Technische Grundlagen der Informatik – Kapitel 3

Prof. Dr. Andreas Koch Fachbereich Informatik TU Darmstadt

Kapitel 3: Themen

- Einleitung
- Latches und Flip-Flops
- Entwurf synchroner Logik
- Endliche Zustandsautomaten
- Zeitverhalten sequentieller Logik
- Parallelismus

Einleitung

- Ausgänge sequentieller Logik hängen ab von
 - aktuellen Eingabewerten
 - vorherigen Eingabewerten
- Schaltung speichert einen internen Zustand
- Definitionen
 - Zustand: interne Informationen, aus denen weiteres Schaltungsverhalten hergeleitet werden kann
 - Latches und Flip-Flops: Speicherelemente für jeweils 1 Bit Zustand
 - Synchrone sequentielle Schaltung: Kombinatorische Logik gefolgt von Flip-Flops

Sequentielle Schaltungen

- Können Folgen von Ereignissen bearbeiten
- Haben "Gedächtnis" (in der Regel nur Kurzzeit-)
- Benutzen Rückkopplungen von Logikausgängen zu Logikeingänge, um Informationen zu speichern
 - Rückkopplungen: Keine kombinatorischen Schaltungen mehr!

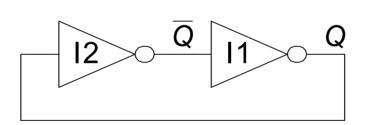
Zustandselemente

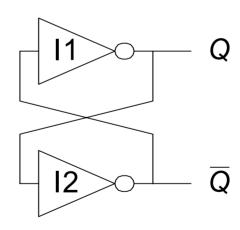
 Der Zustand einer Schaltung beeinflusst das zukünftige Verhalten

- Speicherelemente speichern Zustand
 - Bistabile Schaltungen
 - SR Latch
 - D Latch
 - D Flip-Flop
 - Manchmal auch Zustandselemente genannt

Bistabile Grundschaltung

- Fundamentaler Baustein der anderen Speicherelemente
- Zwei Ausgänge: Q, Q
- Keine Eingänge

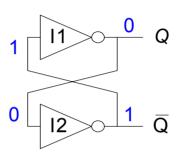


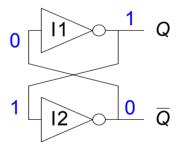


Analyse der bistabilen Grundschaltung

- Betrachte zwei Möglichkeiten:
 - Q = 0: dann $\overline{Q} = 1$ und Q = 0
 - Konsistent und stabil

- Q = 1: dann $\overline{Q} = 0$ und Q = 1
- Konsistent und stabil

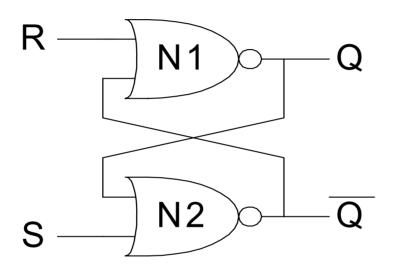




- Bistabile Schaltung speichert 1 Zustandsbit in Zustandsvariable Q (oder Q)
- Es gibt aber bisher keine Eingänge, um diesen Zustand zu beeinflussen

SR (Setzen/Rücksetzen) Latch

SR Latch



Betrachte Fälle:

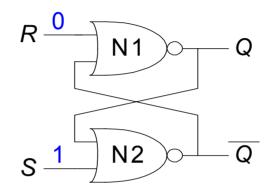
•
$$S = 1, R = 0$$

•
$$S = 0$$
, $R = 1$

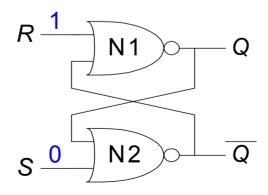
•
$$S = 0, R = 0$$

$$S = 1, R = 1$$

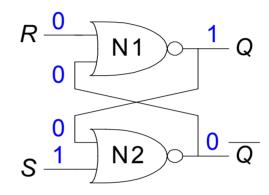
•
$$S = 1$$
, $R = 0$: dann $Q = 1$ und $Q = 0$



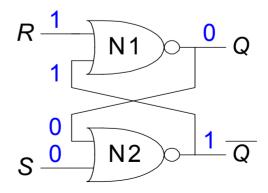
•
$$S = 0$$
, $R = 1$: dann $Q = 0$ und $Q = 1$



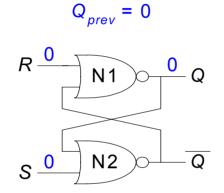
•
$$S = 1$$
, $R = 0$: dann $Q = 1$ und $Q = 0$

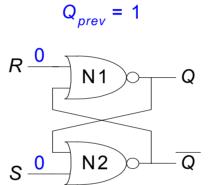


•
$$S = 0$$
, $R = 1$: dann $Q = 0$ und $Q = 1$

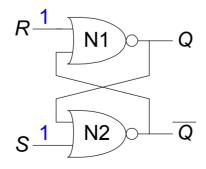


• S = 0, R = 0: dann $Q = Q_{prev}$

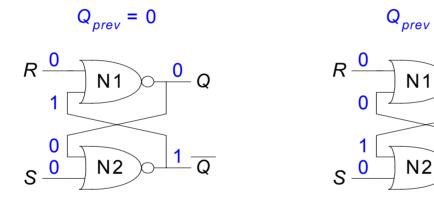




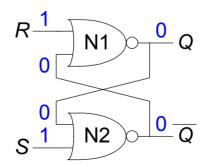
• S = 1, R = 1: dann Q = 0 und $\overline{Q} = 0$



• S = 0, R = 0: dann $Q = Q_{prev}$ und $\overline{Q} = \overline{Q_{prev}}$ (gespeichert!)



• S = 1, R = 1: dann Q = 0 und $\overline{Q} = 0$ (ungültiger Zustand: $Q \neq NOT \overline{Q}$)

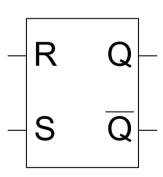


Schaltplansymbol für SR Latch

- SR steht für Setzen/Rücksetzen Latch (set/reset)
 - Speichert ein Bit Zustand (Q)
- Festlegen des gespeicherten Wertes mit den S, R Eingängen
 - Set: Setze Ausgang auf 1 (S = 1, R = 0, Q = 1)
 - Reset: Zurücksetzen des Ausgangs auf 0 (S = 0, R = 1, Q = 0)

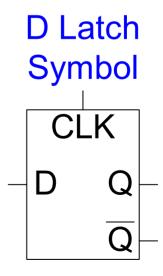
SR Latch Symbol

- Illegalen Zustand vermeiden
 - Es darf niemals S = R = 1 sein

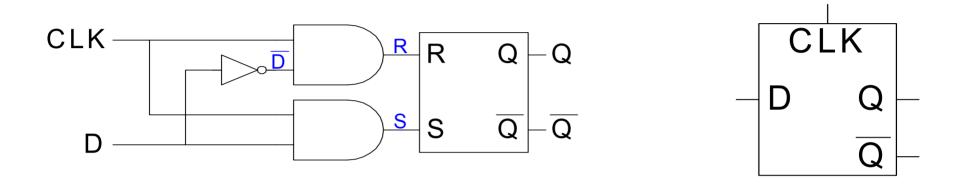


D Latch

- Zwei Eingänge: CLK, D
 - *CLK*: steuert, *wann* sich der Ausgang ändert (*clock,* Taktsignal)
 - *D* (der Dateneingang): steuert, auf *was* sich der Eingang ändert
- Funktion
 - Wenn *CLK* = 1 wird *D* weitergereicht an *Q* (das Latch ist transparent)
 - Wenn *CLK* = 0 behält *Q* seinen vorigen Wert (das Latch ist *opak*)
- Illegaler Fall $Q \neq NOT \overline{Q}$ kann nicht mehr auftreten

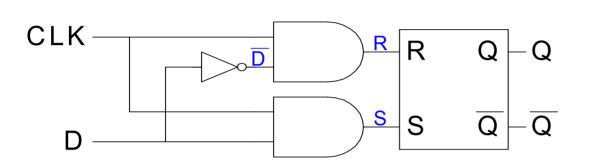


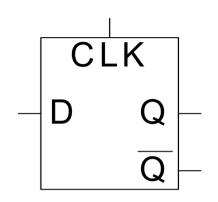
Interner Aufbau eines D Latches



CLK	D	D	S	R	Q	Q
0	X					
1	0					
1	1					

Interner Aufbau eines D Latches

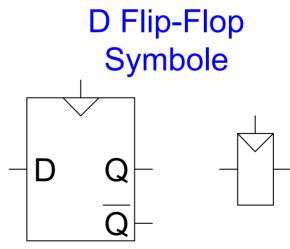




CLK	D	D	S	R	Q	Q
0	X	X	0	0	Q_{pre}	\overline{Q}_{prev}
1	0	1	0	1	0	1
1	1	0	1	0	1	0

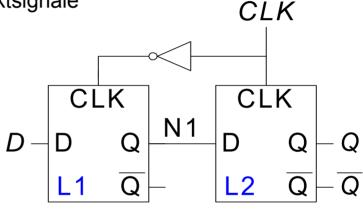
D Flip-Flop

- Zwei Eingänge: CLK, D
- Funktion
 - Das Flip-Flop liest den aktuellen Wert von *D* bei einer steigenden Flanke von *CLK*
 - Wenn CLK von 0 nach 1 steigt, wird D weitergegeben zu Q
 - Sonst behält Q seinen vorigen Wert
 - Q ändert sich also nur bei einer steigenden Flanke von CLK
- Flip-Flop ist flankengesteuert (edge-triggered)
 - Wird bei Flanke des Taktsignals aktiviert

