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Abstract

Wireless Sensor Networks (WSNs) combine embedded sensing and processing capabil-
ities with a wireless communication infrastructure, thus supporting distributed mon-
itoring applications. WSNs have been investigated for more than three decades, and
recent social and industrial developments such as home automation, or the Internet of
Things, have increased the commercial relevance of this key technology. The commu-
nication bandwidth of the sensor nodes is limited by the transportation media and the
restricted energy budget of the nodes. To still keep up with the ever increasing sen-
sor count and sampling rates, the basic data acquisition and collection capabilities of
WSNs have been extended with decentralized smart feature extraction and data aggre-
gation algorithms. Energy-efficient processing elements are thus required to meet the
ever-growing compute demands of the WSN motes within the available energy budget.

The Hardware-Accelerated Low Power Mote (HaLoMote) is proposed and evaluated
in this thesis to address the requirements of compute-intensive WSN applications. It
is a heterogeneous system architecture, that combines a Field Programmable Gate Ar-
ray (FPGA) for hardware-accelerated data aggregation with an IEEE 802.15.4 based
Radio Frequency System-on-Chip for the network management and the top-level con-
trol of the applications. To properly support Dynamic Power Management (DPM) on
the HaLoMote, a Microsemi IGLOO FPGA with a non-volatile configuration storage
was chosen for a prototype implementation, called Hardware-Accelerated Low Energy
Wireless Embedded Sensor Node (HaLOEWEn). As for every multi-processor archi-
tecture, the inter-processor communication and coordination strongly influences the
efficiency of the HaLoMote. Therefore, a generic communication framework is pro-
posed in this thesis. It is tightly coupled with the DPM strategy of the HaLoMote,
that supports fast transitions between active and idle modes. Low-power sleep periods
can thus be scheduled within every sampling cycle, even for sampling rates of hundreds
of hertz.

In addition to the development of the heterogeneous system architecture, this thesis
focuses on the energy consumption trade-off between wireless data transmission and in-
sensor data aggregation. The HaLOEWEn is compared with typical software processors
in terms of runtime and energy efficiency in the context of three monitoring applica-
tions. The building blocks of these applications comprise hardware-accelerated digital
signal processing primitives, lossless data compression, a precise wireless time synchro-
nization protocol, and a transceiver scheduling for contention free information flooding
from multiple sources to all network nodes. Most of these concepts are applicable to
similar distributed monitoring applications with in-sensor data aggregation.

A Structural Health Monitoring (SHM) application is used for the system level eval-
uation of the HaLoMote concept. The Random Decrement Technique (RDT) is a par-
ticular SHM data aggregation algorithm, which determines the free-decay response of
the monitored structure for subsequent modal identification. The hardware-accelerated
RDT executed on a HaLOEWEn mote requires only 43 % of the energy that a recent
ARM Cortex-M based microcontroller consumes for this algorithm. The functionality
of the overall WSN-based SHM system is shown with a laboratory-scale demonstrator.
Compared to reference data acquired by a wire-bound laboratory measurement system,
the HaLOEWEn network can capture the structural information relevant for the SHM
application with less than 1 % deviation.
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Kurzfassung

Drahtlose Sensornetze (Wireless Sensor Networks, WSNs) kombinieren eingebettete
Sensorik und Rechenleistung mit einer drahtlosen Kommunikationsinfrastruktur, wo-
durch räumlich verteilte Überwachungsanwendungen unterstützt werden. WSNs wer-
den seit mehr als drei Jahrzehnten erforscht, aktuelle soziale und industrielle Trends
wie intelligentes Wohnen oder das Internet der Dinge haben aber auch die kommerzielle
Bedeutung dieser Schlüsseltechnologie verstärkt. Die übertragbaren Datenmengen sind
durch das Transportmedium und die verfügbare Energie der Sensorknoten beschränkt.
Um die wachsende Anzahl an Sensoren und die steigenden Abtastraten dennoch zu
bewältigen, wurden die ursprünglich als einfache Datenerfassungssysteme ausgelegten
WSNs um Fähigkeiten zur dezentralen Datenaggregation erweitert. Um den dadurch
ständig wachsenden Bedarf an verteilter Rechenleistung mit den beschränkten Ener-
gieressourcen zu realisieren, werden energieeffiziente Recheneinheiten benötigt.

In der vorliegenden Arbeit wird die Hardware-Accelerated Low Power Mo-
te (HaLoMote) Architektur vorgestellt und deren Effizienz für rechenintensive
WSN-Anwendungen untersucht. Dabei handelt es sich um eine heterogene Architektur
mit einem Field Programmable Gate Array (FPGA) für die Hardware-Beschleunigung
von Datenaggregationsalgorithmen und einem Funksystem mit integriertem Mikrocon-
troller für das Netzwerkmanagement und die übergeordnete Steuerung der Anwen-
dungen. Um eine effiziente Energieverwaltung für die HaLoMote zu ermöglichen, ver-
wendet die prototypische Implementierung namens Hardware-Accelerated Low Energy
Wireless Embedded Sensor Node (HaLOEWEn) ein FPGA mit persistentem Konfigu-
rationsspeicher. Wie bei jeder Multiprozessorarchitektur beeinflusst die Interprozes-
sorkommunikation und -koordination auch die Effizienz der HaLoMote. Daher wurde
ein anwendungsunabhängiges Kommunikationsschema entwickelt, welches eng mit den
Energiesparmechanismen der Plattform verknüpft und auf schnelle Wechsel zwischen
Aktiv- und Ruhemodi ausgelegt ist. Dadurch können Schlafphasen innerhalb jedes Ab-
tastzykluses selbst bei Abtastraten von mehreren Hundert Hertz genutzt werden.

Die vorliegende Arbeit untersucht darüber hinaus das Abwägen zwischen der
drahtlosen Übertragung von Sensordaten und deren lokaler Aggregation. Dazu wird
die HaLOEWEn Plattform mit herkömmlichen Software-Prozessoren bezüglich ihrer
Laufzeit- und Energieeffizienz im Rahmen von drei Überwachungsanwendungen vergli-
chen. Die verwendeten Algorithmen kombinieren Hardware-Beschleuniger für digitale
Signalverarbeitungsprimitiven und verlustfreie Datenkompression mit einem präzisen
Zeitsynchronisationsmechanismus sowie einem Verfahren zum kollisionsfreien Verteilen
von Informationen im Netzwerk. Diese allgemeinen Komponenten können für ähnliche
verteilte Überwachungsanwendungen mit aufwändiger dezentraler Datenaggregation
wiederverwendet werden.

Eine Anwendung aus dem Bereich der Strukturüberwachung (Structural Health Mo-
nitoring, SHM) wird für die systemische Evaluation des HaLoMote Konzepts verwen-
det. Die Random Decrement Technique (RDT) ist ein spezieller Aggregationsalgorith-
mus, welcher das freie Ausschwingverhalten der überwachten Struktur ermittelt, selbst
wenn die eigentliche Anregung der Struktur nicht bekannt ist. Dies ermöglicht eine
operative Modalanalyse, welche die Voraussetzung für eine autonome Langzeitüber-
wachung ist. Die Berechnung der RDT auf der HaLOEWEn Plattform benötigt nur
43 % der Energie, welche ein aktueller ARM Cortex-M Mikrocontroller für den glei-
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chen Algorithmus verbraucht. Um die Funktionsfähigkeit des gesamten WSN-basierten
SHM Systems nachzuweisen, wurde ein Demonstrator im Labormaßstab aufgebaut. Im
Vergleich zu einem drahtgebundenen Labormesssystem können die wesentlichen Struk-
turinformationen vom HaLOEWEn Netzwerk mit weniger als 1 % Abweichung erfasst
werden.
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CHAPTER 1
Introduction

In this chapter, the history and current trends in Wireless Sensor Networks (WSNs)
are summarized to motivate the relevance of compute-intensive distributed appli-
cations. Furthermore, reconfigurable computing for application-specific and hence
energy-efficient computing architectures is briefly introduced. When joining both
topics, relevant research problems arise that will be addressed in this thesis. Fur-
thermore, the main contributions and the organization of the thesis are summarized in
this chapter.

