlauf!,

s = 0

- Vorgehensweise: Vorher auf darstellbares Ergebnis prüfen
 - Vermeidet Überlauf
 - Fängt auch Division durch Null ab

Abfangen von Überläufen

Maximalwert für Dividenden

$$z = q d + s$$

- Maximalwert für *q* (*k* Bit breit):
- Maximalwert für s (*k* Bit breit):

Abfangen von Überläufen

Maximalwert für Dividenden

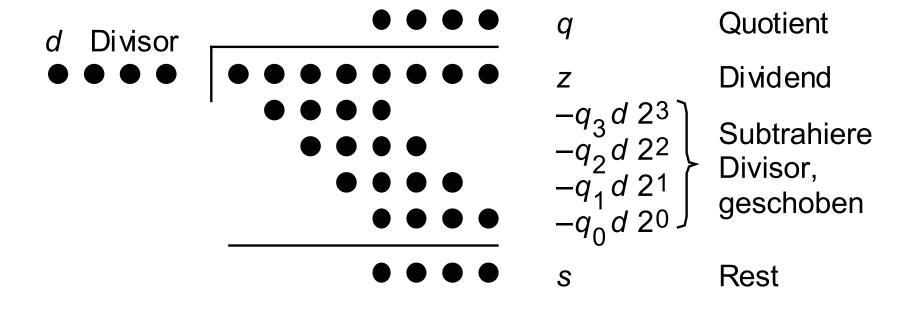
$$z = q d + s$$

- Maximalwert für q (k Bit breit): 2k 1
- Maximalwert für s (k Bit breit): d 1

$$z_{\text{max}} = (2^{k}-1) d + d - 1 = 2^{k} d - 1$$

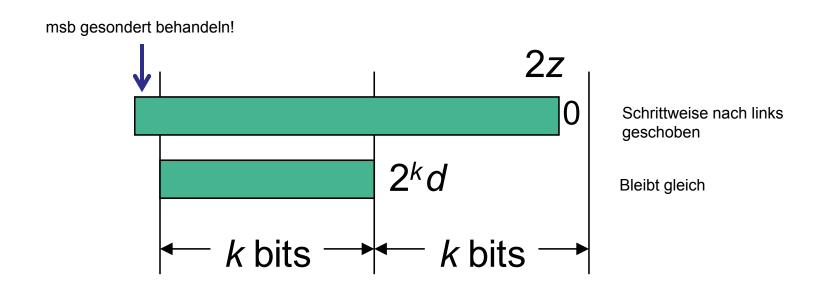
Generelle Vorgehensweise für Division

Hier: Einfaches, aber langsames Verfahren



Optimierung

- Schiebe nicht Divisor nach rechts
- ... sondern partiellen Rest nach links



Algorithmus für 2 k Bit Dividend / k Bit Divisor

Schritt 0: Initialisiere partiellen Rest mit Dividend

$$S^{(0)} = Z$$

Schritt j: Schiebe partiellen Rest ein Bit nach links und subtrahiere versuchsweise um k Bit verschobenen Divisor.

Falls Differenz >=0: $q_{k-j} = 1$, sonst =0

$$s^{(j)} = 2 s^{(j-1)} - q_{k-j} (2^k d)$$

■ Schritt k: Ende

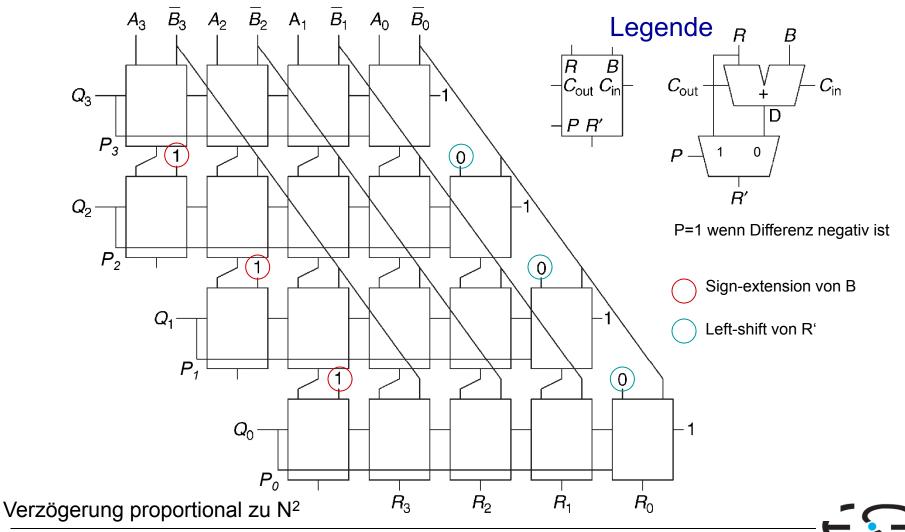
$$s^{(k)} = 2^k s^{(0)} - q (2^k d) = 2^k (z - q d) = 2^k s$$

Beispiel: 117 / 10

Beispiel 8b Dividend, 4b Divisor: 117 / 10

	z 2 ⁴ d	$0\ 1\ 1\ 1\ 0\ 1\ 0\ 1$
Schritt 0		01110101
Schritt 1	$2s^{(0)}$ $-q_3 2^4 d$	$\begin{array}{cccc} 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & & & & & & & & & & & & & $
	s ⁽¹⁾ 2s ⁽¹⁾	0100101 0100101
Schritt 2	$\frac{-q_2 2^4 d}{s^{(2)}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Schritt 3	$2s^{(2)}$ $-q_1 2^4 d$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	s ⁽³⁾	10001
Schritt 4	$2s^{(3)}$ $-q_0 2^4 d$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	s ⁽⁴⁾	0111
	<i>q</i>	1011

Kombinatorischer 4 x 4 Array-Dividierer: A / B



Zahlensysteme

- Bisher kennengelernt
 - Positive Zahlen
 - Vorzeichenlose Binärdarstellung
 - Negative Zahlen
 - Zweierkomplement
 - Darstellung als Vorzeichen/Betrag
- Wo bleiben Brüche?
 - Rationale Zahlen?
- Reelle Zahlen?