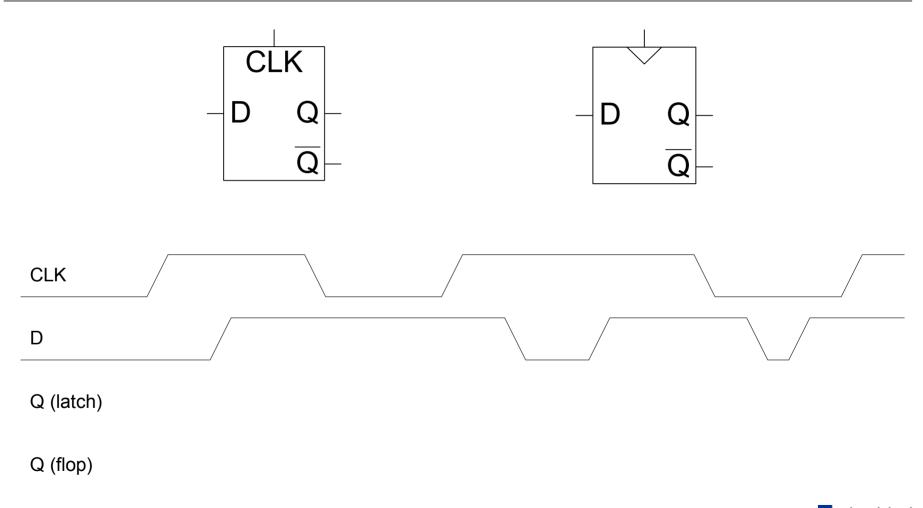


Interner Aufbau eines D Flip-Flops

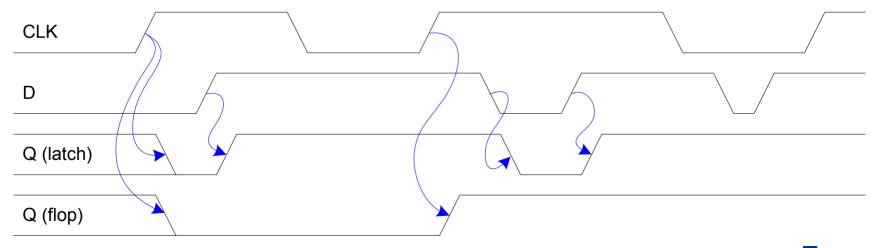
- Zwei Latches in Serie (L1 und L2)
 - ... gesteuert durch komplementäre Taktsignale
- Wenn *CLK* = 0
 - ... ist L1 transparent
 - ... ist L2 opak
 - *D* wird bis N1 weitergegeben
- Wenn *CLK* = 1
 - ... ist L2 transparent
 - ... ist L1 opak
 - N1 wird an Q weitergegeben
- Bei steigender Flanke von CLK (Wechsel von 0 → 1)
 - *D* wird an *Q* weitergegeben



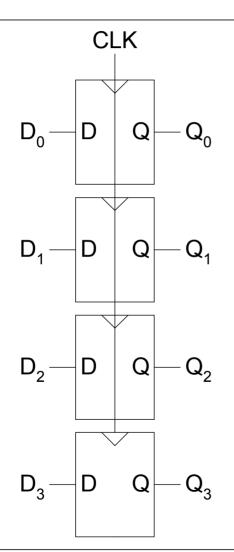
Vergleich D Latch mit D Flip-Flop

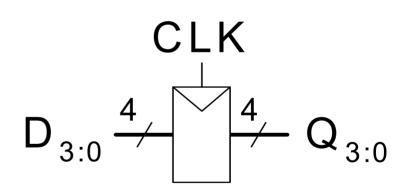


Vergleich D Latch mit D Flip-Flop



Register



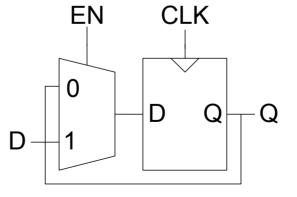


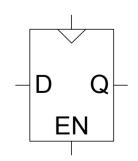
Flip-Flops mit Taktfreigabesignal (clock enable)

- Eingänge: *CLK*, *D*, *EN*
 - Freigabeeingang (*EN*, enable) steuert, wann neue Daten (*D*) gespeichert werden
- Funktion
 - *EN* = 1
 - *D* wird weitergegeben an *Q* bei steigender Taktflanke
 - EN = 0
 - Q behält alten (gespeicherten) Wert

Interner Aufbau

Symbol

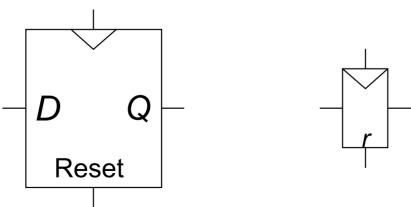




Zurücksetzbare Flip-Flops

- Eingänge: CLK, D, Reset
- Funktion:
 - Reset = 1
 - Q wird auf 0 gesetzt
 - Reset = 0
 - Verhält sich wie normales D Flip-Flop

Symbole

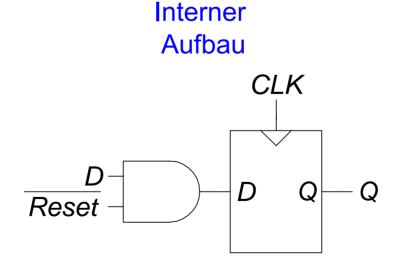


Zurücksetzbare Flip-Flops

- Zwei Arten:
 - Synchron: Rücksetzen geschieht zu steigender Taktflanke
 - Asynchron: Rücksetzen geschieht sofort bei Reset = 1
- Interner Aufbau
 - Asynchron: Übung 3.10 im Buch
 - Synchron?

Zurücksetzbare Flip-Flops

- Zwei Arten:
 - Synchron: Rücksetzen geschieht zu steigender Taktflanke
 - Asynchron: Rücksetzen geschieht sofort bei Reset = 1
- Interner Aufbau
 - Asynchron: Übung 3.10 im Buch
 - Synchron?



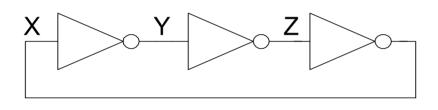
Setzbare Flip-Flops

- Eingänge: *CLK*, *D*, *Set*
- Funktion:
 - Set = 1
 - Q wird auf 1 gesetzt
 - Set = 0
 - Verhält sich wie normales D Flip-Flop

Symbole D Q Set

Sequentielle Logik

- Sequentielle Schaltungen: Alle nicht-kombinatorischen Schaltungen
- Merkwürdige Schaltung:

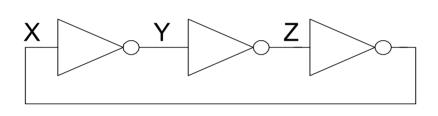


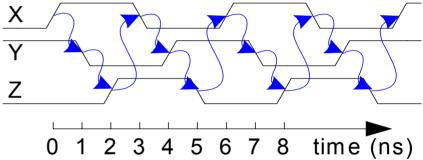


- Keine Eingänge
- 1...3 Ausgänge (Knoten X, Y, Z)

Sequentielle Logik

- Sequentielle Schaltungen: Alle nicht-kombinatorischen Schaltungen
- Merkwürdige Schaltung:





- Keine Eingänge
- 1...3 Ausgänge (Knoten X, Y, Z)
- Instabile Schaltung, oszilliert
- Periode hängt von Inverterverzögerung ab
 - Variiert mit Herstellungsprozess, Temperatur, ...
- Schaltung hat einen Zyklus: Ausgang rückgekoppelt auf Eingang

Entwurf synchroner sequentieller Logik

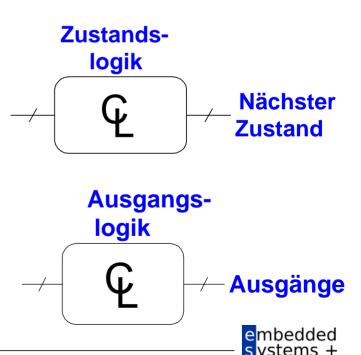
- Rückkopplungen durch Einfügen von Registern aufbrechen
- Diese Register halten den Zustand der Schaltung
- Register ändern Zustand nur zur Taktflanke
 - Schaltung wird synchronisiert mit der Taktflanke
- Regeln für den Aufbau von synchronen sequentiellen Schaltungen
 - Jedes Schaltungselement ist entweder ein Register oder eine kombinatorische Schaltung
 - Mindestens ein Schaltungselement ist ein Register
 - Alle Register werden durch das gleiche Taktsignal gesteuert
 - Jeder Zyklus enthält mindestens ein Register
- Zwei weit verbreitete synchrone sequentielle Schaltungen
 - Endliche Zustandsautomaten (Finite State Machines, FSMs)
 - Pipelines (manchmal Fließbandverarbeitung genannt)

Endliche Zustandsautomaten (FSM)

- Bestehen aus:
 - Zustandsregister
 - Speichert aktuellen Zustand
 - Übernimmt nächsten Zustand bei Taktflanke

- Kombinatorische Logik
 - Berechnet nächsten Zustand
 - Berechnet Ausgänge

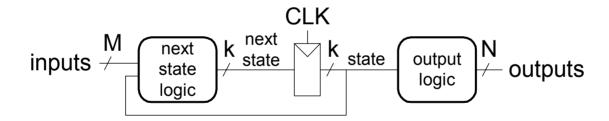




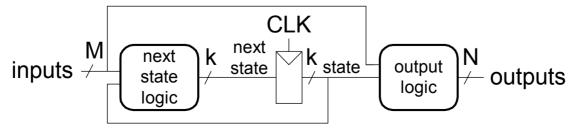
Endliche Zustandsautomaten (FSM)

- Nächster Zustand hängt ab von aktuellem Zustand und Eingangswerten
- Ausgangswerte werden üblicherweise auf eine von zwei Arten bestimmt:
 - Moore FSM: Ausgänge hängen nur vom aktuellen Zustand ab
 - Mealy FSM: Ausgänge hängen vom aktuellen Zustand und den Eingangswerten ab

Moore FSM

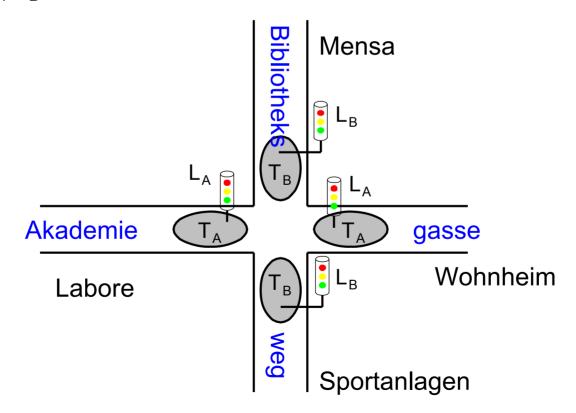


Mealy FSM



Beispiel für endlichen Zustandsautomaten

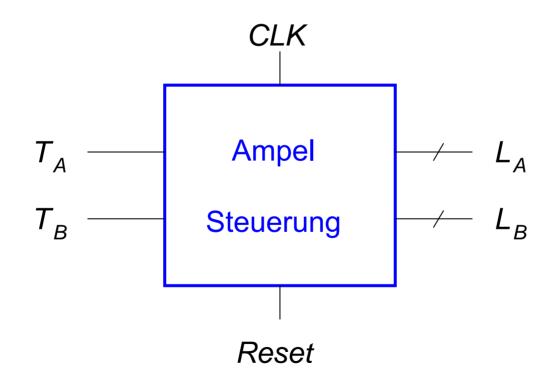
- Ampelsteuerung
 - Induktionsschleifen: T_A , T_B (TRUE wenn Autos detektiert werden)
 - Ampeln: *L_A*, *L_B*



Endlicher Automat: Außenansicht (black box)