1.1 Importance of Wireless Sensor Networks and Energy-Efficient Computing

Similar to many fundamental technologies, WSNs originated from military applications,
such as the networks of acoustic sensors already deployed in the 1950s for submarine
tracking [Silverstein1978]. The United States Defense Advanced Research Projects
Agency (DARPA) focused their research on distributed sensing, computation and
communication within the Distributed Sensor Networks (DSN) project in the 1980s
[CMUPDCS1978]. However, the radio transceivers available at that time (e.g., satel-
lite links and early cell phones) could not achieve the required bandwidth, energy
efficiency, reliability and integration density, so the first DSNs were based on wire-
bound communication.

In the 1990s, advances in wireless communication technologies facilitated the shift
from wired DSNs to actual WSNs. Furthermore, military projects such as the
DARPA SensIT [Kumar2001] were complemented by university research projects like
the Wireless Integrated Network Sensors (WINS) at UC Los Angeles [Asada1998] or the
PicoRadio program at UC Berkeley [Rabaey2000]. This opened the WSN technology
to a broad spectrum of civilian applications, such as the monitoring of environmental
parameters and industrial processes, the tracking of objects, and the detection of events
[Chong2003].

At the beginning of the 21st century, the standardization of many wireless commu-
nication technologies improved the interoperability and the reusability of the WSN
devices, which are also called motes:

• IEEE [802.11] since 1997, i.e., Wireless Local Area Networks (WLANs),

• IEEE [802.15.1] since 2002, i.e., Wireless Personal Area Networks (WPANs),

• IEEE [802.15.4] since 2006, i.e., Low Rate WPANs (LR-WPANs), and

• IEEE [802.15.6] since 2011, i.e., Wireless Body Area Networks (WBANs)

In addition to further improvements in the energy efficiency and density of the sensing,
computing, and communication devices, this standardization was the foundation for
WSNs to evolve from a subject of scientific research to the base technology for consumer
products with an overall market volume of about $1 billion in 2014 [Rawat2014].

Introduction 1



(a) Nest [Thermostat] (b) BDI [STS4] (c) BIOTRONIK [BioMonitor]

Figure 1: Examples for wirelessly communicating consumer electronics, industrial products,
and medical devices

Nowadays, the research efforts on WSNs are merged with embedded systems and
the system of systems design methodologies, yielding Cyber Physical Systems (CPSs)
[Mosterman2015]. This class of advanced applications requires the embedded devices to
interact with their surroundings more intensively than typical WSNs, e.g., by support-
ing actuation and Human-Machine Interfaces (HMIs). CPS deployments are no longer
isolated from one another to serve only a restricted application. Instead, open com-
munication and interaction standards connect the ever growing number of CPS motes,
thus contributing to the development of the Internet of Things (IoT) [Mainetti2011].

In 2014, the global IoT market ($238 billion) was dominated by industrial applica-
tions (24 %), automotive applications (22 %), consumer electronics (19 %), and health-
care (13 %) [TMR2015-IoT]. Although the IoT market is not restricted to WSN and
CPS products, more and more wirelessly communicating embedded devices are con-
tributing to the IoT domain. Some examples are listed in Figure 1.

Smart Home applications automate the illumination, heating, ventilation, air con-
ditioning, and irrigation of apartments and buildings to minimize their running costs.
After its acquisition by Google in 2014, Nest is one of the most popular vendors of Smart
Home products. Its Learning [Thermostat], shown in Figure 1a, can be connected to
other peripherals like cameras or automated light bulbs via WLAN. As the data rates
required by these applications are rather small, IEEE [802.15.4]-based communication
is well-suited for smart home applications. Nest thus allied with important home au-
tomation players such as Samsung, ARM, Osram, and Somfy to define a proprietary
wireless network stack [Thread], which is optimized for Smart Home applications.

Industrial monitoring systems are typically sealed in a robust housing to withstand
harsh environmental conditions, and are equipped with large batteries to support an
unattended operation of several days. For example, the BDI [STS4] wireless struc-
tural testing system, shown in Figure 1b, consists of a Stellaris ARM Cortex-M3
microcontroller (MCU), a four channel Analog-to-Digital Converter (ADC) with 24 bit
resolution, a IEEE [802.11] transceiver, and a 67 W h battery. It is used as a temporar-
ily installed data acquisition system for the one-time assessment of the current state
of a structure (e.g., bridges). The captured sensor data (up to 96 kbit/s) is transferred
to the network operator without further preprocessing, while consuming about 1.5 W
on average.
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The BIOTRONIK [BioMonitor], shown in Figure 1c, is an implantable medical de-
vice used to monitor the heart signals of a patient. It samples three channels at several
hundred hertz and automatically detects different types of arrhythmia. Only those
critical observations are transferred wirelessly to a base station, where it can be ac-
cessed by the attending physician. Due to this in-sensor data preprocessing and feature
extraction, the operational live time of the device reaches up to six years.

The [BioMonitor] is a typical example of how the small WSN devices achieve an
operational endurance of several months or years on a limited energy storage. As the
wireless transceiver typically is the major power consumer of a WSN mote [Jain2015],
in-sensor data aggregation must be applied to reduce the required communication rates,
and thus the active time of the transceivers. However, data aggregation such as lossless
data compression or lossy feature extraction impose additional computational load on
the WSN motes. Their compute demand is increased further by the complex encryption
algorithms required to secure the communication channels, as privacy is becoming more
and more important for all IoT applications.

The importance of wirelessly communicating embedded systems with energy-efficient
processing capabilities is also reflected by public research budgets and expected market
volumes. The European Commission provides an overall funding of€1068 million in the
Horizon 2020 Information and Communication Technology (ICT) program during 2016
and 2017, out of which €90 million (8.4 %) are dedicated to Smart CPS, Smart System
Integration, Smart Anything Everywhere, and customized and low-energy computing
[H2020-ICT]. The overall Horizon 2020 IoT funding in the same period amounts to
€139 million [H2020-FA]. With this budget, the European Commission is strengthen-
ing the European industry to participate in a fast growing market. While the worldwide
WSN market volume is estimated to exceed $3 billion in 2020 [FrostSullivan2015-WSN],
the overall IoT market volume is forecast to $925 billion in 2021 [TMR2015-IoT]. Thus,
the demand for wirelessly communicating embedded systems with energy-efficient pro-
cessing capabilities will keep rising in the next years.

Software-programmable processors like MCUs and Digital Signal Processors (DSPs)
are application-independent general purpose compute units. However, they achieve
their flexibility at the cost of a reduced energy efficiency [Hameed2010]. In contrast,
Application-Specific Integrated Circuits (ASICs) provide the most energy-efficient re-
alization of a particular application. While all building blocks of a WSN processor
such as the sensor controllers, digital filters and the radio protocol stacks can be imple-
mented in dedicated hardware, the combination and configuration of these elements is
highly application-specific. Therefore, building a complete WSN mote as customized
silicon is not economically worthwhile in most scenarios.

As will be detailed in Section 2.2, Reconfigurable Compute Units (RCUs) such
as Field Programmable Gate Arrays (FPGAs) provide the flexibility of software-
programmable processors, while almost approaching the energy efficiency of ASICs.
In the WSN context, FPGAs are well suited to accelerate dataflow-dominated and in-
herently parallel algorithms, such as multi-channel digital filtering of sensor data, but
control flow-dominated algorithms and long-term low-intensity tasks, like time-keeping
and the radio protocol, typically do not benefit from hardware acceleration.
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1.2 Targeted Applications and Research Problems

In the last section, WSNs have been introduced as a key enabler for emerging technolo-
gies such as the IoT or CPS-controlled industrial monitoring, both of which will increase
the demand for energy-efficient embedded processing. While the number of WSN in-
stallations is expected to grow rapidly, the concrete tasks to be solved by every single
mote will vary greatly within the different application domains and deployment scenar-
ios. RCUs have been introduced as processor architectures combining the efficiency of
ASICs with the flexibility of software processors. It therefore appears to be promising
to integrate reconfigurable computing into a WSN mote to create an energy-efficient
platform that can be easily adopted to many different application scenarios.