Zahlen mit Bruchanteilen

- Zwei gängige Darstellungen:
 - Festkomma (fixed-point):

Position des Kommas bleibt konstant

Beispiel: Dezimalsystem, 2 Vorkomma-, 3 Nachkommastellen

2,000 99,999 0,000 -2,718 nicht: 3,1415 365,250

Gleitkomma (floating-point)

Position des Kommas kann wandern, ist stets rechts der höchstwertigen Stelle <> 0. Angabe der Position des Kommas in Exponentenschreibweise

Beispiel: Dezimalsystem, insgesamt 5 Stellen 2*10° 9,9999*10¹ 0*10° -2,718*10° 3,1415*10° 3,6525*10° 5*10°

nicht: 3,14159*100

Auch: Obergrenze für Exponenten, keine beliebig großen Zahlen darstellbar

Binäre Festkommazahlen

■ Darstellung von 6,75 mit 4b für ganzen Anteil und 4b für Binärbruch:

01101100
0110,1100
$$2^{2} + 2^{1} + 2^{-1} + 2^{-2} = 6.75$$

- Binärkomma wird nicht explizit dargestellt
 - Position wird durch Format impliziert (hier: 4,4)
- Alle Leser und Schreiber von Festkommadaten müssen dasselbe Format verwenden

Binäre Festkommazahlen

■ Beispiel: Stelle 7,5₁₀ in 8b im binären 4,4-Festkommaformat dar

Binäre Festkommazahlen

■ Beispiel: Stelle 7.5₁₀ in 8b im 4,4-Festkommaformat dar

01111000

Vorzeichenbehaftete Festkommazahlen

- Wie bei ganzen Zahlen: Zwei Darstellungen möglich
 - Vorzeichen/Betrag
 - Zweierkomplement
- Stelle -7.5₁₀ in 8b als 4,4-Festkommazahl dar
 - Vorzeichen/Betrag:
 - Zweierkomplement:

Vorzeichenbehaftete Festkommazahlen

- Wie bei ganzen Zahlen: Zwei Darstellungen möglich
 - Vorzeichen/Betrag
 - Zweierkomplement
- Stelle -7.5₁₀ in 8b als 4,4-Festkommazahl dar
 - Vorzeichen/Betrag:

11111000

Zweierkomplement:

Vorzeichenbehaftete Festkommazahlen

- Wie bei ganzen Zahlen: Zwei Darstellungen möglich
 - Vorzeichen/Betrag
 - Zweierkomplement
- Stelle -7.5₁₀ in 8b als 4,4-Festkommazahl dar
 - Vorzeichen/Betrag:

11111000

Zweierkomplement:

1. +7.5: 01111000

2. Invertieren: 10000111

3. Addiere 1 zu lsb: +

10001000

Binäre Gleitkommazahlen

- Binärkomma liegt immer genau rechts von höchstwertiger 1
- Ähnlich zur wissenschaftlichen Darstellung von Dezimalbrüchen
- Beispiel: 4.387.263 in wissenschaftlicher Darstellung

$$4,387263 \times 10^{6}$$

Allgemeine Schreibweise:

$$\pm M \times B^{E}$$

wobei

- M = Mantisse
- B = Basis
- E = Exponent
- Im Beispiel: M = 4,387263 , B = 10, and E = 6

Binäre Gleitkommazahlen

Vorzeichen	Exponent	Mantisse
1 Bit	8 Bits	23 Bits

- Beispiel: Stelle den Wert 228₁₀ als 32b-Gleitkommazahl dar
 - Im folgenden drei Versionen, nur die letzte davon ist eine Standarddarstellung!
 - IEEE 754, single precision format

Binäre Gleitkommadarstellung: 1. Versuch

- Wandele Dezimalzahl in Binärdarstellung um:
 - \blacksquare 228₁₀ = 11100100₂ = 1,11001 × 2⁷
- Trage nun Daten in die Felder des 32b Wortes ein:
 - Vorzeichenbit ist positiv (0)
 - Die 8b des Exponenten stellen den Wert 7 dar
 - Die verbliebenen 23 Bit stellen die Mantisse dar

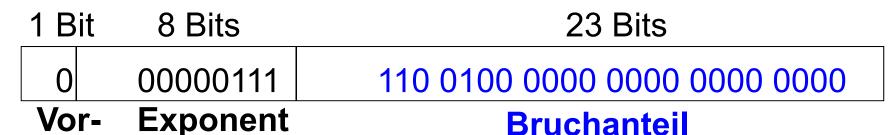
•	1 Bit	8 Bits	23 Bits
	0	00000111	111 0010 0000 0000 0000 0000

Vor- Exponent Mantisse

zeichen

Binäre Gleitkommadarstellung: 2. Versuch

- Beobachtung: Das erste Bit der Mantisse ist so immer 1
 - $228_{10} = 11100100_2 = 1,11001 \times 2^7$
- Man kann sich das explizite Abspeichern der führenden 1 sparen
 - Die führende 1 wird implizit immer als präsent angenommen
- Stattdessen: Speichere nur den Bruchanteil (die "Nachkommastellen") explizit ab



zeichen

Binäre Gleitkommadarstellung: 3. Versuch

- Exponent kann auch negativ sein
 - Idee: Zweierkomplement. Wäre möglich, hat aber praktische Nachteile
 - Besser: Exponent relativ zu konstantem Grundwert (Exzess, Biaswert) angeben
- Hier: Biaswert = 127 (01111111₂)
 - Exponent mit Bias = Biaswert + Exponent
 - Exponent 7 wird also gespeichert als:

$$127 + 7 = 134 = 0 \times 10000110_{2}$$

■ Damit IEEE 754 32-bit Gleitkommadarstellung von 228₁₀

1 Bit 8 Bits

23 Bits

0 10000110

110 0100 0000 0000 0000 0000

Vorz. Exponent mit Bias

Bruchanteil

Beispiel IEEE 754 Gleitkommadarstellung

■ Stelle -58.25₁₀ gemäß dem IEEE 754 32-bit Gleitkommastandard dar

Beispiel IEEE 754 Gleitkommadarstellung

- Stelle -58.25₁₀ gemäß dem IEEE 754 32-bit Gleitkommastandard dar
- 1. Wandele in Binärdarstellung um:
 - 58,25₁₀ =
- 2. Trage Felder des 32b Gleitkommawortes ein:
 - Vorzeichen:
 - 8 Bits für Exponent:
 - 23 Bits für Bruchanteil:

1 Bit	8 Bits	23 Bits

Vorz. Exponent

Bruchanteil

In Hexadezimalschreibweise:

Beispiel IEEE 754 Gleitkommadarstellung

- Stelle -58.25₁₀ gemäß dem IEEE 754 32-bit Gleitkommastandard dar
- 1. Wandele in Binärdarstellung um:
 - $58,25_{10} = 111010,01_2 = 1,1101001 \times 2^5$
- 2. Trage Felder des 32b Gleitkommawortes ein:
 - Vorzeichen: 1 (negativ)
 - 8 Bits für Exponent: $(127 + 5) = 132 = 10000100_2$
 - 23 Bits für Bruchanteil: 110 1001 0000 0000 0000 0000

1 E	Bit 8 Bits	23 Bits
1	100 0010 0	110 1001 0000 0000 0000 0000

Vorz. Exponent

Bruchanteil

In Hexadezimalschreibweise: 0xC2690000

IEEE 754 Gleitkommadarstellung: Sonderfälle

- Nicht alle benötigten Werte nach dem Schema darstellbar
 - Beispiel: 0, hat keine führende 1

Wert	Vorz.	Exponent	Bruchanteil
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
_ ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	Ein Wert <> 0

NaN steht für "Not a Number" und stellt häufig Rechenfehler dar Beispiele: $\sqrt{-1}$ oder $\log(-5)$.