■ Eingänge: *CLK*, *Reset*, *T_A*, *T_B*

■ Ausgänge: *L_A*, *L_B*

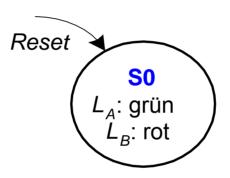


Zustandsübergangsdiagramm der FSM

Moore FSM: Ausgangswerte den Zuständen zuordnen

Zustände: Kreise

■ Übergänge: Pfeile

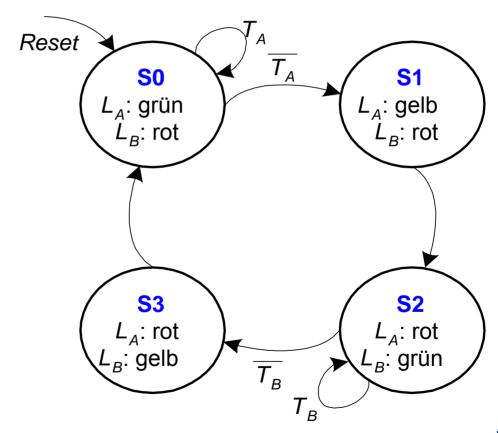


Zustandsübergangsdiagramm der FSM

Moore FSM: Ausgangswerte den Zuständen zuordnen

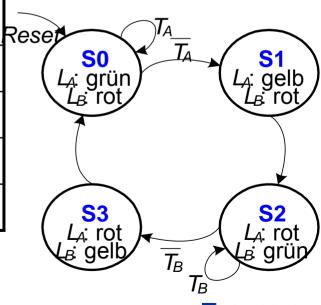
Zustände: Kreise

Übergänge: Pfeile



Zustandsübergangstabelle

Aktueller Zustand	Eing	Nächster Zustand	
S	T_A	T_B	S'
S0	0	X	
S0	1	X	
S1	X	X	
S2	X	0	
S2	X	1	
S3	X	X	



Zustandsübergangstabelle

Aktueller Zustand	Eing	Nächster Zustand	
S	T_A	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

Zustandsübergangstabelle mit binärkodierten Zuständen

Zustand	Kodierung
S0	00
S1	01
S2	10
S3	11

Aktu Zust		Einga	Eingänge		hster tand
S ₁	S_0	T_A	T_B	S' ₁	S' ₀
0	0	0	X		
0	0	1	X		
0	1	X	X		
1	0	X	0		
1	0	Х	1		
1	1	Х	Х		

Zustandsübergangstabelle mit binärkodierten Zuständen

Zustand	Kodierung
S0	00
S1	01
S2	10
S3	11

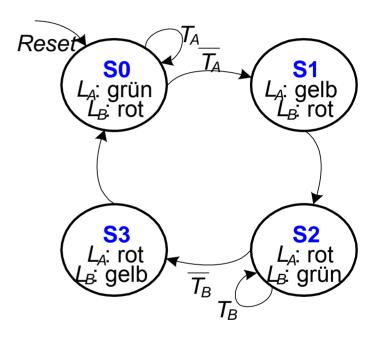
Aktu Zust		Eingänge		Nächster Zustand	
S ₁	S_0	T_A	T_B	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	Х	Х	1	0
1	0	Х	0	1	1
1	0	Х	1	1	0
1	1	Х	Х	0	0

$$S'_{1} = S_{1} \oplus S_{0}$$

$$S'_{0} = \overline{S_{1}} \overline{S_{0}} \overline{T_{A}} + S_{1} \overline{S_{0}} \overline{T_{B}}$$

FSM Ausgangstabelle

Aktu Zust		Ausgänge			
S ₁	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0				
0	1				
1	0				
1	1				



Ausgangswert	Kodierung
grün	00
gelb	01
rot	10

FSM Ausgangstabelle

Aktueller Zustand		Ausgänge			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Ausgangs wert	Kodierung
grün	00
gelb	01
rot	10

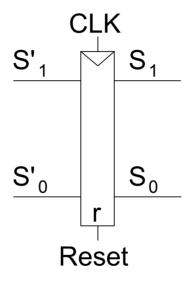
$$L_{A1} = S_1$$

$$L_{A0} = \overline{S_1}S_0$$

$$L_{B1} = \overline{S_1}$$

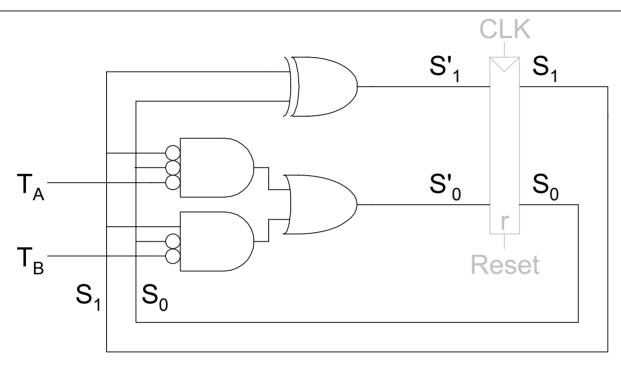
$$L_{B0} = S_1S_0$$

FSM Schaltplan: Zustandsregister



Zustandsregister

FSM Schaltplan: Zustandsübergangslogik



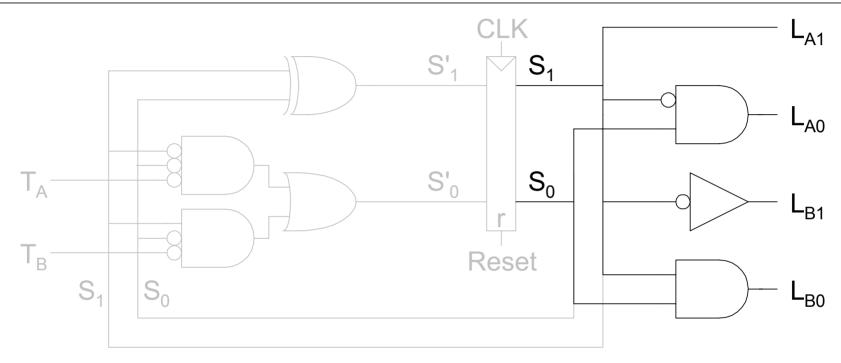
Eingänge

Zustandsübergangslogik Zustandsregister

$$S'_{1} = S_{1} \oplus S_{0}$$

$$S'_{0} = \overline{S_{1}} \overline{S_{0}} \overline{T_{A}} + S_{1} \overline{S_{0}} \overline{T_{B}}$$

FSM Schaltplan: Ausgangslogik



Eingänge

Zustandsübergangslogik Zustandsregister

$$L_{A1} = S_1$$

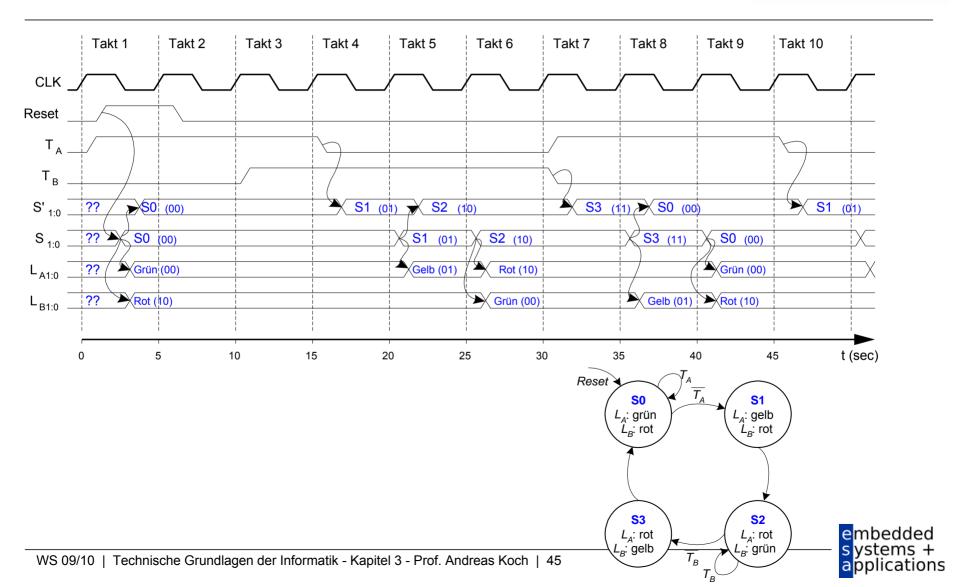
$$L_{A0} = \overline{S_1} S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1 S_0$$

Ausgangslogik Ausgänge

FSM Zeitverhalten: Timing-Diagramm

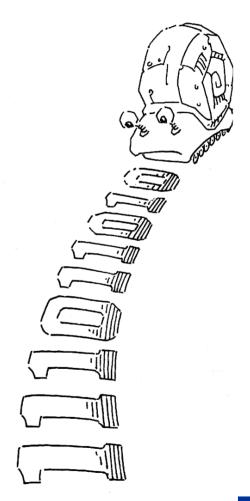


Zustandskodierung in endlichen Automaten

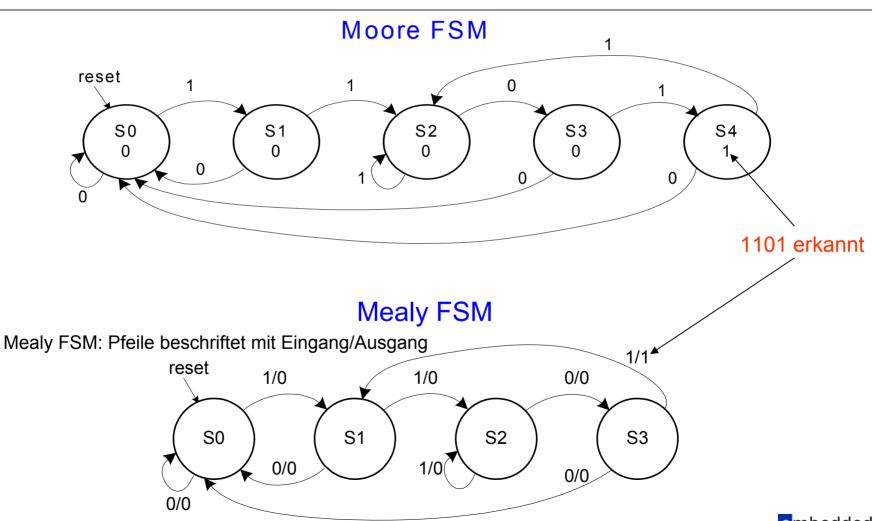
- Binär
 - z.B. für vier Zustände 00, 01, 10, 11
- 1-aus-N Code (One-hot encoding)
 - Ein Zustandsbit pro Zustand
 - Zu jedem Zeitpunkt ist genau ein Zustandsbit gesetzt
 - z.B. für vier Zustände 0001, 0010, 0100, 1000
 - Benötigt zwar mehr Flip-Flops
 - ... aber Zustandsübergangs- und Ausgangslogiken sind häufig kleiner
 - ... und schneller

Vergleich Moore- und Mealy-Automaten

■ Erkenne Bitfolge 1101 auf Lochstreifen



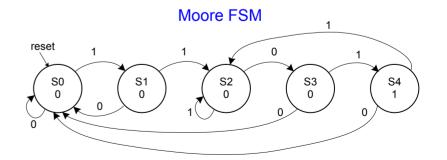
Zustandsübergangsdiagramme



Moore-Automat: Zustandsübergangstabelle

	Aktueller Zustand		Eingäng e	Nächster Zustand		
S_2	S_1	S_0	Α	S' ₂	S' ₁	S' ₀
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			