The heterogeneous WSN mote developed in this thesis targets compute-intensive
distributed applications with the potential for aggressive Dynamic Power Manage-
ment (DPM). The characteristics of these applications can be broken down into the
following requirements. First of all, a sufficient amount of computation has to be
applied to the node-local raw sensor data, either by means of data aggregation, com-
pression, or encryption. In principle, unless sensing random data, every application
can benefit at least from lossless data compression. However, the additional complex-
ity and static power drawn by a dedicated hardware accelerator will not pay off, if the
in-sensor processing could be handled by a low-power MCU at a low duty cycle. The
monitoring of slowly changing environmental parameters (e.g., temperature, moisture,
or luminance in the agriculture domain) with sampling periods of several seconds or
minutes, is thus not covered by this thesis. Second, a fixed sampling period allowing
for DPM within each sampling cycle is required. For applications, that have to run
as fast as possible (e.g., video processing with maximum frame rates), continuously
running hardware accelerators are more suitable and DPM becomes moot. The same
holds true, if the required sampling periods approach the transition times between the
active and the low-power states of the computational devices. As these transitions typ-
ically require tens of microseconds, the targeted sampling frequency should not exceed
10 kHz to achieve duty cycles of 10 % and below.

When combining the often independent research areas of WSNs and RCUs under
these application constraints, many new challenges and fundamental questions arise.
The following research problems will thus be addressed by this thesis:

1. Which specific RCU is suited best to be integrated into a WSN mote?

2. How to integrate the RCU into the architecture of a WSN mote? To be more spe-
cific, how should the sensors, memories, processing and communication modules
be arranged, and how should they communicate?

3. How does the RCU affect the DPM strategy of the WSN mote?

4. How does the RCU affect the trade-off between in-sensor preprocessing and wire-
less data transmission? For which kinds of application do the improved data
aggregation capabilities pay off in terms of overall energy consumption?

5. Once the RCU is integrated as application-specific accelerator, which generic
WSN services can also benefit from the improved processing capabilities?
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Although a specific vibration-based Structural Health Monitoring (SHM) application
is used for the system level evaluation, the key findings of this thesis are applicable to
many WSN applications of similar complexity.

1.3 Thesis Contribution

This thesis offers solutions for the research problems listed in the previous section. The
main contributions cover:

• A heterogeneous system architecture called Hardware-Accelerated Low Power
Mote (HaLoMote), which integrates an RCU as a hardware accelerator into a
MCU-based WSN mote.

• A HaLoMote implementation called Hardware-Accelerated Low Energy Wireless
Embedded Sensor Node (HaLOEWEn), which is used as a proof-of-concept to
evaluate the reliability and the efficiency of the heterogeneous system architecture.

• An application-independent communication framework designed to minimize the
inter-processor communication overhead of the heterogeneous architecture.

• The hardware and software support for DPM with a special emphasis on fast shut-
down and wake-up to benefit from sleep scheduling at the end of each sampling
cycle, even at sampling rates of several hundred hertz.

• The hardware acceleration of application independent modules such as DSP prim-
itives (Finite Impulse Response (FIR) and Fast Fourier Transformation (FFT)),
a linear regression, as well as a lossless data compression kernel.

• A precise wireless time synchronization protocol, which reduces the computational
efforts required to achieve the synchronization accuracy necessary for the targeted
sampling rates.

• A contention-free transceiver scheduling for a minimum-effort n-to-all flooding of
messages as required by the targeted SHM application.

• A hardware-accelerated processing kernel for the specific SHM application used
for the system level evaluation of the HaLoMote architecture.

• A laboratory-scale demonstrator used for the system level evaluation of the
HaLoMote architecture. It consists of a truss bridge model equipped with 20 ac-
celerometers controlled by five HaLOEWEn motes, which capture and aggregate
sensor signals appropriate to identify relevant modal parameters of the bridge.

Most of these contribution have already been successfully reviewed by the scientific
community. The following publications were presented at international conferences in
the WSN, RCU, and SHM domain:

[Engel2011] describes the basic HaLoMote architecture as a technology to trade-off
node-local processing against date transmission in WSNs. To show its energy ef-
ficiency, the power consumption required by the HaLoMote for FIR computations
is compared against commercial off-the-shelf (COTS) 8 bit and 16 bit MCUs and
DSPs.
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[Engel2012a] presents a concrete implementation of the HaLoMote architecture and a
generic framework for the communication between its MCU and its RCU. Fur-
thermore, different schemes for driving the RCU clock domain are proposed and
their impact on the DPM are evaluated in the context of an SHM application.

[Engel2012b] describes a laboratory-scale demonstrator for a single HaLOEWEn
mote and discusses its energy efficiency achieved by a decentralized hardware-
accelerated FFT.

[Engel2014a] presents the hardware-accelerated implementation of a lossless data com-
pression module. More specifically, an Adaptive Differential Pulse Code Modula-
tion (ADPCM) encoder was developed and applied to sensor data gathered from a
vibrating machinery and the neurons of primates. The benefits of the HaLoMote
architecture over a software encoder could be shown.

[Engel2014b] describes a wireless routing protocol optimized for the n-to-all flood-
ing required by the SHM application targeted in [Engel2012a]. Based on
reachability- and interference graphs, an optimization problem is formulated to
find a contention-free minimum-effort scheduling of sending and receiving mes-
sages. The solutions provided by a novel Integer Linear Program (ILP) model
and a fast heuristic are compared with state-of-the-art flooding protocols.

[Engel2014c] presents an improved implementation of the hardware-accelerated SHM
kernel described in [Engel2012a]. Furthermore, a laboratory-scale demonstrator
for a network of HaLOEWEn motes is detailed. This demonstrator is used to
evaluate the system level operation of the proposed heterogeneous architecture.

[Engel2015a] describes an improved formulation of the Rolling Linear Regression (RLR)
used to optimize clock drift compensation within a high-precision wireless time
synchronization protocol. While software-processors already benefit from the pro-
posed algorithm, using a hardware accelerator further reduces the computational
overhead of the synchronization protocol.

[Engel2015b] describes a laboratory-scale demonstration of the achievable synchroniza-
tion accuracy with and without clock drift compensation, as well as the benefits
of the hardware-accelerated RLR.

[Engel2015c] compares the measurement accuracy of the HaLoMote-based data acqui-
sition system against a baseline captured by wire-bound laboratory equipment.
Furthermore, the energy efficiency of the heterogeneous architecture is compared
with the most recent software-processors.

The experiences gained with the HaLoMote architecture and its applications also
resulted in additional publications not immediately related to the key topics of this
thesis:

[Engel2014d] presents a hardware-accelerated controller for an ultrasonic piezo-electric
actuator as the foundation of a haptic feedback system.

[Hochberger2014] presents a Coarse-Grained Reconfigurable Architecture (CGRA) im-
plementation of the ADPCM algorithm described in [Engel2014c]. This paper
focuses on aspects of high-level synthesis exploiting instruction-level parallelism.
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1.4 Thesis Outline

This thesis is structured as follows.

Chapter 1 motivates the relevance of compute-intensive distributed applications in the
context of WSNs. It formulates the research problems that arise when integrating
RCUs as energy-efficient hardware accelerator into a WSN mote. Furthermore,
it summarizes the main contributions of this research.

Chapter 2 summarizes the main concepts of WSNs and RCUs, as well as the terminol-
ogy that will be used throughout this thesis.

Chapter 3 discusses related work in the fields of WSN hardware architectures and soft-
ware services, as well as the class of distributed compute-intensive applications
addressed by this thesis.

Chapter 4 presents the proposed heterogeneous WSN architecture HaLoMote and dis-
cusses the evolution of its implementation steered by technological developments
and application requirements. Furthermore, the communication infrastructure
between the compute units, as well as the integration of power management tech-
niques is described.

Chapter 5 details the hardware acceleration of application-independent algorithms such
as DSP primitives, lossless data compression, and a linear regression kernel. These
modules are used as building blocks for different WSN applications described in
Chapter 7.

Chapter 6 presents application-independent wireless communication concepts devel-
oped for the HaLoMote, such as a precise time synchronization protocol and
a multi-source flooding scheme.