Genauigkeit der Gleitkommadarstellungen

- Einfache Genauigkeit (single-precision):
 - 32-bit Darstellung
 - 1 Vorzeichenbit, 8 Exponentenbits, 23 Bits für Bruchanteil
 - Exponentenbias = 127
- Doppelte Genauigkeit (double-precision):
 - 64-bit Darstellung
 - 1 Vorzeichenbit, 11 Exponentenbits, 52 Bits für Bruchanteil
 - Exponentenbias = 1023

Rundungsmodi für Gleitkommazahlen

Overflow: Betrag der Zahl ist zu groß, um korrekt dargestellt zu werden

Underflow: Zahl ist zu nahe bei 0, um korrekt dargestellt zu werden

- Rundungsmodi:
 - Abrunden zu minus Unendlich
 - Aufrunden zu plus Unendlich
 - Hin zu Null
 - Hin zu nächster darstellbarer Zahl
- Beispiel: Runde 1,100101 (1,578125₁₀) auf 3 Bits Bruchanteil

■ Ab: 1,100

■ Auf: 1,101

■ Zu Null: 1,100

■ Zu nächster: 1,101 (1,625 liegt näher an 1,578125 als an 1,5)

Addition von Gleitkommazahlen mit gleichem Vorzeichen

- 1. Exponenten- und Bruchanteilfelder aus Gleitkommawort extrahieren
- 2. Bruchanteil um führende 1 erweitern, um Mantisse zu bilden
- 3. Vergleiche Exponenten
- 4. Schiebe Mantisse von Zahl mit kleinerem Exponenten nach rechts (bis Exponenten gleich sind)
- Addiere Mantissen
- 6. Normalisiere Mantisse und passe Exponent an, falls nötig
- 7. Runde Ergebnis entsprechend dem gewählten Rundungsmodus
- 8. Baue Gleitkommawort aus Exponenten und Bruchanteil des Ergebnisses

Beispiel: Addition von Gleitkommazahlen

Addiere die beiden Gleitkommazahlen

0x3FC00000 0x40500000

Beispiel: Addition von Gleitkommazahlen

1. Extrahiere Exponenten und Bruchanteile aus 32b Worten

<u> 1 Bit</u>	8 Bits	23 Bits
0	01111111	100 0000 0000 0000 0000 0000
Vorz.	Exponent	Bruchanteil
1 Bit	8 Bits	23 Bits
0	10000000	101 0000 0000 0000 0000 0000
Vorz.	Exponent	Bruchanteil
S	E	F

1. Zahl (N1): S1 = 0, $E1 = 127 (= \times 2^{0})$, F1 = 1,1

2. Zahl (N2): S2 = 0, E2 = 128 (= \times 2¹), F2 = ,101

2. Erweitere Bruchanteile um führende 1, um Mantissen zu bilden

M1: 1,1

M2: 1,101

Beispiel: Addition von Gleitkommazahlen

- 3. Vergleiche Exponenten
 - E2 E1 = 128 127 = 1, N1 muss also um ein Bit geschoben werden
- 4. Mantisse von Zahl mit kleinerem Exponenten entsprechend nach rechts schieben

schiebe M1: 1,1 >> 1 = 0,11 (
$$\times$$
 2¹)

5. Mantissen addieren (haben jetzt den gleichen Exponenten)

Beispiel: Addition von Gleitkommazahlen

- 6. Normalisiere Mantisse und passe Exponenten an, falls nötig $10,011 \times 2^1 = 1,0011 \times 2^2$
- 7. Runde Ergebnis entsprechend Rundungsmodus Hier nicht nötig (passt in 23b)
- 8. Baue neues Gleitkommawort für Ergebnis aus Exponent und Mantisse S = 0, $E = 2 + 127 = 129 = 10000001_2$, F = 001100..0

Vorz	. Exponent	Bruchanteil
0	10000001	001 1000 0000 0000 0000 0000
1 Bit	8 Bits	23 Bits

In Hexadezimalschreibweise: 0x40980000

Zähler

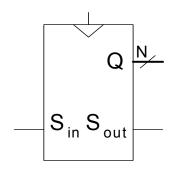
- Einfachster Fall: Inkrementieren zu jeder positiven Taktflanke
- Zählen durch einen Zyklus von Werten, Beispiel für 3b Breite
 - **•** 000, 001, 010, 011, 100, 101, 110, 111, 000, 001...
- Beispielanwendungen
 - Digitaluhren
 - Programmzähler: Zeigt auf nächste auszuführende Instruktion

Symbol Aufbau CLK Q Reset Reset

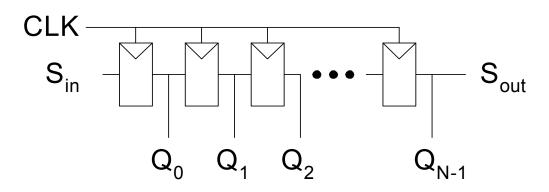
Schieberegister

- Auch: FIFO (first-in first-out)
- Schiebe einen neuen Wert jeden Takt ein
- Schiebe einen alten Wert jeden Takt aus
- Kann auch agieren als Seriell-nach-Parallel-Konverter
 - Konvertiert serielle Eingabe (S_{in}) in parallele Ausgabe (Q_{0:N-1})

Symbol:

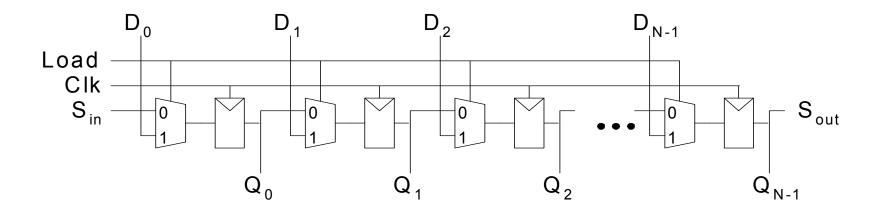


Aufbau:



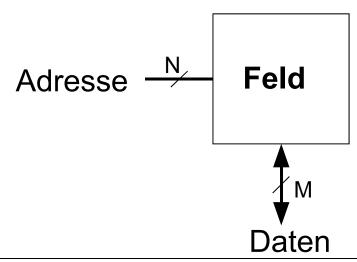
Schieberegister mit parallelem Laden

- Bei *Load* = 1: Agiert als normales *N*-bit Register
- Bei *Load* = 0: Agiert als Schieberegister
- Verwendbar als
 - Seriell-nach-Parallelkonverter (S_{in} nach Q_{0:N-1})
 - Parallel-nach-Seriellkonverter (D_{0:N-1} nach S_{out})