Zustand	Kodierung
S0	000
S1	001
S2	010
S3	011
S4	100



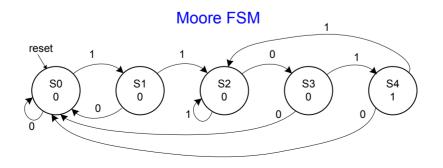
Moore-Automat: Zustandsübergangstabelle

	ktuelle ustand		Eingang	Nächster Zustand		
S_2	S_1	S_0	Α	S' ₂	S' ₁	S' ₀
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	1	0
0	1	1	0	0	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	0	1	0	1	0

Zustand	Kodierung
S0	000
S1	001
S2	010
S3	011
S4	100

Moore-Automat: Ausgangstabelle

Aktueller Zustand			Ausgang
S_2	S ₁	S_0	Υ
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	



Moore-Automat: Ausgangstabelle

Aktueller Zustand			Ausgang
S_2	S_1	S_0	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1

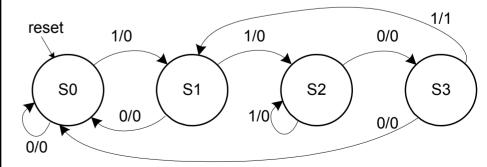
$$Y = S_2$$

Mealy-Automat: Zustandsübergangs- und Ausgangstabelle

Aktu Zust		Einga ng	Näch Zust	nster tand	Ausgan g
S ₁	S ₀	Α	S' ₁	S' ₀	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Zustand	Kodierung
S0	00
S1	01
S2	10
S3	11

Mealy FSM

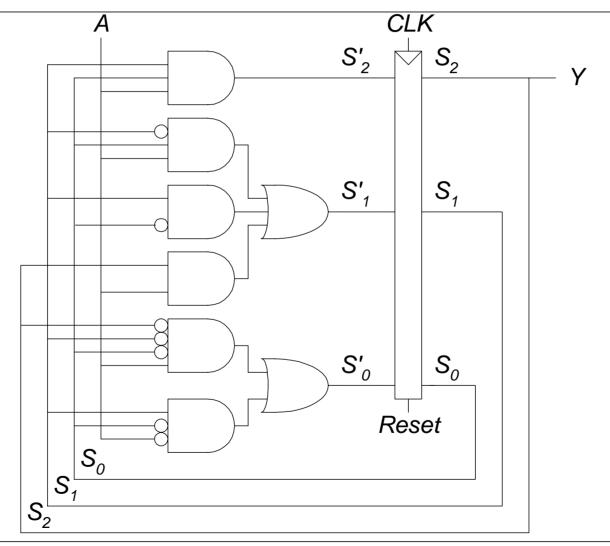


Mealy-Automat: Zustandsübergangs- und Ausgangstabelle

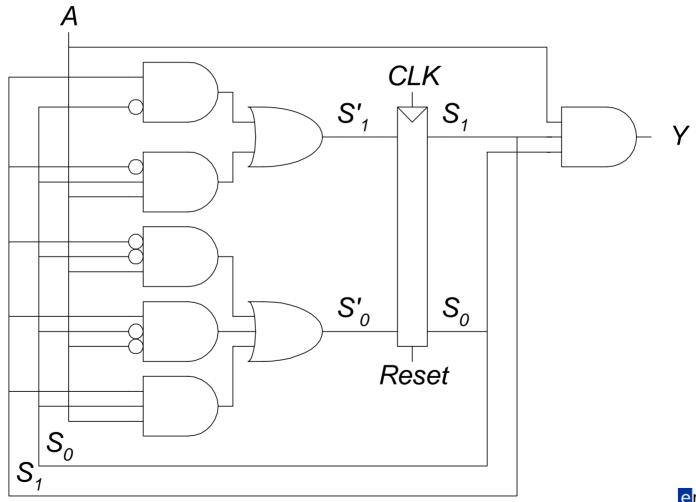
Aktueller	Zustand	Eingang		nster tand	Ausgang
S ₁	S_0	Α	S' ₁	S' ₀	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

Zustand	Kodierung
S0	00
S1	01
S2	10
S3	11

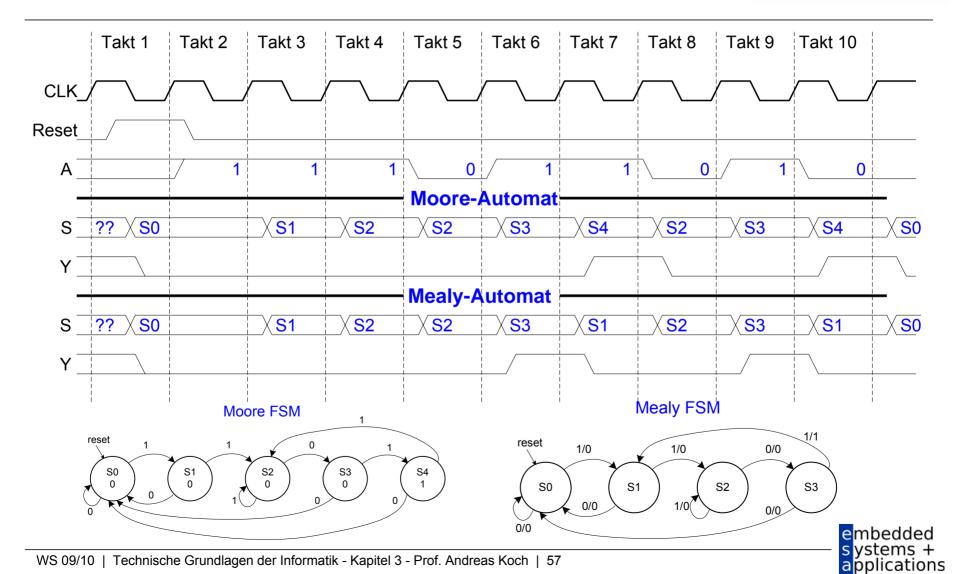
Moore-Automat: Schaltplan



Mealy-Automat: Schaltplan

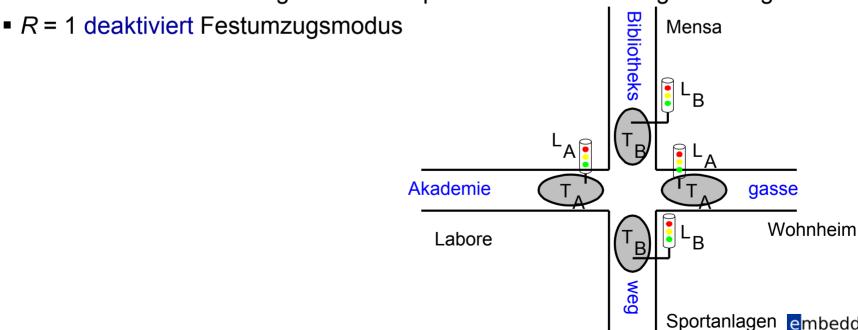


Moore- und Mealy-Automaten: Zeitverhalten



Zerlegen von Zustandsautomaten

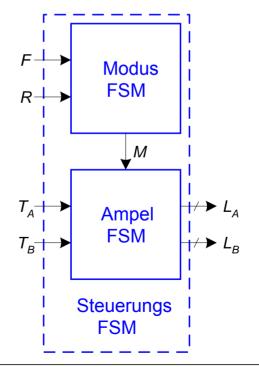
- Aufteilen komplexer FSMs in einfachere interagierende FSMs
 - Manchmal auch Dekomposition genannt
- Beispiel: Erweitere Ampelsteuerung um Modus für Festumzüge
 - FSM bekommt zwei weitere Eingänge: F, R
 - F = 1 aktiviert Festumzugsmodus: Ampeln für Bibliotheksweg bleiben grün



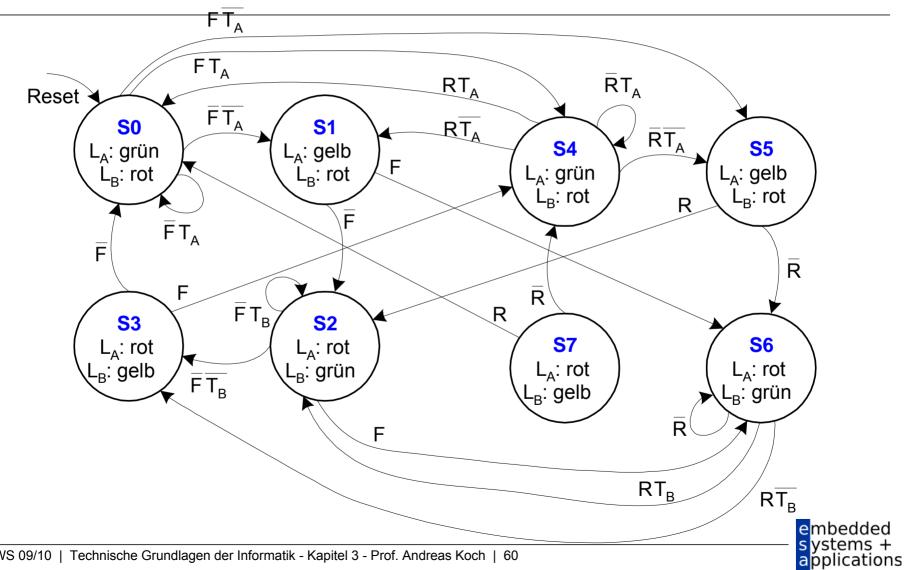
FSM mit Festumzugsmodus

Unzerlegte FSM

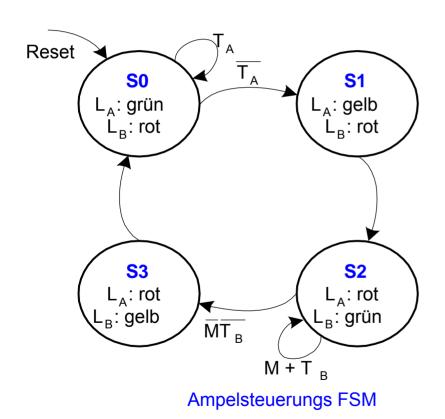
Zerlegte FSM



Zustandsübergangsdiagramm für unzerlegte FSM



Zustandsübergangsdiagramm für zerlegte FSM



Reset F S1 M: 1 R

Modus FSM

Entwurfsverfahren für endliche Automaten

- Definiere Ein- und Ausgänge
- Zeichne Zustandsdiagramm
- Stelle Zustandsübergangstabelle auf
- Kodiere Zustände (binär, one-hot, ...)
- Für Moore-Automat:
 - Verwende kodierte Zustände in Zustandsübergangstabelle
 - Stelle Ausgangstabelle auf
- Für Mealy-Automat
 - Erweitere Zustandsübergangstabelle um Ausgänge und verwende kodierte Zustände
- Stelle Boole'sche Gleichungen für Zustandsübergangs- und Ausgangslogiken auf
- Entwerfe Schaltplan
 - Gatter, Register

