
Technische Universität Darmstadt FG Eingebettete Systeme und ihre Anwendungen (ESA)

Prof. Dr. Andreas Koch Holger Lange Mathias Halbach (FG Rechnerarchitektur)

08.06.2006

Technische Grundlagen der Informatik II 5. Übung – Dinatos Sommersemester 2006

Aufgabe 1: Dinatos-Befehle

Betrachtet wird das Dinatos-Zustandsdiagramm (Vorlesung Kapitel 5, Folie 14).

Geben Sie für die Befehle LDA#, LDA*, STA, STA*, GO und MUL an, welche Zustände bei der Befehlsinterpretation durchlaufen werden. Ordnen Sie dabei zusätzlich den Zuständen die jeweils auszuführenden Operationen zu.

Aufgabe 2: Binäres Maschinenprogramm

Füllen Sie die leeren Felder aus (wie in Kap. 5, Folie 17 der Vorlesung). Korrigieren Sie dabei einen wahrscheinlichen Programmierfehler im gegebenen Dinatos-Programm. Hinweis: Eine Übersicht der Dinatos-Befehle finden Sie auf Folie 5-13.

Adresse	Inhalt hex	OPC	Adr./	Kommentar	Operation	Ergebnis (hex)
			Konst.			
			(dez)			
						initial AC=0
0		lda#	15			
1		shr	2			
2		sta	9			
3		lda#	0			
4		lda*	7			
5		go	8			
6		stop		anhalten		
7	00000009					
8	00000005					
9				Datum		

Aufgabe 3: Rechnen mit Dinatos

Zwei 2K-Zahlen $-2^{30} \le X, Y \le 2^{30} - 1$ sind zu addieren. Dazu soll ein Dinatos-Assembler-Programm geschrieben werden, welches außer der Summe S der beiden Zahlen X und Y auch die Überlaufbedingung OV (overflow) erzeugt.

- **a)** In welcher Beziehung stehen die beiden höchstwertigen Stellen (MSB) mit den Indizes 32 und 31 (bei Zählweise X_{32} bis X_1 bzw. Y_{32} bis Y_1) derartig normierter 2K-Zahlen?
- **b)** Wie kann ein auftretender Overflow bei der Addition solcher Zahlen erkannt werden? Fertigen Sie sich ein Tabelle für n=3 mit 16 Einträgen an, in der Sie für alle Kombinationen von X, Y und S die Überlaufbedingung OV bestimmen. Vergleichen Sie anschließend das Ergebnis mit den drei Möglichkeiten von Folie 3-25, um OV zu bestimmen.
- **c**) Beschreiben Sie Ihre Lösungsidee und fertigen Sie einen Ablaufplan (Flussdiagramm) an, aus dem der Ablauf Ihrer Idee hervorgeht.
- **d)** Schreiben Sie nun das Assembler-Programm. Die Operanden stehen in den Speicherzellen 18 und 19. Die Summe *S* soll in der Speicherzelle 20 abgelegt werden. Die Überlaufbedingung soll in dem C-Bit gespeichert werden, danach soll das Programm stoppen.