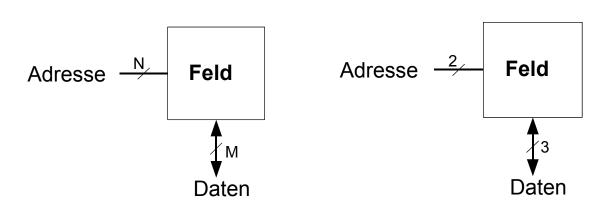
Speicherfelder

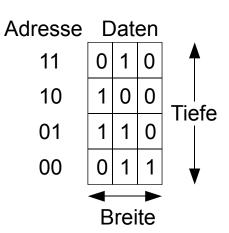
- Können effizient größere Datenmengen speichern
- Drei weitverbreitete Typen:
 - Dynamischer Speicher mit wahlfreiem Zugriff
 - (Dynamic random access memory, DRAM)
 - Statischer Speicher mit wahlfreiem Zugriff
 - (Static random access memory, SRAM)
 - Nur-Lesespeicher (Read only memory, ROM)
- An jede *N*-bit Adresse kann ein *M*-bit breites Datum geschrieben werden



Speicherfelder

- Zweidimensionales Feld von Bit-Zellen
- Jede Bit-Zelle speichert ein Bit
- Feld mit N Adressbits und M Datenbits:
 - 2^N Zeilen und *M* Spalten
 - Tiefe: Anzahl von Zeilen (Anzahl von Worten)
 - Breite: Anzahl von Spalten (Bitbreite eines Wortes)
 - Feldgröße: Tiefe × Breite = $2^N \times M$





Beispiel: Speicherfeld

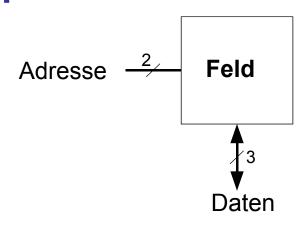
■ 2² × 3-Bit Feld

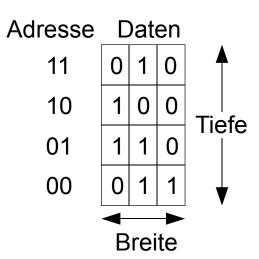
Anzahl Worte: 4

Wortbreite: 3-Bit

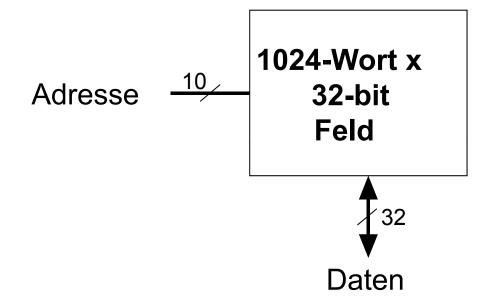
■ Beispiel: 3-Bit gespeichert an Adresse 2'b10 ist 3'b100

Beispiel:

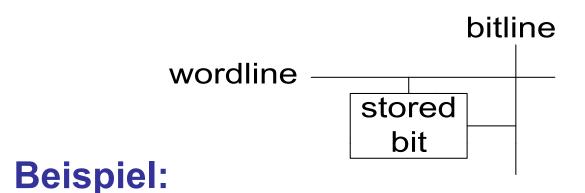


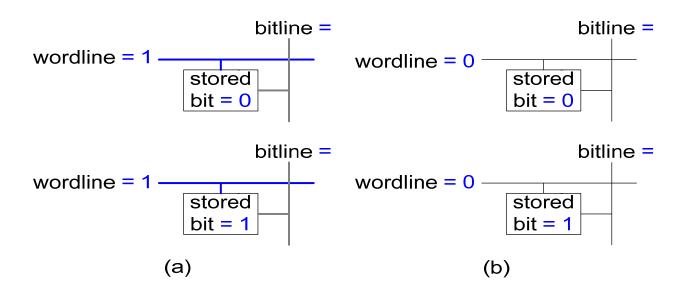


Speicherfelder

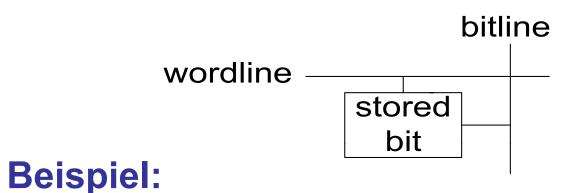


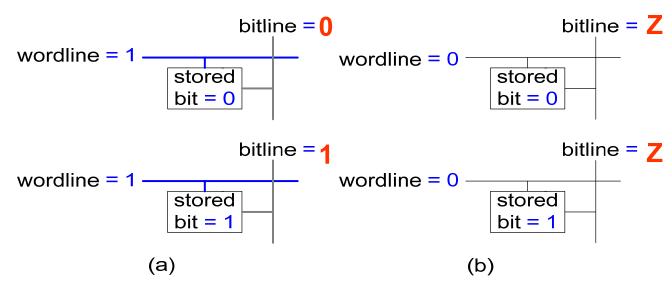
Bit-Zellen für Speicherfelder





Aufbau von Speicherfeldern aus Bit-Zellen

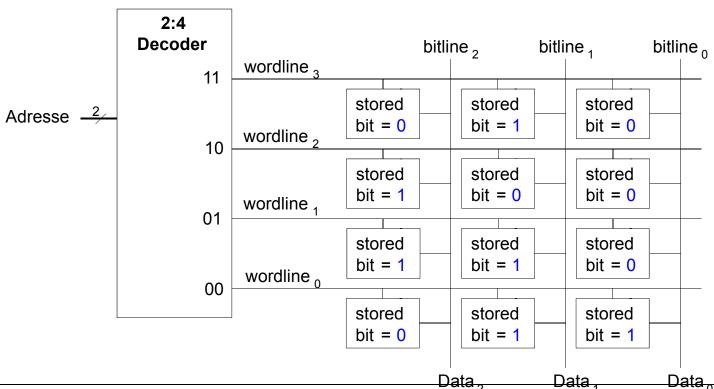




Aufbau von Speicherfeldern

Wordline:

- Vergleichbar mit Enable-Signal
- Erlaubt Zugriff auf eine Zeile des Speichers zum Lesen oder Schreiben
- Entspricht genau einer eindeutigen Adresse
- Maximal eine Wordline ist zu jedem Zeitpunkt HIGH



Arten von Speicher: Historische Sicht

- Speicher mit wahlfreiem Zugriff (RAM)
- Nur-Lese Speicher (ROM)

RAM: Random-Access Memory

- Flüchtig: Speicherinhalte gehen bei Verlust der Betriebsspannung verloren
- Kann i.d.R. gleich schnell gelesen und geschrieben werden
- Zugriff auf beliebige Adressen mit ähnlicher Verzögerung möglich
- Hauptspeicher moderner Computer ist dynamisches RAM (DRAM)
 - Aktuell & genauer: DDR3-SDRAM
 - Double Data Rate 3 Synchronous Dynamic Random Access Memory
- Name "RAM" ist historisch gewachsen
 - Früher unterschiedliche Zugriffszeiten auf unterschiedliche Adressen
 - Bandspeicher, Trommelspeicher, Ultraschall-Laufzeitspeicher, ...