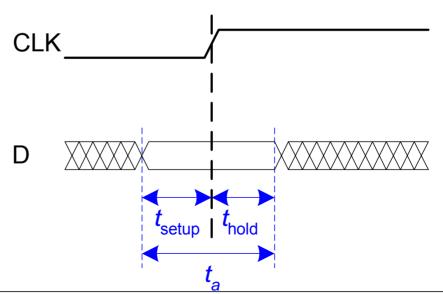
Zeitverhalten von sequentiellen Schaltungen

- Flip-Flop übernimmt Daten von D zur Taktflanke
- D darf sich nicht ändern, wenn es übernommen wird (sampled)
 - Muss stabil sein
- Ähnlich zu Fotographie: Keine Bewegung zum Auslösezeitpunkt
 - Sonst unscharf
- Also: D darf sich nicht zur Taktflanke ändern
 - Sonst möglicherweise metastabil
- Genauer:
 - D darf sich nicht in Zeitfenster um Taktflanke herum ändern

Zeitanforderungen an Eingangssignale

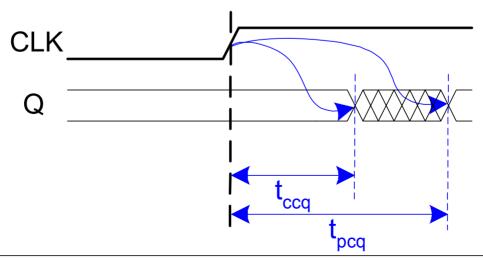
- Setup-Zeit
 - t_{setup} = Zeitintervall *vor Taktflanke*, in dem *D* sich nicht ändern darf (=stabil sein muss)
- Hold-Zeit
 - t_{hold} = Zeitintervall nach Taktflanke in dem D stabil sein muss
- Abtastzeit: t_a = Zeitintervall um Taktflanke herum in dem D stabil sein muss

•
$$t_a = t_{\text{setup}} + t_{\text{hold}}$$



Zeitanforderungen an Ausgangssignale

- Laufzeitverzögerung (propagation delay)
 - t_{pcq} = Zeitintervall nach Taktflanke, nach dem Q garantiert stabil ist
 - sich also nicht mehr ändert!
- Kontaminationsverzögerung (contamination delay)
 - t_{ccq} = Zeitintervall nach Taktflanke, nach dem Q beginnen könnte, sich zu ändern

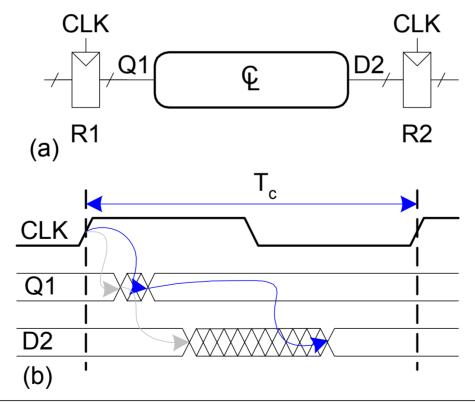


Dynamische Entwurfsdisziplin

- Die Eingänge in eine synchrone sequentielle Schaltung müssen in der ganzen Abtastzeit stabil sein
- Genauer: Stabil mindestens
 - ... ab *t*_{setup} vor der Taktflanke
 - ... bis t_{hold} nach der Taktflanke

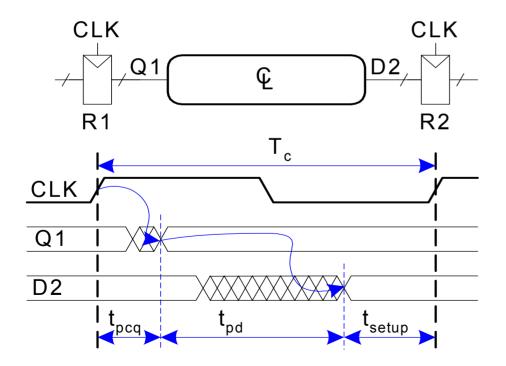
Dynamische Entwurfsdisziplin

- Verzögerung zwischen Registern hat Maximal- und Minimalwert
 - Abhängig von den Verzögerungen der kombinatorischen Schaltelemente



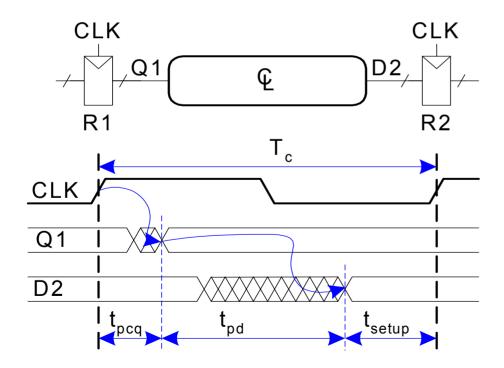
Anforderungen an Setup-Zeit

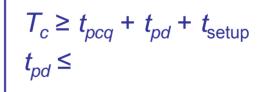
- Einhalten der Setup-Zeit hängt von der Maximal-Verzögerung von Register R1 durch kombinatorische Logik ab
- ullet Eingang zu Register muss mindestens ab $t_{
 m setup}$ vor Taktflanke stabil sein



Anforderungen an Setup-Zeit

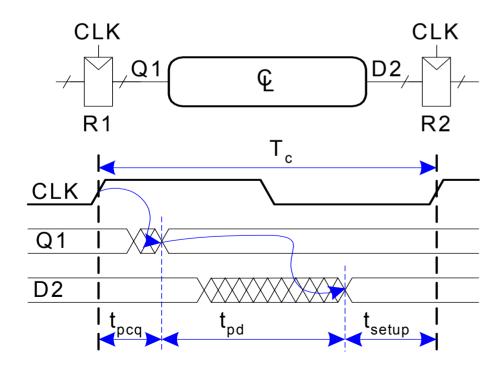
- Einhalten der Setup-Zeit hängt von der Maximal-Verzögerung von Register R1 durch kombinatorische Logik ab
- Eingang zu Register muss mindestens ab t_{setup} vor Taktflanke stabil sein





Anforderungen an Setup-Zeit

- Einhalten der Setup-Zeit hängt von der Maximal-Verzögerung von Register R1 durch kombinatorische Logik ab
- Eingang zu Register muss mindestens ab t_{setup} vor Taktflanke stabil sein

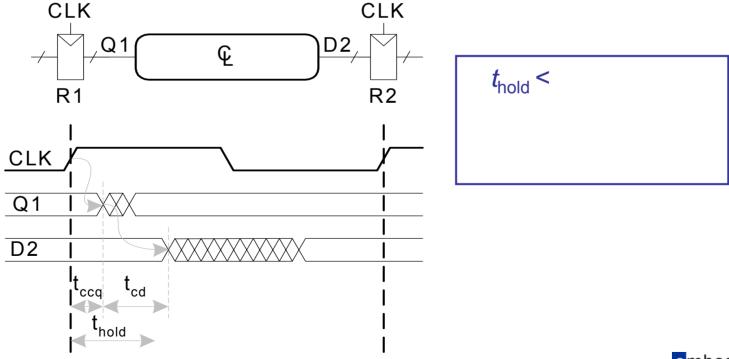


$$T_c \ge t_{pcq} + t_{pd} + t_{setup}$$

 $t_{pd} \le T_c - (t_{pcq} + t_{setup})$

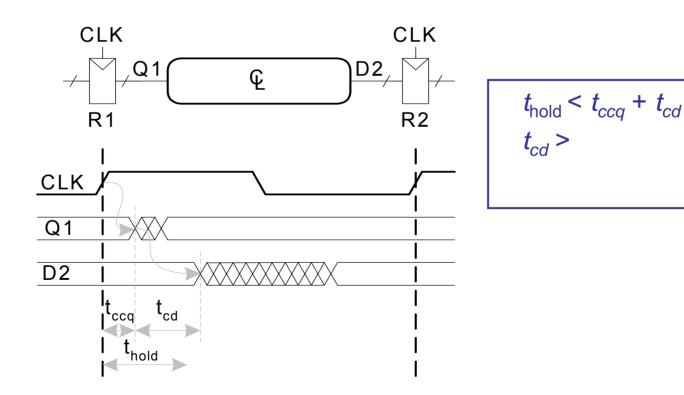
Anforderungen an Hold-Zeit

- Einhalten der Hold-Zeit hängt von der minimalen Verzögerung von Register R1 durch die kombinatorische Logik ab
- lacktriangle Der Eingang an Register R2 muss mindestens bis $t_{
 m hold}$ nach der Taktflanke stabil sein



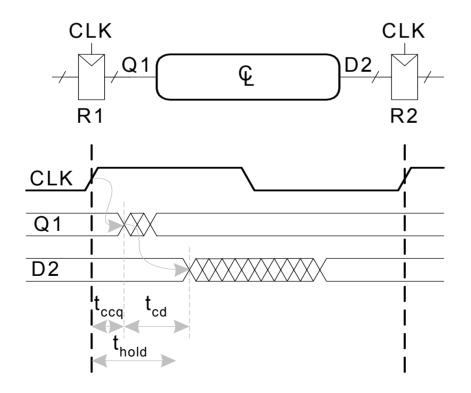
Anforderungen an Hold-Zeit

- Einhalten der Hold-Zeit hängt von der minimalen Verzögerung von Register R1 durch die kombinatorische Logik ab
- lacktriangle Der Eingang an Register R2 muss mindestens bis $t_{
 m hold}$ nach der Taktflanke stabil sein



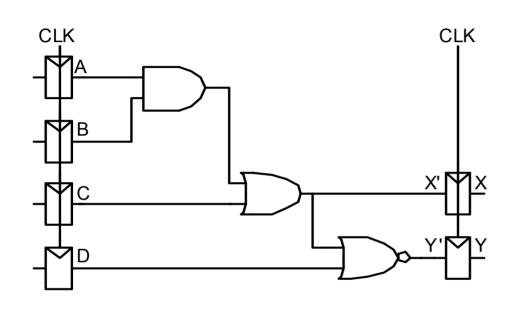
Anforderungen an Hold-Zeit

- Einhalten der Hold-Zeit hängt von der minimalen Verzögerung von Register R1 durch die kombinatorische Logik ab
- lacktriangle Der Eingang an Register R2 muss mindestens bis $t_{
 m hold}$ nach der Taktflanke stabil sein



$$t_{\text{hold}} < t_{ccq} + t_{cd}$$
 $t_{cd} > t_{\text{hold}} - t_{ccq}$

Analyse des Zeitverhaltens



Verzögerungsangaben

$$t_{ccq} = 30 \text{ ps}$$

$$t_{pcq} = 50 \text{ ps}$$

$$t_{\text{setup}}$$
 = 60 ps

$$t_{\text{hold}} = 70 \text{ ps}$$

$$\begin{bmatrix} t_{pd} = 35 \text{ ps} \\ t_{cd} = 25 \text{ ps} \end{bmatrix}$$

$$t_{pd}$$
 =

$$t_{cd} =$$

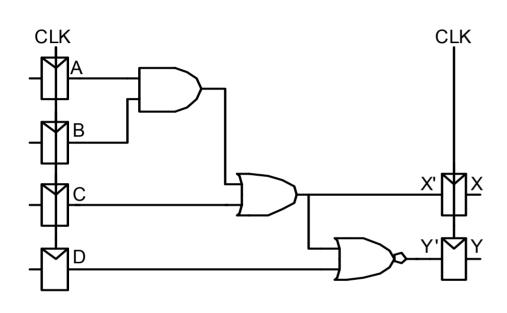
Einhalten von Setup-Zeitanforderung: Einhalten von Hold-Zeitanforderung:

$$T_c \ge$$

$$f_{c} = 1/T_{c} =$$

$$t_{ccq} + t_{cd} > t_{hold}$$
?