Chapter 7 details the HaLoMote-implementation of three different monitoring applica-
tions. The energy efficiency of the hardware accelerators previously described in
Chapter 5 is evaluated in the context of these applications.

Chapter 8 gives the system level evaluation results for the targeted SHM application.
After describing the laboratory-scale demonstration setup, the measurement ac-
curacy and energy efficiency of the HaLoMote-based measurement system is com-
pared with state-of-the-art wireless and wire-bound measurement systems.

Chapter 9 summarizes the major contributions of this thesis and proposes future re-
search topics that could be addressed to further improve the heterogeneous hard-
ware architecture.
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CHAPTER 2
Technical Fundamentals

In this chapter, the main concepts of WSNs and RCUs are introduced to summarize
the terminology used throughout this thesis.

2.1 Wireless Sensor Networks and Wireless Sensor Node Architectures

A WSN consists of a number of small embedded systems (termed sensor nodes or
motes), which communicate wirelessly to solve a collaborative task. They are typi-
cally used as easily deployable data acquisition systems to monitor the temporal and
spatial characteristics of ambient physical phenomena such as temperature, humidity,
luminance, structural vibration, or acoustic pressure. As shown in Figure 2, the data
gathered by the WSN has to be collected at a dedicated gateway node, where it can
be stored persistently or forwarded to a remote base station over a Wide Area Net-
work (WAN) such as a cellular mobile radio link. In addition to the monitoring of
signals, the tracking of objects that can be detected by the motes or which the motes
are attached to is a class of typical WSN applications [Rawat2014].

Also the requirements and capabilities of the motes vary strongly between different
applications and even within a certain network, the architecture of a typical WSN mote
consists of the five generic units shown in Figure 3. Analog or digital sensors (Figure
3a) capture the relevant signals at sampling periods ranging from several seconds in
environmental monitoring [Lazarescu2013] down to several milliseconds in vibration-
based structural health monitoring [Battista2013] or even below in acoustic localization
applications [Astapov2014].

The sampled data is buffered in the memory module (Figure 3b), before it is further
processed or transmitted. The processor-internal memory is typically limited to a
few kilobytes, which is not sufficient to capture long-term measurements. Therefore,

L

L
L R

L

L
LRG

WAN B
L Leaf

R Router

G Gateway

B Base

Figure 2: Typical monitoring application realized by a WSN, which forwards the captured
data from the leaf nodes over intermediates routers and a dedicated gateway to
a remote base station
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Figure 3: Generic architecture of a WSN mote

additional Static RAM (SRAM) modules or even non-volatile memory (NVM) such
as Flash or the more recent Ferroelectric RAM (FRAM) are often integrated into the
WSN motes [Yick2008; Zhao2015].

The processor (Figure 3c) is the heart of the mote that coordinates the sensors, the
memory and the transceiver. The processor realizes the upper layers of the network
communication protocol as shown in Figure 4 and performs other administrative tasks
such as the time management. Most WSN motes are based on small MCUs such as
the 8 bit Atmel [ATmega128] used by the [Mica2] or the 16 bit TI [MSP430] used by
the [TelosB]. For more demanding computations like the online compression or en-
cryption of the sampled data, 32 bit ARM MCUs like the Intel [PXA270] integrated
in the [Imote2] or powerful DSPs such as the AD [BlackFin] are used as WSN proces-
sors [Ravinagarajan2010]. Beyond these typical software processors, the integration of
RCUs and ASICs has been proposed by academic WSN projects such as [Shahzad2014;
Walravens2014].

The wireless transceiver (Figure 3d) realizes the lower layers of the communication
protocol stack, as shown in Figure 4. It determines the maximum length (i.e., the
communication range) as well as the gross data throughput rate of each hop, i.e., the
direct link between a sender and a receiver. Each hop can be either a unicast (from
one transmitter to one explicitly addressed receiver) or a broadcast (from one trans-
mitter to all reachable receivers). The carrier frequencies of the WSN transceivers are
typically located in the freely available Industrial, Scientific and Medical (ISM) bands

Physical Channels, Modulation, Throughput, Power

Data Link Adressing, MAC, Checksums, Flow Control

Network Routing

Presentation Compression, Encryption

Application Measurement Control, Sensor Data, Feature Extraction

Processor

Transceiver

Figure 4: OSI layers used in a WSN communication protocol stack
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Figure 5: Classification of WSN topologies consisting of leaf nodes, routers, and gateways

at 2450 MHz (worldwide) and 915 MHz (America) or the Short Range Device (SRD)
band at 868 MHz (Europe). The IEEE [802.15.4] standard is the foundation of the
most popular WSN communication stacks such as [ZigBee], [WirelessHART] or the
International Society of Automation (ISA) [100.11a]. It provides a throughput of
250 kbit/s at an outdoor communication range up to 100 m. Alternative transceiver
standards include Bluetooth Low Energy (BLE) (1 Mbit/s at 200 m), Z-wave (40 kbit/s
at 30 m), or EnOcean (125 kbit/s at 300 m) [Rawat2014]. If the WSN transceiver and
processor are combined into one Integrated Circuit (IC), it is called a Radio Frequency
System-on-Chip (RF-SoC).

As the communication range of the wireless transceivers is often smaller than the area
covered by the WSN, the data from the leaf nodes most distant from the gateway has
to be transferred over intermediate routers. The single-hop interconnectivity between
the network nodes can be modeled as a directed graph, which is referred to as the
WSN topology. If the covered area is smaller than twice the communication range, the
star topology (Figure 5a) is most commonly used as it does not require intermediate
routers. The chain (Figure 5b) and the tree (Figure 5c) topology can cover larger
areas with multi-hop paths without complex routing logic, as the path between each
pair of nodes is unique. In contrast, the routing within the mesh topology (Figure 5d)
is rather complex, as the optimal path between two nodes has to be determined at
runtime based on varying information such as the maximum end-to-end delay or the
workload and the residual energy of each router. Only a mesh network can handle the
failure of intermediate routers without loosing the connectivity between the remaining
nodes. The mesh topology is thus preferable for large, dense, and dynamically changing
networks, such as those consisting of mobile motes.

All modules of a WSN mote (i.e., sensor, memory, processor, and transceiver) are
powered by a limited energy storage such as primary or secondary battery cells (Fig-
ure 3e). Their capacity is limited by physical constraints, as the motes are typically
small to ensure tight integration into the target environment. Two Mignon cells (AA
size) occupy about 16 cm3 and may store up to 16 W h when realized as primary cells
with Zinc-Air chemistry (see Figure 6a). A WSN mote with 1 mW average power
consumption can be driven for more than two years from this buffer. To extend the
maintenance-free system lifetime, ambient energy sources such as electro-magnetic ra-
diation, mechanical motion or temperature gradients have to be tapped (Figure 3f).
As shown in Figure 6b, the efficiency of different energy harvesters varies over multiple
decades. While only 5 µW/cm2 can be extracted inductively from the radio signals
emitted by a 4 km distant 1 MW television broadcast tower [Parks2014], 40 µW/cm2
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Figure 6: Characterization of energy storage and harvesting technologies reported by [Wa-
tral2013; Stojcev2009; Parks2014]

can be harvested from a 10 K gradient using a Thermoelectric Generator (TEG). A
Piezoelectric Generator (PEG) integrated in a shoe delivers about 330 µW/cm2 while
solar cells may generate up to 15 mW/cm2 in a sunny environment [Stojcev2009].

As the power supply module determines the physical size of the whole WSN mote,
the mote’s overall energy consumption must be minimized to enable a compact design,
while ensuring the operational life time required by the application. Many well known
general power management techniques could be applied, but often turn out to be
unsuitable in the WSN context. Dynamic Voltage and Frequency Scaling (DVFS)
trades of the execution speed of the computational unit against its power consumption
and requires appropriate hardware support. While most MCUs typically used on WSNs
are able to slow down their clock frequencies by programmable pre-dividers, lowering
the core supply voltage is rarely supported by MCUs (e.g., the TI [CC430]) that already
aim to be low-power in the first place. Due to these limitations, a more common
approach in the WSN field instead uses DPM, i.e., completely shutting down unused
components such as the sensors, the transceiver, or (parts of) the processor. This
is supported by MCUs providing multiple sleep modes, which trade-off wake-up time
against power savings in the deeper states.