ROM: Read-Only Memory

- Nicht-flüchtig: Erhält Speicherinhalt auch ohne Betriebsspannung
- Schnell lesbar
- Schreibbar nur sehr langsam (wenn überhaupt)
- Flash-Speicher ist in diesem Sinne ein ROM
 - Kameras
 - Handys
 - MP3-Player
- Auch hier Nomenklatur "ROM" historisch
 - Auch aus ROMs kann von beliebigen Adressen gelesen werden
 - Es gibt auch schreibbare Arten von ROMs
 - PROMs, EPROMs, EEPROMs, Flash

Arten von RAM

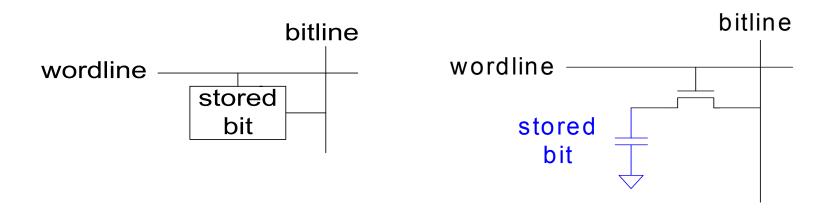
- Zwei wesentliche Typen:
 - Dynamisches RAM (DRAM)
 - Statisches RAM (SRAM)
- Verwenden unterschiedliche Speichertechniken in den Bit-Zellen:
 - DRAM: Kondensator
 - SRAM: Kreuzgekoppelte Inverter

Robert Dennard, 1932 -

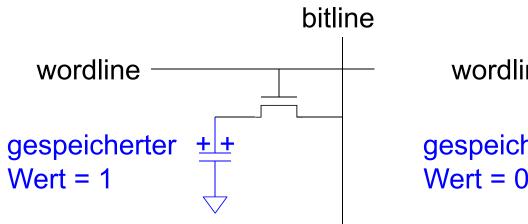
- Erfand 1966 bei IBM das DRAM
- Anfangs große Skepsis, ob Technik praktikabel
- Seit Mitte der 1970er Jahre ist DRAM die am weitesten verbreitete Speichertechnik in Computern

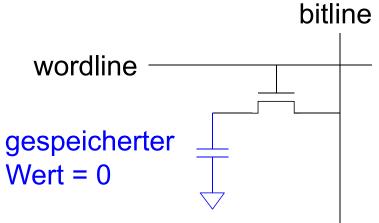
DRAM Bit-Zelle

- Datenbit wird als Ladezustand eines Kondensators gespeichert
- Dynamisch: Der Speicherwert muss periodisch neu geschrieben werden
 - Auffrischung alle paar Millisekunden erforderlich (üblich: 64ms)
 - Kondensator verliert Ladung durch Leckströme
 - ... und beim Auslesen



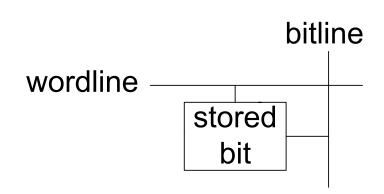
DRAM Bit-Zelle

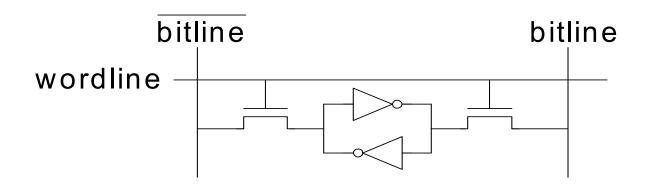




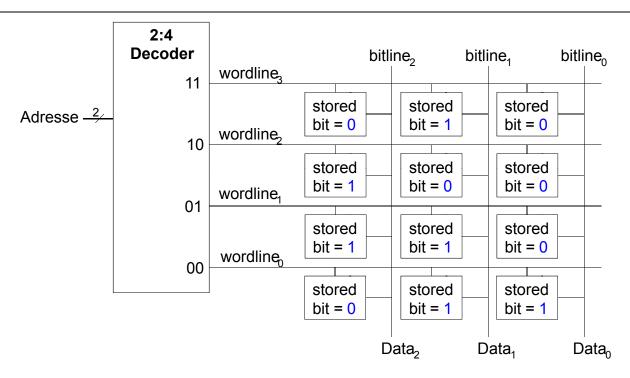
SRAM Bit-Zelle

- Datenbit wird als Zustand von rückgekoppelten Invertern gespeichert
- Statisch: Keine Auffrischung erforderlich
 - Inverter treiben Werte auf gültige Logikpegel



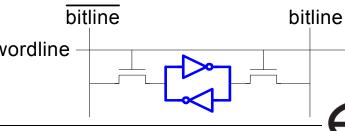


Speicherfelder

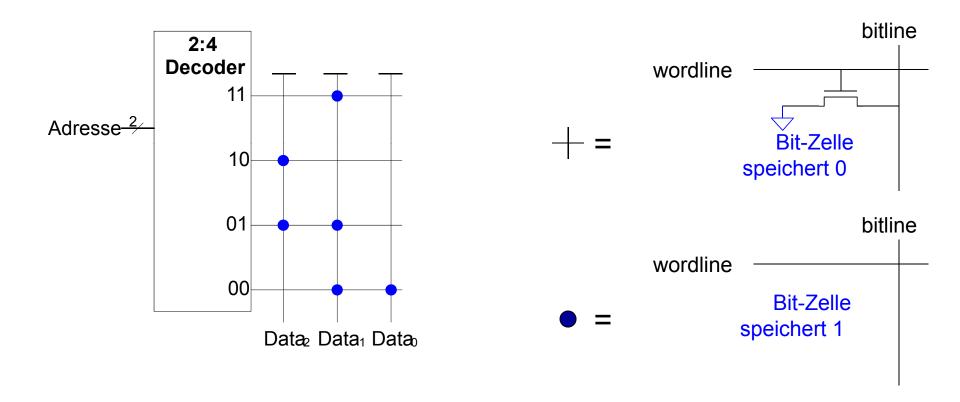


DRAM Bit-Zelle: bitline wordline wordline

SRAM Bit-Zelle:



ROMs: Aufbau der Bit-Zellen

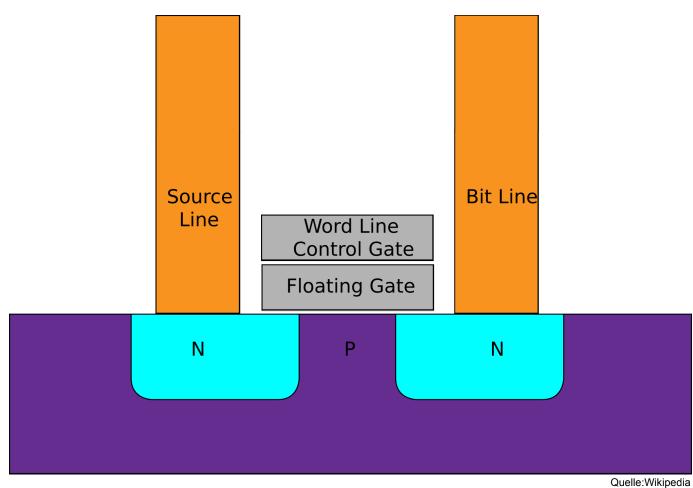


Bitlines sind schwach auf HIGH getrieben

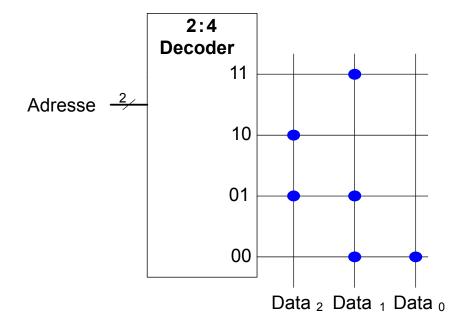
Fujio Masuoka, 1944-

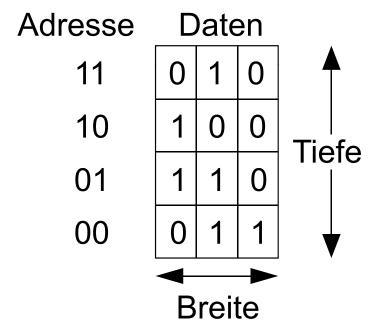
- Entwickelte Speicher und schnelle Schaltungen bei Toshiba von 1971-1994
- Erfand Flash-Speicher als eigenes ungenehmigtes Projekt in den späten 1970ern
 - An Wochenenden und abends
- Löschvorgang erinnerte ihn an Kamerablitz
 - Deshalb Flash-Speicher
- Toshiba kommerzialisierte Technik nur. zögerlich
- Erste kommerzielle Chips von Intel in 1988
- Flash-Produkte haben großen Erfolg
 - Derzeit USD 25 Milliarden Umsatz / Jahr

Flash-Speicher: Bit-Zelle

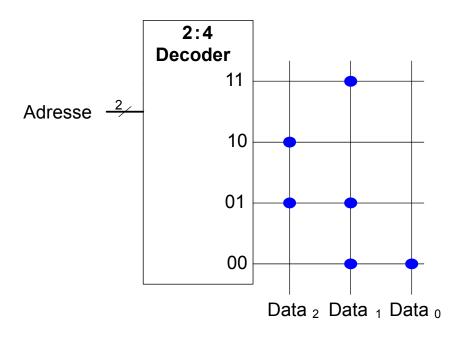


ROMs als Datenspeicher





ROMs als Wertetabellen für boolesche Logik



$$Data_2 = A_1 \oplus A_0$$

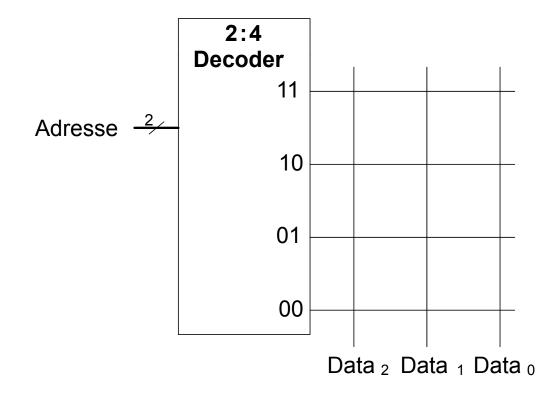
$$Data_1 = \overline{A_1} + A_0$$

$$Data_0 = \overline{A_1} \overline{A_0}$$

Beispiel: Logik aus ROMs

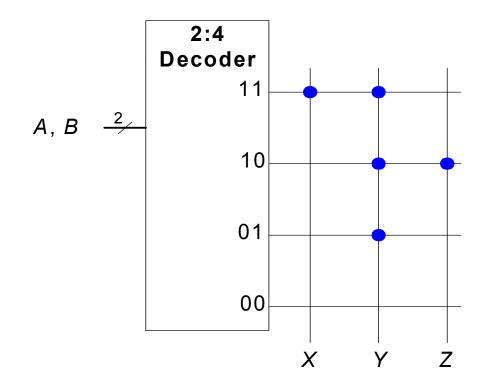
- Implementierung der folgenden logischen Funktionen durch 2² × 3-bit ROM:
 - X = AB
 - Y = A + B

•
$$Z = A\overline{B}$$

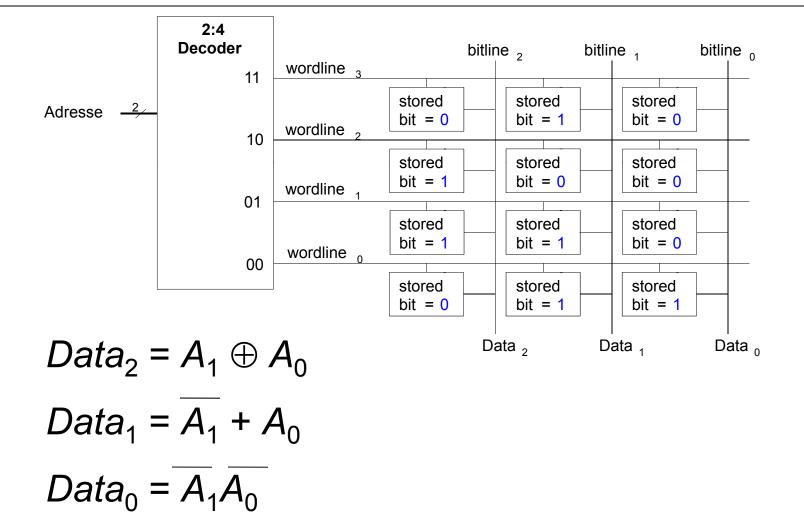


Beispiel: Logik aus ROMs

- Implementierung der folgenden logischen Funktionen durch 2² × 3-bit ROM:
 - X = AB
 - Y = A + B
 - $Z = A\overline{B}$