Analyse des Zeitverhaltens



$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 25 ps

Einhalten der Setup-Zeitanforderung:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = 1/T_c = 4,65 \text{ GHz}$$

Verzögerungsangaben

$$t_{ccq} = 30 \text{ ps}$$

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}}$$
 = 60 ps

$$t_{\text{hold}} = 70 \text{ ps}$$

$$t_{pd} = 35 \text{ ps}$$
 $t_{cd} = 25 \text{ ps}$

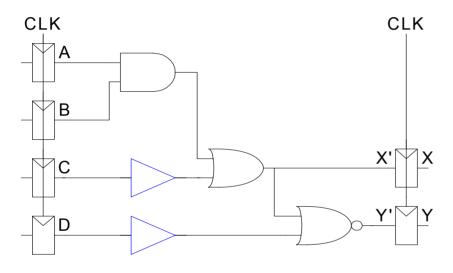
Einhalten der Hold-Zeitanforderung:

$$t_{cca} + t_{cd} > t_{hold}$$
?

$$(30 + 25) ps > 70 ps ? Nein, verletzt!$$

Beheben der verletzten Hold-Zeitanforderung

Füge Puffer in zu kurze Pfade ein!



$$t_{pd} =$$

$$t_{cd} =$$

Einhalten der Setup-Zeitanforderung:

$$T_c \ge$$

$$f_c =$$

Verzögerungsangaben

$$t_{ccq} = 30 \text{ ps}$$

$$t_{pcq} = 50 \text{ ps}$$

$$t_{\text{setup}}$$
 = 60 ps

$$t_{\text{hold}} = 70 \text{ ps}$$

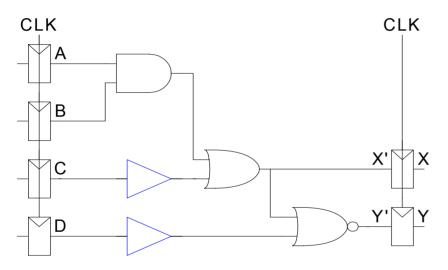
$$\begin{bmatrix} t_{pd} = 35 \text{ ps} \\ t_{cd} = 25 \text{ ps} \end{bmatrix}$$

Einhalten der Hold-Zeitanforderung:

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Beheben der verletzten Hold-Zeitanforderung

Füge Puffer in zu kurze Pfade ein!



$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 2 x 25 ps = 50 ps

Einhalten der Setup-Zeitanforderung:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = 1/T_c = 4.65 \text{ GHz}$$

Verzögerungsangaben

$$t_{cca} = 30 \text{ ps}$$

$$t_{pcq} = 50 \text{ ps}$$

$$t_{\text{setup}}$$
 = 60 ps

$$t_{\text{hold}} = 70 \text{ ps}$$

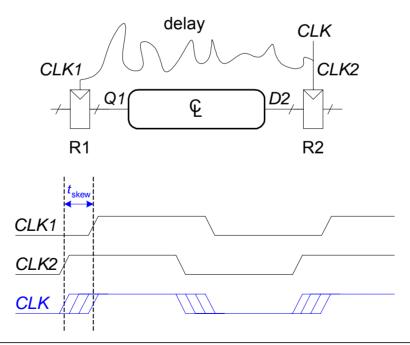
Einhalten der Hold-Zeitanforderung:

$$t_{ccq} + t_{cd} > t_{hold}$$
?

$$(30 + 50) ps > 70 ps ? Ja, eingehalten!$$

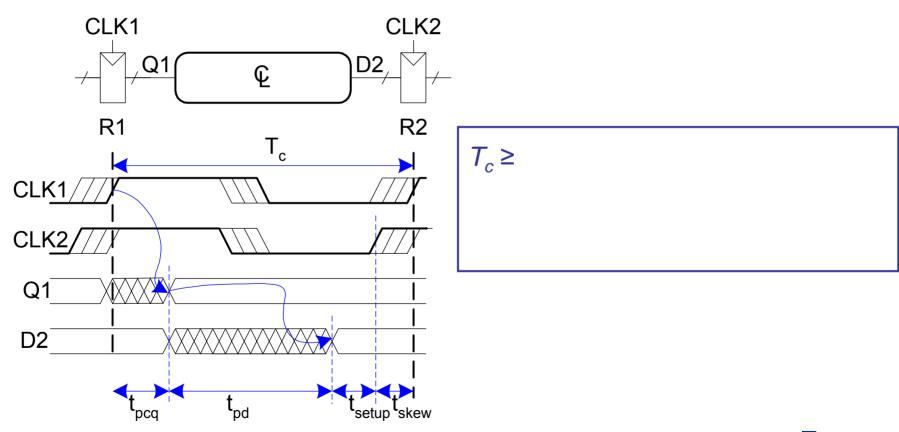
Taktverschiebung (clock skew)

- Der Takt kommt nicht bei allen Registern zur gleichen Zeit an
 - Unterschiedliche Verdrahtungswege auf dem Chip, Logik in Taktsignal (gated clock, vermeiden!)
- Verschiebung (oder Versatz, skew) ist die Differenz der Ankunftszeit zwischen zwei Registern
- Überprüfe, ob auch bei maximalem Versatz die dynamische Entwurfsdisziplin noch eingehalten ist



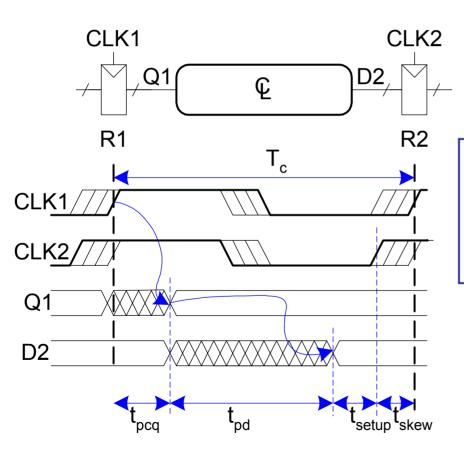
Setup-Zeitanforderungen mit Taktverschiebung

In diesem Beispiel: CLK2 ist früher aktiv als CLK1



Setup-Zeitanforderungen mit Taktverschiebung

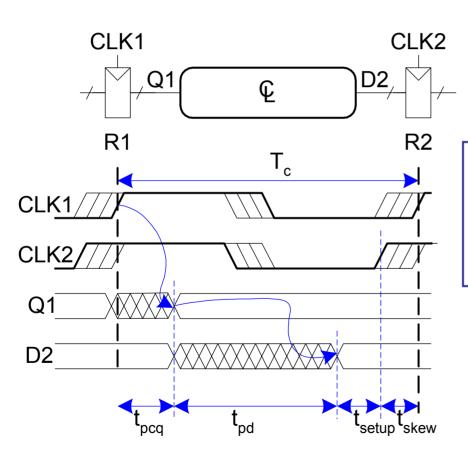
In diesem Beispiel: CLK2 ist früher aktiv als CLK1



$$T_c \ge t_{pcq} + t_{pd} + t_{setup} + t_{skew}$$
 $t_{pd} \le$

Setup-Zeitanforderungen mit Taktverschiebung

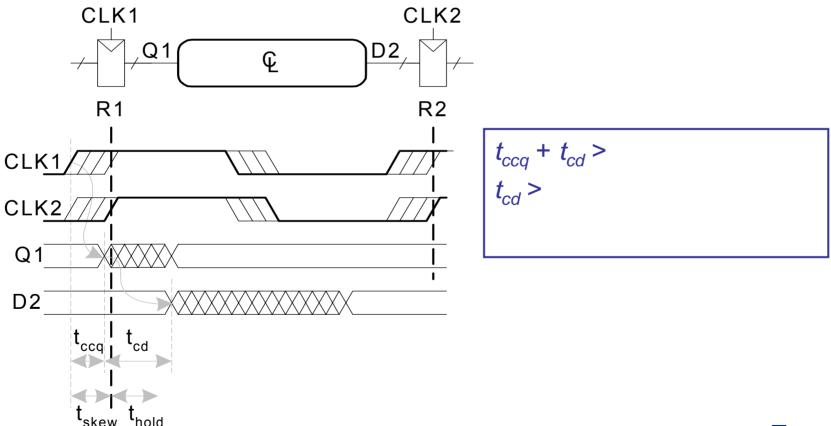
In diesem Beispiel: CLK2 ist früher aktiv als CLK1



$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}} + t_{\text{skew}}$$
$$t_{pd} \le T_c - (t_{pcq} + t_{\text{setup}} + t_{\text{skew}})$$

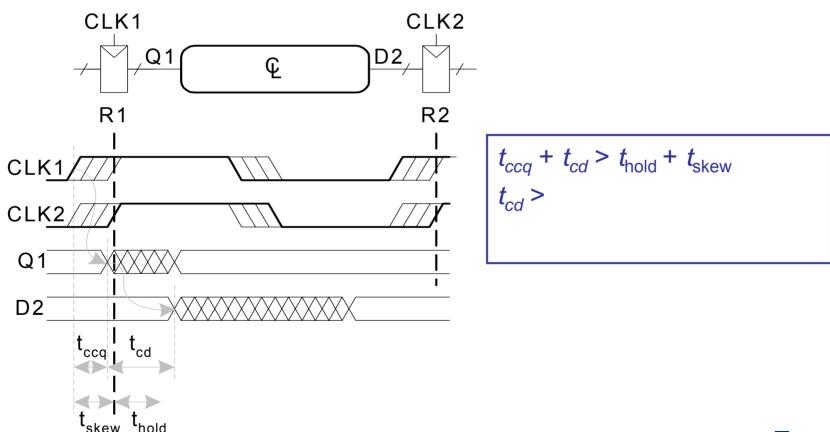
Hold-Zeitanforderungen mit Taktverschiebung

■ In anderem Fall: CLK2 könnte später als CLK1 aktiviert werden



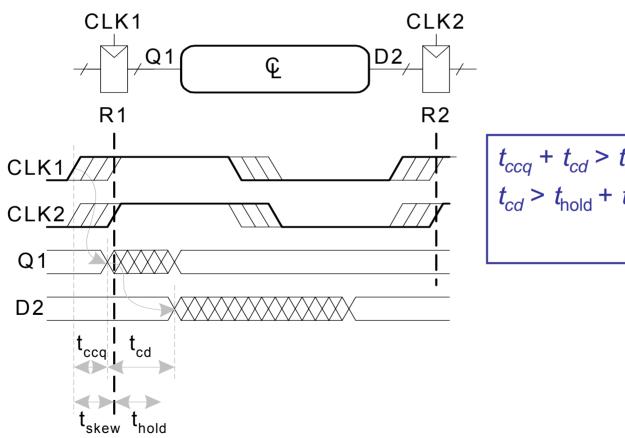
Hold-Zeitanforderungen mit Taktverschiebung

