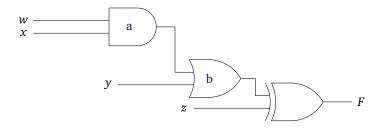
Übung zur Vorlesung Technische Grundlagen der Informatik

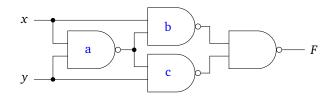


Prof. Dr. Andreas Koch Thorsten Wink

Wintersemester 09/10 Übungsblatt 2 - Lösungsvorschlag

Aufgabe 2.1 Logikgatter

Stellen Sie die Wahrheitstabelle für die folgende Schaltung auf und geben Sie die Funktion in DNF an:


Aufgabe 2.1 Lösung

w	х	у	z	a	Ъ	F
0	0	0	0	0	0	0
0	1	0	0	0	0	0
1	0	0	0	0	0	0
1	1	0	0	1	1	1
0	0	1	0	0	1	1
0	1	1	0	0	1	1
1	0	1	0	0	1	1
1	1	1	0	1	1	1
0	0	0	1	0	0	1
0	1	0	1	0	0	1
1	0	0	1	0	0	1
1	1	0	1	1	1	0
0	0	1	1	0	1	0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0	0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1 0 0 0
1	0	1	1	0	1	0
1	1	1	1	1	1	0

 $F = w \ x \ \overline{y} \ \overline{z} + \overline{w} \ \overline{x} \ y \ \overline{z} + \overline{w} \ x \ y \ \overline{z} + w \ \overline{x} \ y \ \overline{z} + \overline{w} \ \overline{x} \ \overline{y} \ z + \overline{w} \ \overline{x} \ \overline{y} \ \overline{x} + \overline{w} \ \overline{x} \ \overline{x} \ \overline{y} \ \overline{x} + \overline{w} \ \overline{x} \ \overline{y} \ \overline{x} + \overline{w} \ \overline{x} \ \overline{y} \ \overline{x} + \overline{w} \ \overline{x} \ \overline{x} + \overline{w} \ \overline{x} \ \overline{x$

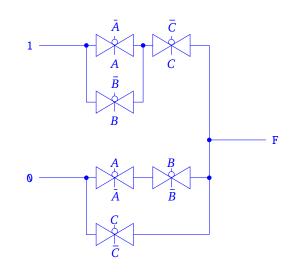
Aufgabe 2.2 Logikgatter 2

Stellen Sie die Wahrheitstabelle für die folgende Schaltung auf und geben Sie die Funktion in KNF an:

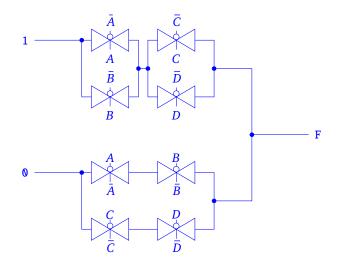
Aufgabe 2.2 Lösung

х	y	a	b	С	F	
0	0	1	1	1	0	
0	1	1	1	0	1	$F = (x + y)(\overline{x} + \overline{y})$
1	0	1	0	1	1	
1	1	0	1	1	0	
	x 0 0 1 1	x y 0 0 0 1 1 0 1 1	x y a 0 0 1 0 1 1 1 0 1 1 1 0	0 0 1 1 0 1 1 1 1 0 1 0	0 0 1 1 1 0 1 1 1 0 1 0 1 0 1	0 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1

Die Funktion entspricht der XOR-Funktion.


Aufgabe 2.3 Transmission-Gates

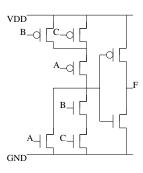
Realisieren Sie die folgenden Funktionen mit Transmission-Gates:


a)
$$F = (A+B)C$$

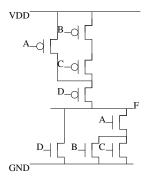
b)
$$F = (A + B)(C + D)$$

a)
$$F = (A+B)C$$

b)
$$F = (A + B)(C + D)$$


Aufgabe 2.4 CMOS-Gatter

Stellen Sie die folgenden Funktionen mit nMOS und pMOS Transistoren dar:


a)
$$F = A + BC$$

b)
$$F = \overline{D + A(B+C)}$$

a) F = A + BC

b) $F = \overline{D + A(B + C)}$

Aufgabe 2.5 Boole'sche Algebra

Vereinfachen Sie die folgenden Ausdrücke mit Hilfe der Rechenregeln für boole'sche Algebra:

a)
$$F = \bar{A}BC + CD + \bar{A} + \bar{C}$$

b)
$$F = \overline{A}\overline{B} + \overline{A}B\overline{C} + \overline{A} + \overline{C}$$

a)
$$F = \overline{A}BC + CD + \overline{A} + \overline{C}$$

= $CD + \overline{A} + \overline{C}$

b)
$$F = \overline{A}\overline{B} + \overline{A}B\overline{C} + \overline{A} + \overline{C}$$
$$= \overline{A}\overline{B} + \overline{A}B\overline{C} + \overline{A}C$$
$$= \overline{A}(\overline{B} + B\overline{C} + C)$$
$$= \overline{A}(\overline{B} + \overline{C} + C)$$
$$= \overline{A}(\overline{B} + 1)$$
$$= \overline{A}$$

Aufgabe 2.6 Komplementbildung

Bilden Sie die Komplemente der folgenden Ausdrücke mit Hilfe der De Morgan'schen Regeln und vereinfachen Sie soweit es geht:

a)
$$F = A + B(CD)$$

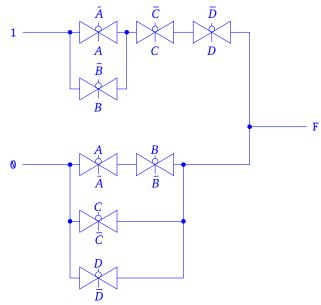
b)
$$F = A\bar{B}C + (\bar{A} + B + D)(AB\bar{D} + \bar{B})$$

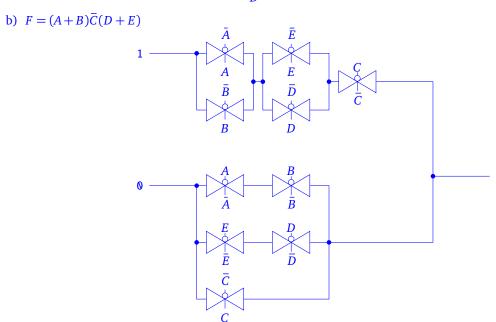
a)
$$\bar{F} = \overline{A + B(CD)}$$

= $\bar{A}B(CD)$
= $\bar{A}(\bar{B} + \bar{C} + \bar{D})$

b)
$$\bar{F} = A\bar{B}C + (\bar{A} + B + D)(AB\bar{D} + \bar{B})$$

 $= A\bar{B}C(\bar{A} + B + D)(AB\bar{D} + \bar{B})$
 $= (\bar{A} + B + \bar{C})(\bar{A} + B + D)(AB\bar{D} + \bar{B})$
 $= (\bar{A} + B + \bar{C})(A\bar{B}\bar{D} + AB\bar{D}B)$
 $= (\bar{A} + B + \bar{C})(A\bar{B}\bar{D} + (\bar{A} + \bar{B} + D)B)$
 $= (\bar{A} + B + \bar{C})(A\bar{B}\bar{D} + \bar{A}B + \bar{B}B + DB)$
 $= (\bar{A} + B + \bar{C})(A\bar{B}\bar{D} + \bar{A}B + BB)$
 $= (\bar{A} + B + \bar{C})(A\bar{B}\bar{D} + \bar{A}B + DB)$
 $= (\bar{A}A\bar{B}\bar{D} + \bar{A}B + DB) + B(A\bar{B}\bar{D} + \bar{A}B + DB) + \bar{C}(A\bar{B}\bar{D} + \bar{A}B + DB)$
 $= (\bar{A}A\bar{B}\bar{D} + \bar{A}B + \bar{A}BD) + (A\bar{B}\bar{B}\bar{D} + \bar{A}B + BD) + (A\bar{B}\bar{C}\bar{D} + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}\bar{D})$
 $= \bar{A}B + \bar{A}BD + \bar{A}B + BD + \bar{A}\bar{B}\bar{C}\bar{D}$