DPM must focus on minimizing the active time of the radio transceiver, as the
transceiver draws tens of milliwatts [Akbari2014] and is thus usually the major power
consumer of the sensor node [Jain2015]. To reduce the time spent idly listening, i.e.,
waiting for a message to be received, the in-network time synchronization must be
sufficiently accurate to tightly synchronize the activities of senders and receivers. To
reduce the time spent actually sending (or receiving) messages, the raw data volume
generated by the sensors must be reduced before transmission. In many cases, the WSN
operator often is not interested in the raw sensor data itself, but in certain features that
can be derived from that data. This may be the long term average, the crossing of a
threshold, the position of a tracked object, or the visual recognition of certain patterns.
Even if the feature extraction relies on combining information from all motes, and can
thus not be decentralized completely, more general approaches of data aggregation and
prefiltering such as noise elimination or (lossless) data compression may be applied to
reduce the overall communication demands.
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For low data rate applications such as environmental monitoring, the powered-on
times required for data aggregation (if any), and entering as well as leaving low-power
modes, is negligible compared to the energy required for the actual radio transmis-
sions. A COTS mote based on a low-power, but relatively slow 8 bit or 16 bit MCU is
well suited to these use cases. For applications requiring higher sampling rates, such as
vibration-based SHM, these weak MCUs generally are not able to perform the required
preprocessing within the available sampling interval. On the other hand, more pow-
erful 32 bit processors tend to consume more power than the radio transceiver (e.g.,
570 mW for the [Imote2] processor [PXA270]) thus limiting the benefits of in-sensor
preprocessing. Furthermore, entering and exiting a sub-milliwatt sleep mode takes too
long for these more powerful devices (e.g., more than 135 ms for the [PXA270]) to per-
form DPM in every sampling interval. Active power management on these nodes thus
can only occur when measurements are completely suspended.

2.2 Reconfigurable Computing

Computer architects have to trade-off flexibility and usability against performance
when engineering a new compute unit. General purpose software processors imple-
menting the von Neumann architecture [Neumann1945] consist of a Central Process-
ing Unit (CPU) with attached memories and peripherals, as shown in Figure 7a. The
CPU sequentially retrieves values stored in registers and applies them to an Arithmetic
Logic Unit (ALU), thus executing basic mathematical operation (e.g, addition, multi-
plication, or comparison), or exchanges data between the registers and a component
attached to the data bus. This can be a Random Access Memory (RAM), a Read-Only
Memory (ROM), or another peripheral such as a timer, a coprocessor, or a communi-
cation module. The CPU controller determines the operations to be executed based on
instructions loaded from the memory. In this way, the processor can be configured to
solve any problem by storing an appropriate sequence of instructions into the program
memory. The software processor thus represents the most flexible and easiest-to-use
computer architecture.

This flexibility, however, comes at the expense of a significantly reduced efficiency
in terms of energy consumption, execution speed and silicon area. [Hameed2010] re-
ports a speedup of over 500× and a reduction in energy consumption by more than
700× when implementing (parts of) a video codec by an ASIC instead of a general
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Figure 7: Two basic principles of programmable processor architectures
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purpose software processor. In this concrete case, only 5 % of the energy consumed
by the software processor was actually spent for the arithmetic operations perform-
ing the computation. One reason for the lack of efficiency is the inherently sequential
nature of the software processor, as only a single arithmetic operation can be per-
formed at once. Most signal processing problems, however, can be partitioned into
independent problems that can be solved in parallel. Therefore, processors specialized
for certain application classes tend to include multiple functional units inside the ALU
(e.g., DSPs), provide multi-word buses, registers, and ALUs (e.g., Single Instruction
Multiple Data (SIMD) vector processors), allow for multiple parallel operations per
instruction (e.g., Very Long Instruction Word (VLIW) processors), or even duplicate
the entire CPU resulting in multi-core processors. While these architectures can ex-
ploit parallelism at instruction, data, or task level, the degree of parallelism is fixed at
fabrication time and often does not match the requirements of a specific problem.

The main drawback of software processors is referred to as von Neumann syndrome
[Hartenstein2007] and is caused by the instruction stream hitting the memory wall.
Every operation, arithmetic as well as data transfer, is accompanied by an instruction
fetch from a CPU-external memory. The loading of the address and data bus by
instruction fetches can be avoided by adding a dedicated instruction bus (i.e., the
Harvard architecture [Aiken1946]). However, the performance gap between processing
and memory access speed amounts to about three decades [Patterson2012, Figure 2.2],
and complex cache hierarchies are required to provide the instructions fast enough. On
the other side, these caches increase the energy consumption and the required silicon
area of the processor.

Instead of treating the effects of the von Neumann syndrome (i.e., providing in-
structions faster), its cause (i.e., required instruction fetches at runtime) should be
eliminated. This can be achieved by switching from an instruction stream-driven soft-
ware processor to a data stream-driven flowware processor architecture, as shown in
Figure 7b [Hartenstein2007]. The latter consists of a (systolic) array of hardwired
Processing Elements (PEs), each implementing a (arithmetic) function without (ex-
plicit) instruction fetches. Each PE is fed with the output of an Auto-Sequencing
Memory (ASM) or the results of its neighboring PEs. The results generated by the
systolic array are finally written back to a number of ASMs, which combine a dis-
tributed memory with a Generic Address Generator (GAG). The latter contains a
data counter and a mapping to the appropriate memory addresses. For a given array
of PEs, this mapping determines the overall computed program. Thus, the combined
address sequence of all GAGs in the flowware concept corresponds to the instruction
sequence of the software concept.

While these data stream processors do not suffer from the von Neumann syndrome,
and provide inherently parallel arithmetic, they cannot be regarded as general purpose
processors. They are best suited for certain compute-bound regular problems such as
convolution, correlation, or matrix multiplications [Kung1982]. To allow for more flex-
ibility, a second level of programmability must be introduced below the flowware level.
Instead of using hardwired PEs and inter-PE connections, CGRAs provide mechanisms
to reconfigure the behavior of each PE as well as the PE interconnection. This recon-
figurability can be achieved by means of programmable switches, multiplexers, Lookup
Tables (LUTs), or microcode memories (if the PEs themselves are implemented as tiny
software processors). In any case, a number of bits has to be written to a dedicated
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configuration memory inside the Programmable Logic Device (PLD). This bitstream
is sometimes referred to as configware [Hartenstein2007].

CGRAs are only one possible realization of an RCU. One of the first conceptual
descriptions of reconfigurable computing was proposed by [Estrin1960] as an

[...] inventory of high speed substructures and rules for interconnecting them
such that the entire system may be temporarily distorted into a problem
oriented special purpose computer.

Depending on the granularity and the realization of these substructures, their density
as well as the interconnection and routing complexity, different types of PLDs can be
distinguished [Kesel2009, Section 3.7]. As shown in Figure 8, the Simple Programmable
Logic Devices (SPLDs) realize (multiple) boolean functions in a two stage approach
derived from their disjunctive formulation (i.e., sum of products). The Programmable
Read-Only Memory (PROM) realization shown in Figure 8a provides reconfigurable
switches only in the second stage (i.e., the OR matrix). Each output function is
thus realized by its minterm canonical form, which potentially requires many closed
switches in the OR matrix resulting in a high leakage current. To allow for logic
minimization within each and between multiple output functions, a Programmable
Logic Array (PLA) provides configurable switches in both stages, as shown in Figure
8b. The larger number of switches and inputs per logic gate increases the IO-delay
and the required silicon of the PLA. As a countermeasure, the Programmable Array
Logic (PAL) eliminates the programmability from the OR matrix as shown in Figure
8c, thus still allowing for some logic minimization without the full overhead of a PLA.

Recent PAL devices like the [TIBPAL22V10] support up to 22 inputs and 10 outputs,
which are sufficient to realize small decoders or (parts of) state machines. Increasing the
number of inputs to support more complex functions is not practical due to the rapidly
growing complexity and delay of the switch matrix. Instead, multiple SPLDs are
combined with some storage and feedback elements as well as advanced Input/Output
(IO) drivers over a central interconnect to form a Complex Programmable Logic Device
(CPLD). The largest device of the Xilinx [CoolRunner-II] family (i.e., XC2C512)
provides 32 PLAs, each supporting 40 inputs and 16 outputs. CPLDs are thus well
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Figure 8: Simple Programmable Logic Devices realizing boolean functions
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suited to implement small cost-effective controllers for memories and other peripheral
components [CPLDAPP].