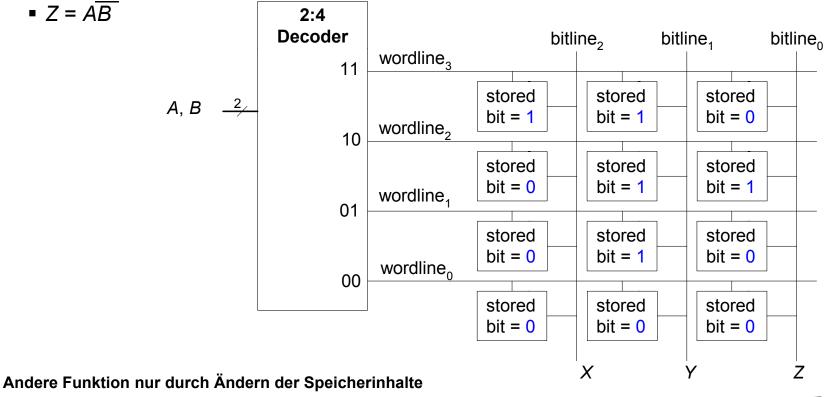


Logik aus beliebigem Speicherfeld



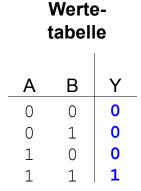
Logik aus beliebigem Speicherfeld

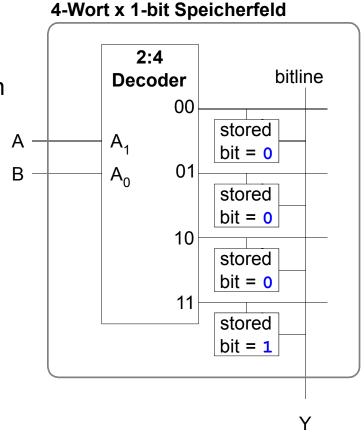
- Implementierung der folgenden logischen Funktionen durch 2² × 3-bit RAM:
 - \bullet X = AB
 - Y = A + B
 - $Z = A\overline{B}$



Logik aus beliebigen Speicherfeldern

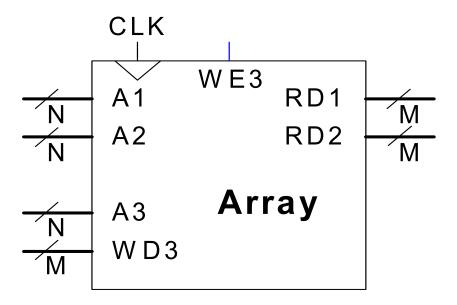
- Speicherfelder speichern Wertetabellen
 - Lookup-Tables (LUTs)
- Wort aus Eingangsvariablen bildet Adresse
- Für jede Kombination von Eingangsvariablen ist Funktionsergebnis abgespeichert





Multi-Port-Speicher

- Port: Zusammengehörige Anschlüsse für Adresse und Datum
- Drei-Port Speicher
 - 2 Lese-Ports (A1/RD1, A2/RD2)
 - 1 Schreib-Port (A3/WD3, Signal WE3 löst Schreiben aus)
- Kleine Multi-Port-Speicher werden als Registerfelder bezeichnet
 - Werden z.B. in Prozessoren eingesetzt



Speicherfeld in Verilog

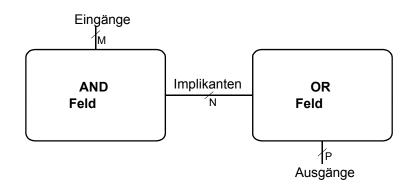

```
// 256 x 3b Speicher mit einem Schreib/Lese-Port
module dmem ( input
                             clk, we,
             input [7:0]
                             а
             input [2:0] wd,
             output [2:0] rd);
  req [2:0] RAM[255:0];
  assign rd = RAM[a];
  always @(posedge clk)
      if (we)
          RAM[a] \le wd;
endmodule
```

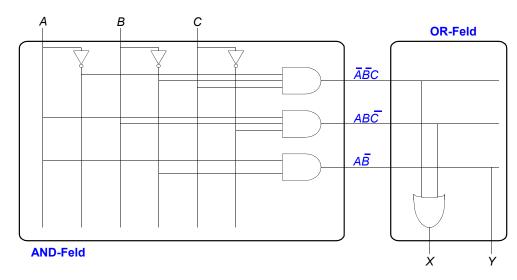

Logikfelder (logic arrays)

- Programmable Logic Arrays (PLAs)
 - AND Feld gefolgt von OR Feld
 - Kann nur kombinatorische Logik realisieren
 - Feste interne Verbindungen, spezialisiert für DNF (SoP-Form)
- Field Programmable Gate Arrays (FPGAs)
 - Feld von konfigurierbaren Logikblöcken (CLBs)
 - Können kombinatorische und sequentielle Logik realisieren
 - Programmierbare Verbindungsknoten zwischen Schaltungselementen

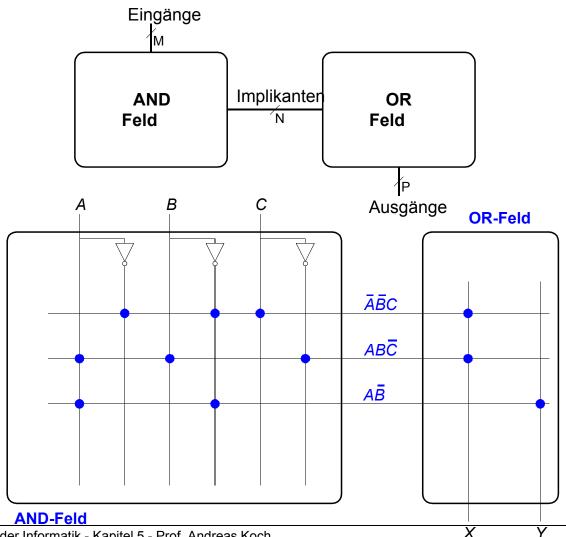
Boole'sche Funktionen mit PLAs: Idee

■
$$X = \overline{ABC} + AB\overline{C}$$





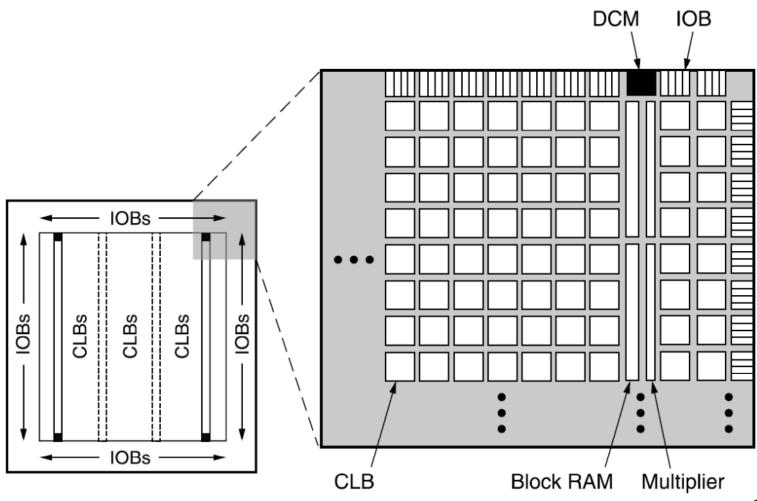
PLAs: Vereinfachte Schreibweise



FPGAs: Field Programmable Gate Arrays

- Bestehen grundsätzlich aus:
 - CLBs (Configurable Logic Blocks): Realisieren kombinatorische und sequentielle Logik
 - Konfigurierbare Logikblöcke
 - IOBs (Input/Output Blocks): Schnittstelle vom Chip zur Außenwelt
 - Ein-/Ausgabeblöcke
 - Programmierbares Verbindungsnetz: verbindet CLBs und IOBs
 - Kann flexibel Verbindungen je nach Bedarf der aktuellen Schaltung herstellen
 - Reale FPGAs enthalten oftmals noch weitere Arten von Blöcken
 - RAM
 - Multiplizierer
 - Manipulation von Taktsignalen (DCM)
 - Sehr schnelle serielle Verbindungen (11 Gb/s)
 - Komplette Mikroprozessoren
 - ...