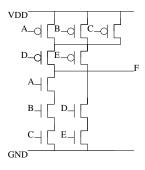

Hausaufgabe 2.1 Transmission-Gates


Realisieren Sie die folgenden Funktionen mit Transmission-Gates:

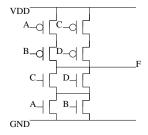
a)
$$F = (DC)(A+B)$$

b)
$$F = (A+B)\overline{C}(D+E)$$

a)
$$F = (DC)(A+B)$$


Hausaufgabe 2.2 CMOS-Gatter

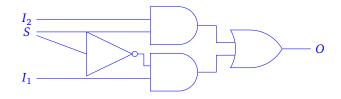
Implementieren Sie die folgenden Funktionen mit nMOS und pMOS Transistoren:


a)
$$F = (\bar{A} + \bar{B} + \bar{C})(\bar{D} + \bar{E})$$

b)
$$F = \bar{A}\bar{B} + \bar{C}\bar{D}$$

a)
$$F = (\bar{A} + \bar{B} + \bar{C})(\bar{D} + \bar{E})$$

b)
$$F = \bar{A}\bar{B} + \bar{C}\bar{D}$$


Hausaufgabe 2.3 Multiplexer

Ein Multiplexer wird z.B. verwendet, um mehrere Signale über einen gemeinsamen Kanal zu übertragen. Ein Multiplexer mit 2 Eingängen I_1 und I_2 schaltet je nach Belegung des Steuereingangs S entweder I_1 (S=0) oder I_2 (S=1) auf den Ausgang O durch.

Stellen Sie eine Wahrheitstabelle für einen Multiplexer auf und bestimmen Sie daraus die DNF. Vereinfachen Sie diese mit den boole'schen Rechenregeln und realisieren Sie die Funktion mit AND, OR und NOT-Gattern.

Hausaufgabe 2.3 Lösung

I_1	I_2	S	0	
0	0	0	0	
0	1	0	0	
1	0	0	1	
1	1	0	1	$O = I_1 \bar{I}_2 \bar{S} + I_1 I_2 \bar{S} + \bar{I}_1 I_2 S + I_1 I_2 S = I_1 \bar{S} + I_2 S$
0	0	1	0	
0	1	1	1	
1	0	1	0	
1	1	1	1	

Hausaufgabe 2.4 Boole'sche Algebra

Vereinfachen Sie die folgenden Ausdrücke mit Hilfe der Rechenregeln für boole'sche Algebra:

a)
$$F = AB + \bar{A}\bar{B}\bar{C} + A\bar{B}$$

b)
$$F = X + XYZ + WX + \overline{X}YZ + \overline{X}Y + \overline{WX}$$

c)
$$F = AB + D + BC + \bar{A}C$$

a)
$$F = AB + \bar{A}\bar{B}\bar{C} + A\bar{B}$$

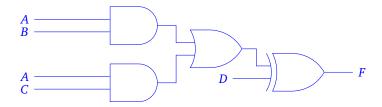
 $= A(B + \bar{B}) + \bar{A}\bar{B}\bar{C}$
 $= A + \bar{A}\bar{B}\bar{C}$
 $= A + \bar{B}\bar{C}$

b)
$$F = X + XYZ + WX + \overline{X}YZ + \overline{X}Y + \overline{WX}$$

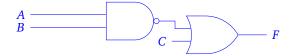
= $X + XYZ + \overline{X}YZ + \overline{X}Y + 1$
= 1

c)
$$F = AB + D + BC + \bar{A}C$$

= $AB + \bar{A}C + D$


Hausaufgabe 2.5 Gatterlogik

Implementieren Sie die folgenden Funktionen mit Logikgattern:


a)
$$F = (AB + AC) \oplus D$$

b)
$$F = \overline{AB} + C$$

a)
$$F = (AB + AC) \oplus D$$

b)
$$\overline{AB} + C$$

Plagiarismus

Der Fachbereich Informatik misst der Einhaltung der Grundregeln der wissenschaftlichen Ethik großen Wert bei. Zu diesen gehört auch die strikte Verfolgung von Plagiarismus. Weitere Infos unter www.informatik.tu-darmstadt.de/plagiarism