While boolean functions with tens of inputs are the basic reconfigurable units of
CPLDs, Field Programmable Gate Arrays (FPGAs) are fine-grain reconfigurable.
Their smallest functional units are Logic Cells (LCs) including at least a small LUT,
a clocked Flip-Flop (FF) and a programmable multiplexer, as shown in Figure 9a. A
LC can thus either realize a simple boolean function or a one bit register. Some ven-
dors add additional logic like full-adders and dedicated carry chains into their LCs to
enable more efficient implementations of complex arithmetic operations. Furthermore,
the LUT sometimes can be reused as shift-register or distributed RAM, if it is not
used to realize a boolean function. The LCs are arranged in a regular array and inter-
connected by some routing resources, thus constituting the FPGA fabric, as shown in
Figure 10. Those interconnects may span the whole FPGA (e.g., for distributing global
clock and reset signals), or only a few LCs. Programmable Switch Matrices (SMs) at
the junctions of these routing resources consist of six transistors (per junction), as
shown in Figure 9b. Each lane is thus connectable to each subset of the three other
lanes of the junction.
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Besides the LCs, a number of Input/Output Blocks (IOBs) is attached to the routing
infrastructure to interface off-chip peripheral components. As shown in Figure 9c, each
IO-Pad (P) can be used as input or output, or be driven to high-impedance (Z) to
support the implementation of bus protocols. In practice, most IOBs can be configured
for different IO standards (i.e., voltage levels, slew rates, differential signaling). Finally,
hardwired Functional Blocks (FBs) are connected to the FPGA fabric to reduce the
number of logic resources required for some common functionality. This includes Block
RAMs (BRAMs), DSP operators, clock conditioning modules like Phase Locked Loops
(PLLs), fast serial transceivers, or even complete software processors.

Just as no software engineer manually generates a binary instruction stream to imple-
ment a certain algorithm, the bitstream required for an FPGA design is also generated
by a toolchain from a high-level representation of the algorithm. Figure 11 shows the
tools required to transform the design through four different levels of abstraction. At
the system level (Figure 11a), the design entry and verification processes do not dif-
fer significantly from a software engineering tool flow. The resulting C, SystemC or
even [MATLAB] models are then converted to the Register Transfer Level (RTL) by
High-Level Synthesis (HLS) tools such as the proprietary Xilinx [Vivado-HLS] or the
open source [ROCCC] compiler. These tools can trade-off execution speed against the
number of required logic resources for the resulting hardware by constraints, e.g., for
loop unrolling, pipelining, operator folding, and the required operator-specific numeric
precision at a granularity of 1 bit.

At the RTL shown in Figure 11b, the design is described by Hardware Description
Languages (HDLs) such as Verilog or the Very High Speed Integrated Circuit Hardware
Description Language (VHDL) in terms of concurrent and sequential operations on
signal paths between synchronized registers. The major HDL concepts comprise the
structural description of a module hierarchy as well as behavioral descriptions required
to model a synchronized data flow. Besides generating HDL modules manually or
by the HLS approach, Intellectual Property (IP) catalogs and core generators provide
complete modules for many applications domains. To verify the design, a testbench is
generated at the RTL. According to the Universal Verification Methodology [UVM], the
testbench applies stimuli to the module under test and observes the resulting behavior.

(a) System Level (b) Register Transfer Level (c) Gate Level (d) Transistor Level
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Figure 11: FPGA tool flow transforming resources between different abstraction levels
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After the behavioral verification succeeded, the RTL model is transferred to the gate
level (Figure 11c) by synthesizing a list of interconnected gates and registers called
the netlist. Therefore, the synthesis tool first compiles the hardware description into
a set of boolean functions. To implement these functions, the subsequent technology
mapping selects the appropriate gate primitives directly realizable by the LCs or FBs
of the targeted FPGA architecture. Constraints on the achievable clock frequency or
the automatic inference of memories and DSP macros can steer this process. The
functional verification of the gate level netlist can be driven by the same testbench
used at the RTL.

Finally, the gates, registers, and macros of the netlist are assigned to dedicated LCs
and FBs inside the target device and interconnected with dedicated routing resources.
This Place and Route (PAR) process is controlled by user-defined pin assignment and
floorplanning constraints to determine which signal to attach to which physical pin,
or to limit the maximum delay between certain gates. After the PAR step, all gate
and wire delays of the design can be estimated appropriately and are summarized in
the Standard Delay Format (SDF), thus allowing for a timing verification after the
Back Annotation (BA) of the netlist. Afterwards, the bitstream can be generated. It
may also be compressed and encrypted. This bitstream is programmed into the target
device for the final in-field verification at the transistor level (Figure 11d).

With decreasing abstraction level, the transformation tools report increasingly pre-
cise estimations of the required logic resources and achievable execution speed of the
design. As the low-level tools require detailed knowledge about the targeted FPGA
architecture, the synthesis, implementation, and programming steps are typically in-
tegrated into a vendor specific design environment such as the Xilinx [Vivado], Altera
[Quartus], Microsemi [Libero-SoC], or Lattice [iCEcube]. In addition, those Integrated
Development Environments (IDEs) typically provide the appropriate simulators, graph-
ical constraint editors, and toolchains for the software-processors integrated into the
devices.

Table 1 lists some implementation details of different FPGAs. Their performance can
not be judged solely by the amount of LCs, as the number and size of LUTs and FFs
per LC varies across different architectures. Furthermore, no common terminology
has been established, so each vendor uses another designation for the basic LC and

Vendor Xilinx Altera Lattice Microsemi
Market Share 52 % 34 % 6 % 3 %
Architecture [UltraScale] [7-Series] [HyperFlex] [iCE40] [IGLOO] [Axcelerator]
CMem Type SRAM SRAM SRAM SRAM+NVM Flash Antifuse
Name for LC Slice Slice ALM LC VersaTile Cluster
LUTs per LC 8 (6×1 4 (6×1 1 (7×1) 1 (4×1) 1 (3×1) 2 (5×1)

(in×out) or 5×2) or 5×2) or 2 (4×2)
FFs per LC 16 8 4 1 1 1

Largest Device VU440 XC7V2000T GX5500 HX8K AGL1000 AX2000
LCs 316 620 305 400 1 867 680 7680 24 576 10 752
IOs 1456 1200 1640 206 300 684
BRAM 90 720 kbit 46 512 kbit 170 356 kbit 128 kbit 144 kbit 288 kbit
DSP Blocks 2880 2160 1980 - - -
PLLs 60 24 58 2 1 8

Table 1: Market share [TMR2015-FPGA] of leading FPGAs vendors and logic resources
provided by some of their devices
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super structures, such as the Xilinx Configurable Logic Block (CLB) clustering one
to four slices with dedicated interconnects, or a Xilinx tile which contains a CLB and
its surrounding routing logic. Although most datasheets specify some architecture
independent measure to rate the available logic resources (e.g., equivalent LCs, LEs,
or system gates), the usability of these metrics is quite limited as each vendor uses its
own reference value.

Another important difference between the various FPGA architectures shown in Ta-
ble 1 is the type of the Configuration Memory (CMem) used to store the configuration
bitstream. SRAM is typically used for this purpose (76 % market share [TMR2015-
FPGA]), as it can be written quickly and at the granularity of a single bit, thus allowing
for (partial) dynamic reconfiguration at runtime. However, SRAM is volatile and the
bitstream thus has to be provided by an FPGA-external entity to be programmed into
the FPGA each time the FPGA is powered up. Due to dedicated memory controllers
inside the FPGA, an additional off-chip NVM often is sufficient to provide the bit-
stream. Some architectures like the Lattice [iCE40] actually include this NVM into the
FPGA die next to the CMem. The time required for the configuration process varies
due to bitstream compression and optional encryption, but several 100 ms are realistic
for the larger devices (e.g., of the Xilinx [7-Series]). Instead of using an additional NVM
from which the bitstream is copied, the CMem itself can be realized as non-volatile
flash (21 % market share) or antifuse (3 % market share) memory. The non-volatile
NVM significantly increases the time and power required for the configuration process
(up to several minutes). Once programmed before the deployment, the devices can
start operating immediately after the power-up sequence. This feature is essential for
mobile applications relying on DPM. In contrast to the flash memory, antifuses can
only be programmed once by physically melting down isolation between the endpoints
of connections. They are thus not appropriate for prototyping applications.