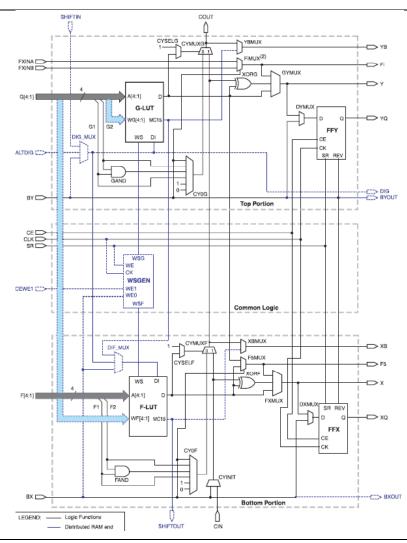
Struktur eines Xilinx Spartan 3 FPGA



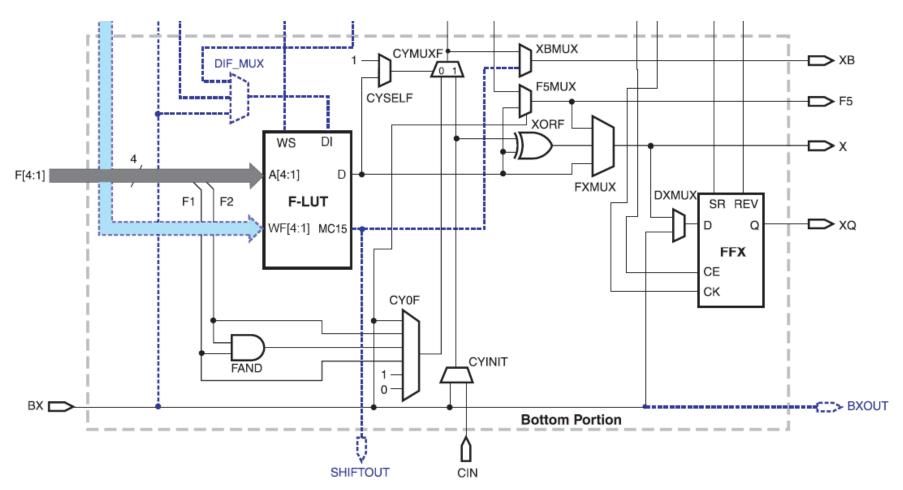
Konfigurierbare Logikblöcke (CLBs)

- Bestehen im wesentlichen aus:
 - LUTs (lookup tables): realisieren kombinatorische Funktionen
 - Flip-Flops: realisieren sequentielle Funktionen
 - Multiplexern: Verbinden LUTs und Flip-Flops

Xilinx Spartan 3 CLB



Xilinx Spartan CLB



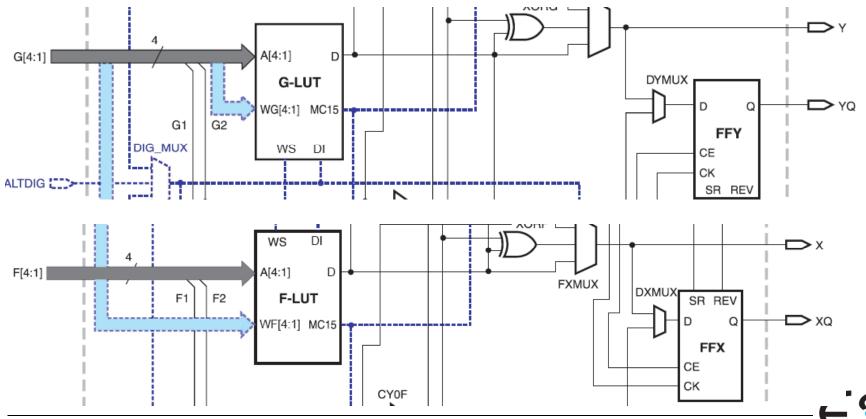
Xilinx Spartan 3 CLB

- Ein Spartan 3 CLB enthält:
 - 2 LUTs
 - F-LUT (2⁴ x 1-bit LUT)
 - G-LUT (2⁴ x 1-bit LUT)
 - 2 sequentielle Ausgänge:
 - XQ
 - YQ
 - 2 kombinatorische Ausgänge:
 - X
 - Y

Beispiel: Kombinatorische Logik mit CLBs

Embedded Systems & Applications

- Berechnung der folgenden Funktionen mit dem Spartan 3 CLB
 - $X = \overline{ABC} + AB\overline{C}$
 - $Y = A\overline{B}$

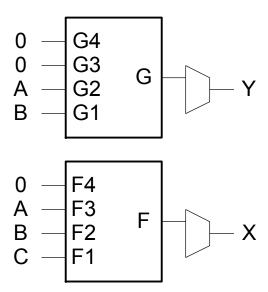


Beispiel: Kombinatorische Logik mit CLBs

- Berechnung der folgenden Funktionen mit dem Spartan 3 CLB
 - $X = \overline{ABC} + AB\overline{C}$
 - $Y = A\overline{B}$

	(A)	(B)	(C)	(X)
F4	F3	F2	F1	F
X	0	0	0	0
Χ	0	0	1	1
X	0	1	0	0
Χ	0	1	1	0
Χ	1	0	0	0
Χ	1	0	1	0
Χ	1	1	0	1
X	1	1	1	0

		(A)	(B)	(Y)
G4	G3	Ġ2	(B) G1	G
X	Χ	0	0	0
X	Χ	0	1	0
X	Χ	1	0	1
X	X	1	1	0



Entwurfsfluß für FPGAs

- Wird in der Regel durch Entwurfswerkzeuge unterstützt
 - Beispiel: Xilinx ISE
- Ist in der Regel ein iterativer Prozess
 - Planen
 - Implementieren
 - Simulieren
 - Wiederhole ...
- Entwickler denkt nach
- Entwickler gibt Entwurf als Schaltplan oder HDL-Beschreibung ein
- Entwickler wertet Simulationergebnisse aus
- Wenn Simulation zufriedenstellend: Synthetisiere Entwurf in Netzliste
- Bilde Netzliste auf FPGA-Konfiguration ab (CLBs, IOBs, Verbindungsnetz)
- Lade Konfigurationsdaten (bit stream) auf FPGA
- Teste Schaltung nun in realer Hardware