■ In anderem Fall: CLK2 könnte später als CLK1 aktiviert werden



Hold-Zeitanforderungen mit Taktverschiebung

■ In anderem Fall: CLK2 könnte später als CLK1 aktiviert werden

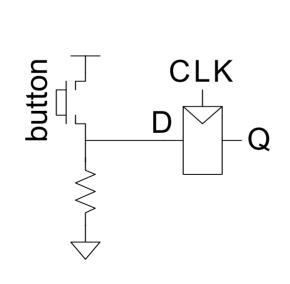


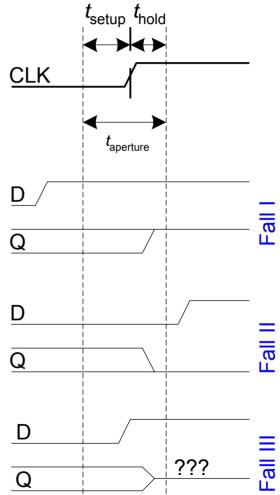
$$t_{ccq} + t_{cd} > t_{hold} + t_{skew}$$
 $t_{cd} > t_{hold} + t_{skew} - t_{ccq}$

Verletzung der dynamischen Entwurfsdisziplin

Asynchrone Eingänge können dynamische Disziplin verletzen

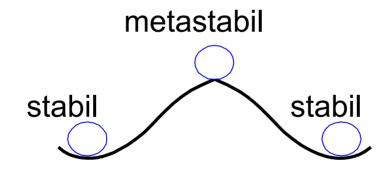
Beispiel: Benutzereingaben





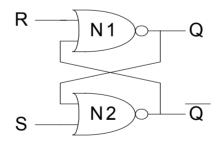
Metastabilität

- Jedes bistabile Element hat zwei stabile Zustände und einen metastabilen dazwischen
- Ein Flip-Flop-Ausgang hat zwei stabile Zustände (0 und 1) und einen metastabilen Zustand
- Falls das Flip-Flop den metastabilen Zustand annimmt, kann es dort für unbestimmte Zeit verbleiben



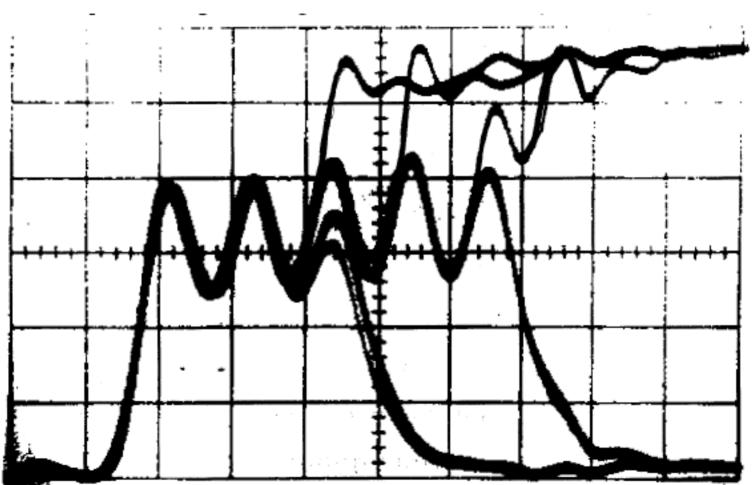
Interner Aufbau eines Flip-Flops

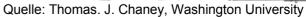
- Ein Flip-Flop hat intern Rückkopplungen
- Falls Q zwischen 1 und 0 liegt:
 - ... wird es von den kreuzgekoppelten Gattern irgendwann auf 1 oder 0 getrieben
 - Je nachdem, an welchem Spannungspegel es näher lag



■ Ein Signal wird als metastabil bezeichnet, wenn es noch nicht zu 1 oder 0 aufgelöst wurde

Metastabilität: Beispiel





Zeitdauer der Metastabilität

- Wenn Flip-Flop Eingang D zu einem zufälligen Zeitpunkt innerhalb der Abtastzeit wechselt
- ... wird Ausgang Q nach einer zufälligen Zeit t_{res} zu 0 oder 1 aufgelöst (*resolved*)
- Wahrscheinlichkeit, dass Ausgang Q nach einer Wartezeit t noch metastabil ist:

$$P(t_{res} > t) = (T_0/T_c) e^{-t/\tau}$$

 $t_{\rm res}$: Zeit um Ausgang sicher nach 1 or 0 auzulösen

 T_0 , τ : Eigenschaften der Schaltung

 $T_{\rm C}$: Taktperiode

Zeitdauer der Metastabilität: Interpretation

- Intuitiv
 - T_0/T_c ist Wahrscheinlichkeit, dass Eingang zu einem ungünstigen Zeitpunkt schaltet
 - Innerhalb der Abtastzeit, sinkt mit wachsender Taktperiode T_c

$$P(t_{res} > t) = (T_0/T_c) e^{-t/\tau}$$

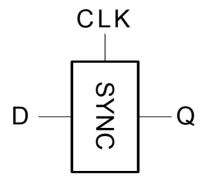
- Die Zeitkonstante τ gibt an, wie schnell Flip-Flop sich aus dem metastabilen Zustand wegbewegen kann
 - Hängt von der Verzögerung durch die kreuzgekoppelten Gatter ab

$$P(t_{res} > t) = (T_0/T_c) e^{-t/\tau}$$

 Kurzfassung: Wenn man nur lange genug wartet, wird der Ausgang sicher zu 0 oder 1 aufgelöst

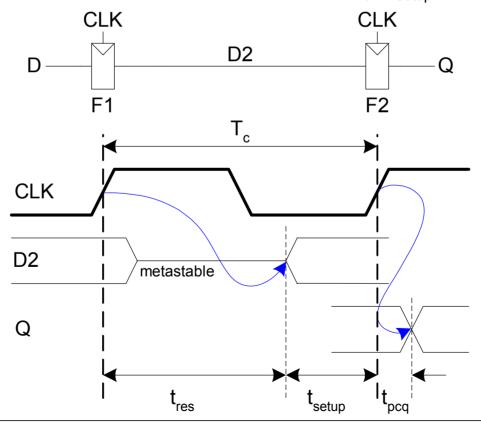
Synchronisierer (synchronizer)

- Asynchrone Eingänge (*D*) lassen sich praktisch nicht ganz vermeiden
 - Benutzerschnittstellen
 - Systeme mit mehreren interagierenden Taktsignalen
- Ziel eines Synchronisierers
 - Reduziere die Wahrscheinlichkeit für metastabilen Zustand
 - Liefere an Q mit hoher Wahrscheinlichkeit gültige Werte
- Metastabilität kann aber nie völlig ausgeschlossen werden



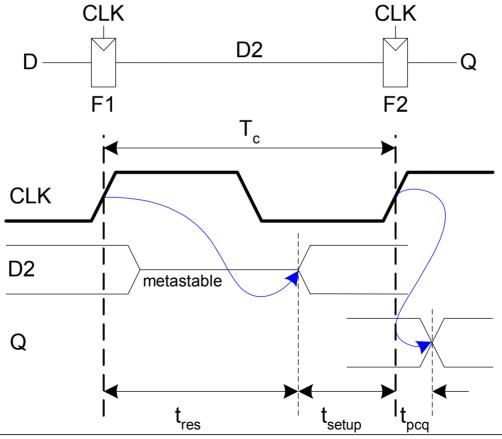
Interner Aufbau eines Synchronisierers

- Aufgebaut aus Reihenschaltung von Flip-Flops
- Annahme: Eingang der wechselt während der Abtastzeit von Flip-Flop F1
- Synchronisation gelingt, wenn Signal D2 innerhalb von (T_c t_{setup}) zu 0 oder 1 aufgelöst wird



Wahrscheinlichkeit für Scheitern der Synchronisation

Für jede Änderung des Eingangs D: **P(Scheitern)** = $(T_0/T_c) e^{-(T_c - t_{setup})/\tau}$



Mittlere Betriebsdauer zwischen Ausfällen (mean time between failures, MTBF)

- Bei Änderung des Eingangssignals einmal pro Sekunde
 - Ausfallwahrscheinlichkeit des Synchronisierers pro Sekunde ist P(Scheitern)
- Bei Änderung des Eingangssignals *N*-mal pro Sekunde
 - Ausfallwahrscheinlichkeit des Synchronisierers pro Sekunde ist

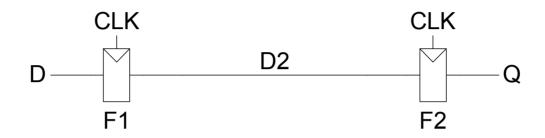
$$P(Scheitern)/s = (NT_0/T_c) e^{-(T_c - t_{setup})/\tau}$$

- Im Durchschnitt scheitert die Synchronisation also alle 1/[P(Scheitern)/s] Sekunden
- Wird auch genannt "Mittlere Betriebsdauer zwischen Ausfällen" (MTBF)

MTBF =
$$1/[P(Scheitern)/s] = (T_c/NT_0) e^{(T_c - t_{setup})/\tau}$$



Beispiel: Synchronisierer

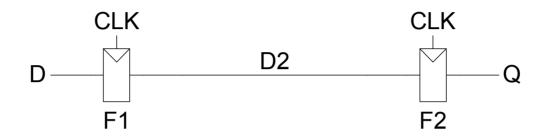


Annahmen:

$$T_c$$
 = 1/500 MHz = 2 ns τ = 200 ps
 T_0 = 150 ps t_{setup} = 100 ps
 N = 10 Änderungen pro Sekunde

Ausfallwahrscheinlichkeit? MTBF?

Beispiel: Synchronisierer



Annahmen:

$$T_c$$
 = 1/500 MHz = 2 ns τ = 200 ps
 T_0 = 150 ps t_{setup} = 100 ps
 N = 10 Änderungen pro Sekunde

Ausfallwahrscheinlichkeit? MTBF?

$$P(\text{Scheitern}) = (150 \text{ ps/2 ns}) e^{-(1.9 \text{ ns})/200 \text{ ps}} = 5.6 \times 10^{-6}$$

$$P(\text{Scheitern})/\text{s} = 10 \times (5.6 \times 10^{-6}) = 5.6 \times 10^{-5} / \text{s}$$

MTBF =
$$1/[P(Scheitern)/s] \approx 5 Stunden$$

Parallelität

Zwei Arten von Parallelität

- Räumliche Parallelität
 - Vervielfachte Hardware bearbeitet mehrere Aufgaben gleichzeitig
- Zeitliche Parallelität
 - Aufgabe wird in mehrere Unteraufgaben aufgeteilt
 - Unteraufgaben werden parallel ausgeführt
 - Beispiel: Fließbandprinzip bei Autofertigung
 - Nur eine Station für einen Arbeitsschritt
 - Aber alle unterschiedlichen Arbeitsschritte für mehrere Autos werden parallel ausgeführt
 - Auch genannt: Pipelining

Parallelität: Grundlegende Begriffe

- Einige Definitionen:
 - Datensatz: Vektor aus Eingabewerten, die zu einem Vektor aus Ausgabewerten bearbeitet werden
 - Latenz: Zeit von der Eingabe eines Datensatzes bis zur Ausgabe der zugehörigen Ergebnisse
 - Durchsatz: Die Anzahl von Datensätzen die pro Zeiteinheit bearbeitet werden können
- Parallelität erhöht Durchsatz

Beispiel Parallelität: Plätzchen backen

- Weihnachtszeit steht vor der Tür, also rechtzeitig anfangen!
- Annahmen
 - Genug Teig ist fertig
 - 5 Minuten um ein Blech mit Teig zu bestücken
 - 15 Minuten Backzeit
- Vorgehensweise
 - Ein Blech nach dem anderen vorbereiten und backen

Latenz =

Durchsatz =

Beispiel Parallelität: Plätzchen backen (seriell)

Weihnachtszeit steht vor der Tür, also rechtzeitig anfangen!