As shown in Table 1, the logic density of the available devices ranges from a few
thousand to a few million LUTs and FFs. In combination with the different CMem
technologies, a wide variety of applications can thus be targeted. In general, FPGAs
are preferable, if the performance or efficiency (speed or energy consumption) of a
software processor is not sufficient, and either the product volume is too small to jus-
tify the non-recurring engineering costs (NRE) of an ASIC design, or the implemented
functionality is expected to significantly change throughout the product lifetime (e.g.,
for use cases such as prototyping boards, general purpose High-Performance Com-
puting (HPC) engines, or communication/encryption/encoding modules updatable to
revised standards). The most relevant market segments for FPGAs are telecommunica-
tion (33 %), industrial (21 %) as well as automotive (17 %) applications, and consumer
electronics (12 %) [TMR2015-FPGA]. After Intel bought Altera in June 2015, FPGA
technology can be expected to offer an alternative to CPUs and Graphics Processing
Units (GPUs) in data center applications, with the aim to significantly reduce the
energy consumed by server farms for the fast growing big data analytics and cloud
computing markets [Putnam2015].
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CHAPTER 3
Related Work

Before detailing the contributions of the thesis, this chapter summarizes relevant related
research. The review covers the evolution of WSN mote hardware architectures, as well
as specific WSN applications and services. The emphasis is placed on compute-intensive
tasks and their hardware-accelerated implementation.

3.1 Wireless Sensor Network Motes

Driven by technological advances and application-specific optimization, a large va-
riety of WSN motes have been developed as research prototypes in recent years.
Some of these architectures have also become available as COTS devices. Table 2
details the processing and communication elements of some sample WSN motes. Fo-
cusing on hardware-accelerated node architectures, this review summarizes software-
programmable motes only briefly. A more comprehensive overview can be found in
[Lynch2006; Piedra2012].

This discussion is related to the architectural design considerations detailed in Chap-
ter 4. It already has been partially published in [Engel2015c].

3.1.1 MCU-Based Motes

The probably most widely adopted WSN motes were developed at Berkeley. While the
Mica mote [Hill2002] is based on an 8 bit AVR MCU, the Telos mote [Polastre2005]
is driven by a 16 bit MSP430 processor. Both were redesigned to meet the latest
LR-WPAN standard and are now available as COTS devices from MEMSIC as [MicaZ]
and [TelosB].

The Libelium [Waspmote] provides the same processing capabilities as the Mica
family, but its modularized radio subsystem can be adapted to Near Field Commu-
nication (NFC), LR-WPAN, WPAN, WLAN, or even cellular networking. The same
flexibility is provided for the sensor subsystem, as more than ten sensor modules for
different applications are available.

For more compute-intensive applications like digital image processing, the MEMSIC
[Imote2] provides a 32 bit ARM processor. As the platform draws about 1 mW when
sleeping and 100 mW when active, its application requires a sufficiently strong power
supply.

From the huge variety of WSN prototypes proposed by different research groups,
the following three examples stand out in the SHM domain. The SHiMmer mote
[Dondi2010] utilizes a Blackfin DSP and is thus well suited for high performance digital
filtering. It is actually used for ultrasonic SHM with 25 MHz sampling. The power
drawn by this mote can be expected to be even larger than for the [Imote2], but details
are not provided by [Dondi2010].

Another WSN mote specialized for SHM applications is proposed by [Araujo2012].
It employs two MCUs to separate the controlling of the sensor and the radio inter-
face. In addition to this heterogeneous processing, the mote also uses heterogeneous
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Table 2: Examples of WSN motes with focus on FPGA-based architectures
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communication. A secondary LR-WPAN transceiver is dedicated to wireless time syn-
chronization, while raw sensor data is transferred by the faster (but mote power hungry)
WLAN transceiver. Again, no power consumption details are reported by [Araujo2012].

The NFC-Wireless Identification and Sensing Platform (WISP), proposed by
[Zhao2015] for cold chain monitoring, is located on the other side of the power and
performance spectrum. It is powered by and communicating via an Radio-frequency
Identification (RFID) circuit and requires 369 nJ per temperature sample.

3.1.2 ASIC-Based Motes

At the beginning of the WSN research, no discrete sensing, processing and communi-
cation ICs were available. Early devices like the WINS architecture [Asada1998] were
thus completely designed as ASICs.

Nowadays, ASICs are integrated as specialized hardware accelerators to speed-up a
small, yet critical part of the DSP chain in a WSN processor. [Walravens2014] proposed
an ASIC for parallel prefix computations, that can be used, e.g., for searching elements,
detecting peaks, or evaluating polynomials.

Due to their lack of flexibility and high NRE costs, ASICs are not a viable option
for a research prototype, and are thus not reviewed here in greater detail.

3.1.3 RCU-Based Motes

As stated in Section 2.2, RCUs can perform complex computations more efficiently than
MCUs and DSPs. In real-time applications, the use of RCUs often enables computa-
tions that cannot be performed by MCUs or DSPs at all under the given constraints.
Table 2 distinguishes between FPGAs based on volatile and non-volatile configuration
storage, as these device classes seriously differ in terms of computing power and energy
consumption.

SRAM-based FPGAs are attractive for use in sensor nodes performing compute-
intensive applications, such as video and image compression and analysis. While the
RecoNode [Voyles2010] utilizes the visual information in search and rescue applica-
tions, [Shahzad2014] describes a visual particle detection mechanism for a condition
monitoring system. Another hardware accelerator used for chemical process moni-
toring is proposed by [Goh2012]. Other researchers employ the FPGA to accelerate
application-independent WSN tasks like the sensor controllers [Yi2013], the routing
protocol [Mplemenos2012], or the entire radio interface including fast data forwarding
in a multi-transceiver architecture [Kohvakka2006].

However, the energy efficiency of the proposed architectures is rarely addressed by
these authors. [Raval2010] reports an 48 % energy reduction when accelerating an 8 bit
AVR softcore processor by instruction fusing based on application-specific instruction
tracing. A direct comparison against a discrete (i.e., hardwired) processor is still miss-
ing. The main problem of the SRAM-based FPGA hardware accelerators, i.e., the time
required to load the configuration again after each low-power cycle, is quantified by
[Shahzad2014]. The authors state that shutting down and reconfiguring a Spartan 6 de-
sign instead of just entering the suspend mode is worthwhile only after a sleep period of
at least 235 ms. DPM within each sampling cycle is thus not reasonable for this device
in compute-intensive applications with sampling frequencies of several hundred hertz.
To actually reduce the energy overhead of the reconfiguration process of SRAM-based
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FPGAs, [Lombardo2012] proposed to manually relocate logic resources such that the
bitstream is more compressible. For a specific application, a 2.4× reduction of the
reconfiguration overhead was reported.

Nevertheless, when energy actually becomes a first-class design goal, non-volatile
FPGA accelerators are far more suitable. Sensor nodes using a combination of a Flash-
based Microsemi IGLOO FPGA and a wireless transceiver have been proposed [Vera-
Salas2010; Stelte2010; Nylaenden2014]. However, despite the power advantages of
Flash configuration storage, these implementations have turned out to be sub-optimal:
All processing is performed on the RCU (even long-term low-intensity tasks), and when
powered down, the radio transceiver is required to wake up the FPGA again. Thus, at
least one of the two power-hungry devices, either the FPGA or the transceiver, has to
be enabled all the time. Even refinements which use very simple timekeeping on the
RCU, such as employing inverter ring-based oscillators [Grassi2012] to power up the
receiver periodically at pre-agreed times for data reception, are still sub-optimal: Due
to the large timing inaccuracy (drift) of these oscillators, the power-down phases have
to be conservatively shortened, leading to the system drawing higher power for longer
intervals.