Annahmen

- Genug Teig ist fertig
- 5 Minuten um ein Blech mit Teig zu bestücken
- 15 Minuten Backzeit

Vorgehensweise

Ein Blech nach dem anderen vorbereiten und backen

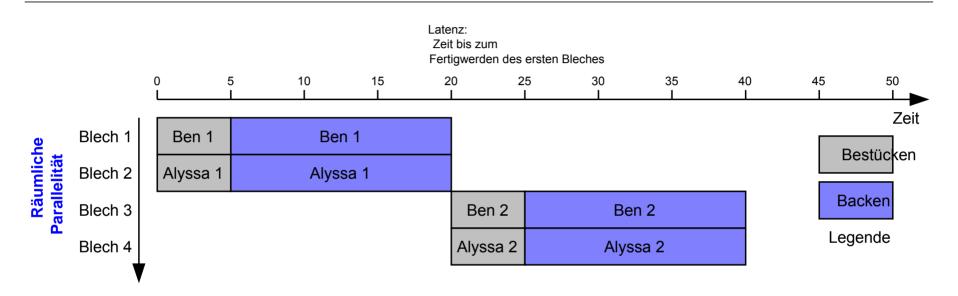
Latenz =
$$5 + 15 = 20$$
 Minuten = $1/3$ h

Durchsatz = 1 Blech alle 20 Minuten = 3 Bleche/h

Beispiel Parallelität: Plätzchen backen (parallel)

- Gleiche Annahmen wie eben
 - 5 Minuten Blech bestücken, 15 Minuten Backen
- Alternative Vorgehensweisen
 - Räumliche Parallelität: Zwei Bäcker (Ben & Alyssa), jeder mit einem eigenen Ofen
 - Zeitliche Parallelität: Aufteilen der Keksherstellung in Unteraufgaben
 - Blech bestücken
 - Backen
 - Nächstes Blech bestücken, während erstes noch im Ofen gebacken wird
- Latenz und Durchsatz?

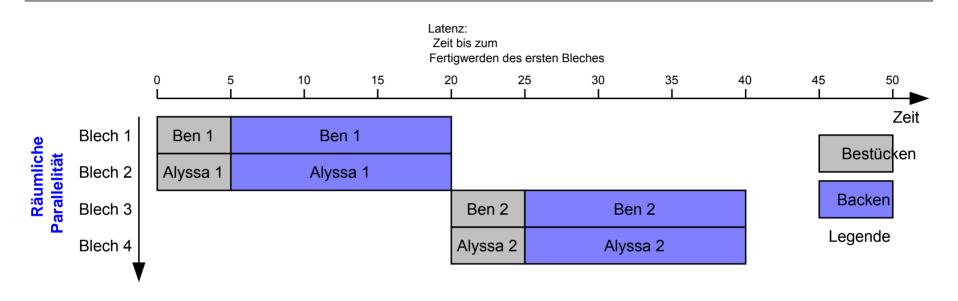
Räumliche Parallelität



Latenz =

Durchsatz =

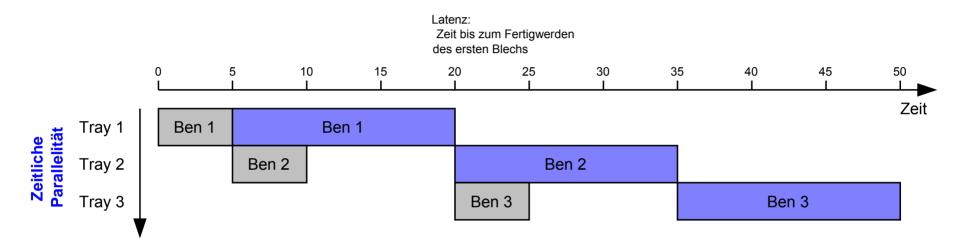
Räumliche Parallelität



Latenz =
$$5 + 15 = 20$$
 Minuten = $1/3$ h

Durchsatz = 2 Bleche alle 20 Minuten = 6 Bleche/h

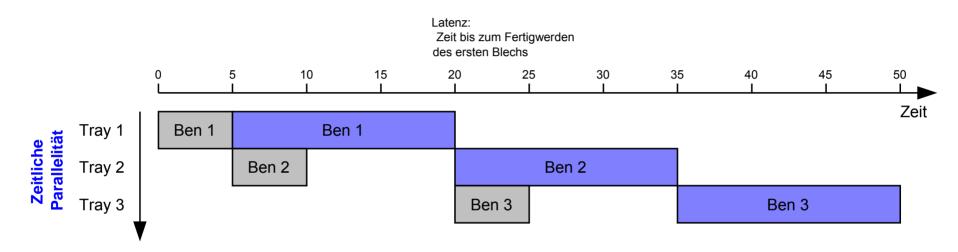
Zeitliche Parallelität



Latenz =

Durchsatz =

Zeitliche Parallelität



Latenz =
$$5 + 15 = 20 \text{ Minuten} = \frac{1}{3} \text{ h}$$

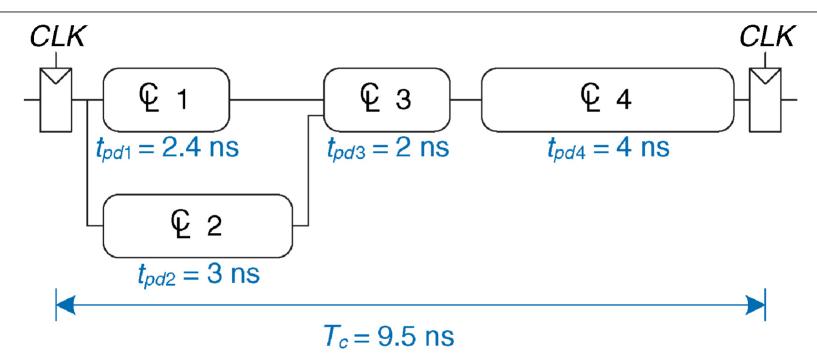
Durchsatz = 1 Blech alle 15 Minuten = 4 Bleche/h

Kombinieren

 Zeitliche und räumliche Parallelität können miteinander kombiniert werden

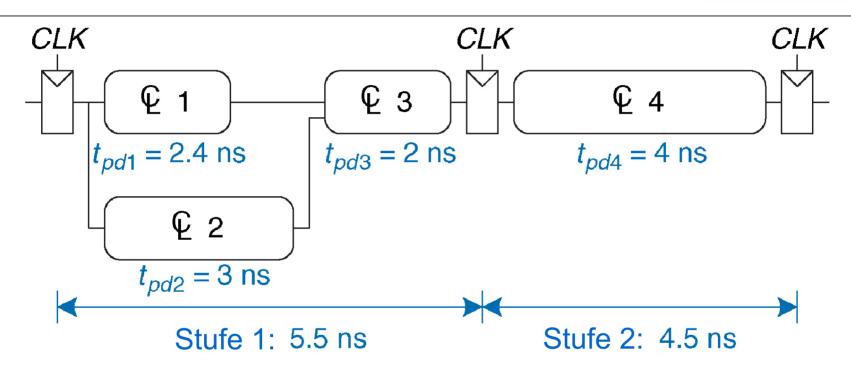
- Hier:
 - Zwei Bäcker und Öfen
 - Nächstes Blech bestücken während altes gebacken wird
- Latenz = 20 Minuten
- Durchsatz = 8 Bleche/h

Schaltung ohne Pipelining



- Kritischer Pfad durch Elemente 2, 3, 4: 9 ns
- $t_{\text{setup}} = 0.2 \text{ ns und } t_{\text{pcq}} = 0.3 \text{ ns} \rightarrow T_{\text{c}} = 9 + 0.2 + 0.3 = 9.5 \text{ ns}$
- Latenz = 9,5ns; Durchsatz = 1 / 9,5ns = 105 MHz

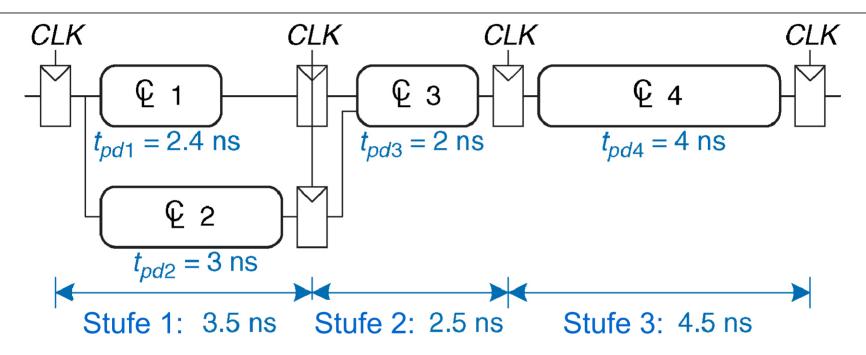
Schaltung mit zweistufiger Pipeline



- Stufe 1: 3+2+0,2+0,3=5,5 ns
- → $T_c = 5.5 \text{ ns}$
- Latenz = 2 Takte = 11 ns
- Durchsatz = 1 / 5,5 ns = 182 MHz

Stufe 2: 4+0,2+0,3 = 4,5 ns

Schaltung mit dreistufiger Pipeline



- $T_c = 4,5$ ns
- Latenz = 3 Takte = 13,5 ns
- Durchsatz = 1 / 4,5 ns = 222 MHz

Diskussion Pipelining

- Mehr Pipelinestufen
 - Höherer Durchsatz (mehr Ergebnisse pro Zeiteinheit)
 - aber auch höhere Latenz (länger warten auf das erste Ergebnis)
 - → Lohnt sich nur, wenn viele Datensätze bearbeitet werden müssen
- Klappt aber nicht immer
- Problem: Abhängigkeiten
- Beispiel Kekse: Erstmal schauen wie ein Blech geworden ist, bevor das nächste bestückt wird
- Wird noch intensiv im 7. Kapitel behandelt (Prozessorarchitektur)