A better choice is a heterogeneous architecture combining an RCU and a low-power
MCU. The Cookie WSN [Rosello2011] and the PowWow [Berder2010] have joined
a small Microsemi IGLOO FPGA with a TI MSP430 MCU and an additional radio
transceiver. However, both systems utilize the FPGA only for low-level handling of
radio messages, instead of preprocessing the sensor data stream. Furthermore, the use
of discrete MCU and radio components carries the burden of slower communication
between processor and transceiver, as well as a more complex power management. In
Section 4.1, the usage of an RF-SoC next to a Flash-based FPGA is examined in greater
detail.

3.2 Common Wireless Sensor Network Services

In this section, existing research related to the modules and services presented in
Chapter 5 and 6 are summarized. Parts of this review have already been published in
[Engel2014a; Engel2014b; Engel2015a].

3.2.1 Lossless Data Compression

While generic data compression is applicable to almost all kinds of sensor data, more
specialized methods such as compressive sensing [Donoho2006] assume highly specific
properties in the input signals and are not addressed in this work.

Data compression in WSNs was investigated frequently in the last decade
[Kimura2005]. For example, an LZW-compressor was implemented on an [MSP430]
MCU to analyze the effect of reduced data rates on the end-to-end packet delay in a
multi-hop network [Deng2012]. The energy savings achievable by a nonlinear ADPCM
running on the ARM processor of a Beagle Board were investigated in [Kasirajan2012].
However, these authors erroneously considered the achieved compression ratios directly
as energy savings, completely ignoring the energy required for the encoding itself. This
gross simplification was not used in [Reinhardt2009], where run-length and adaptive
Huffman encoding were implemented on the AVR MCU of a [Mica2] mote. The energy
for encoding was determined solely by simulations and datasheet-specifications, using
just synthetic data streams with guaranteed statistical properties as inputs.
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Hardware-accelerated data compression in context of WSNs focused mainly on lossy
image compression in visual surveillance networks, such as the JPEG compression on
an Altera EP2C35 FPGA [Zhiyong2009], or the identification of relevant image sections
using a Xilinx Virtex II FPGA [Ngau2012]. In addition to not compressing losslessly,
these investigations aimed at reducing the required data rate to the throughput limits
of the wireless transmission channel, instead of minimizing the overall system energy
consumption. The acceleration of a second order ADPCM compressor on a Xilinx
XC4000 device was proposed in [Boonyakitmaitree2004], but did not report any energy
requirements.

3.2.2 Network Flooding

Congestion-induced packet loss leads to throughput degradation in WSNs and often
requires energetically expensive retransmissions. Though collisions can be avoided by
Carrier Sense Multiple Access (CSMA) mechanisms, the required carrier-sensing also
increases the energy consumption of the sensor nodes. Therefore, routing protocols
have a significant impact on distributed applications relying on multi-hop wireless
communication. The number of nodes involved to deliver information (a data item)
from a source to a sink influences the overall energy consumption of the network, as
well as the data throughput. Often, shortest routes cannot be easily discovered, or are
undesirable (e.g., when balancing communication load equally over all network nodes,
or to provide robust communication over redundant paths). In general, application-
tailored routing protocols can exploit special characteristics to improve throughput and
energy consumption.

In Section 6.1, a multi-source flooding mechanism is proposed to distribute infor-
mation from at least two sources to all network nodes at the same time. Flooding
information into a WSN has been widely adopted for general tasks such as time syn-
chronization [Maroti2004; Gheorghe2010; Xu2009] or route discovery [Perkins1999].
However, basic blind flooding is quite inefficient, especially in dense networks, as each
receiver rebroadcasts the message to be distributed [Ni1999]. Intensive research has
been carried out to reduce the number of necessary rebroadcasts. Prior work commonly
utilizes knowledge about the nodes locations [Arango2004; Jeong2010] or their local
neighborhood [Sheng2005; Lim2001; Lou2002; Agathos2011] to select the forwarding
nodes covering the most yet uncovered network nodes. However, all of these flooding
protocols assume a 1-to-all data propagation. Unfortunately, unlike physical water or
acoustic waves, multiple data waves originating from different source nodes interfere
with each other due to channel congestion and signal interferences, such as the hidden
terminal problem [Wang2012].

Furthermore, the information from multiple sources should be aggregated as soon
as possible to avoid repeated data transfers between the same nodes. Many data
aggregation and clustering protocols have been reported [Alnuaimi2013]. By selecting
specific nodes as cluster-heads, data is collected locally before it is forwarded to a single
sink node. The basic idea of clustering is picked up in the design of the greedy heuristic
in Section 6.1.3.

As described in Section 6.1, network routing can be considered as finding a proper
transceiver schedule, such that information travels along the links between simultane-
ously scheduled transmitters and receivers. Using ILPs to solve scheduling problems
is a widely adopted approach. In the WSN context, ILPs were used, e.g., for fre-
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quency channel assignment [Ahmed2010], task scheduling [DePauw2010], and routing
[Hoa2012]. The later one is closely related to the mechanism proposed in Section 6.1,
as it generates the ILP formulation based on a directed graph representing the network
topology. The ILP solution proposed in [Hoa2012] describes a multi-cycle schedule for
transmissions and receptions with a minimal amount of overall required energy. How-
ever, as the schedule is used to transport information from multiple source nodes just
to a single sink, it does not perform flooding. Furthermore, it does not provide in-
formation aggregation, and does not consider the transmission ranges and interference
between the radio transceivers. All of these aspects are considered in Section 6.1.

3.2.3 Wireless Time Synchronization

Wireless time synchronization aims to compensate the clock deviation between all
sensor nodes, which are caused by the different start-up times and the slightly different
frequencies of the sensor node’s oscillators. Energy-efficient synchronization protocols
reduce the communication overhead for synchronization-related timestamp exchanges
by estimating the clock drift between different nodes at runtime.

A large variety of wireless time synchronization protocols has been proposed in
the last decade [Djenouri2014], with only a few of the employed clock drift esti-
mators not being based on a least squares linear regression. The R4Syn protocol
[Djenouri2012] uses a Maximum-Likelihood-Estimator, which imposes nearly the same
computational complexity as the least squares method. In contrast, the Kalman filter
used in [Aoun2008] can be executed 10 % faster than a linear regression with a table size
of two. However, for synchronization periods of up to 10 s, the average synchronization
error of the Kalman filter proved to be larger than for the linear regression-based clock
drift estimator.

The Flooding Time Synchronization Protocol (FTSP) [Maroti2004] has become one
of the most popular reference implementations for high precision synchronization pro-
tocols. It performs the clock drift compensation with a linear regression over the last
eight synchronization points, but without justifying the selected regression table size.
Furthermore, no details about the regression implementation or its resource require-
ments are provided. At a 30 s synchronization period, FTSP achieves an average clock
jitter of 1.5 µs.

Several improvements of the FTSP have been suggested. In [Castillo-Secilla2013],
a temperature-dependent correction factor is introduced to respond faster to
temperature-induced clock drift variations. The authors report an average accuracy of
1.1 µs after a 20 K temperature variation at a single node. The Recursive Time Synchro-
nization Protocol (RTSP) [Akhlaq2013] is also based on FTSP, but it uses automatic
Medium Access Control (MAC) timestamping, i.e., the timestamps corresponding to
the transmission or reception of the IEEE [802.15.4] start of frame delimiter (SFD) are
captured by the radio transceiver without software intervention. Furthermore, RTSP
dynamically adjusts the synchronization period depending on the current clock drift
and accuracy at each node. The average accuracy was improved to 0.3 µs, even when
restricting the regression table to two entries to simplify the computational effort for
the clock drift estimation.
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3.3 Compute-Intensive Wireless Sensor Network Applications

This section provides an overview of WSN applications targeted by this thesis. It is
thus related to the use cases described in Chapter 7. Parts of this review have already
been published in [Engel2015c]. A more comprehensive and general overview of WSN
applications can be found in [Yick2008; Rawat2014].

As outlined in Section 1.2, the applications targeted by this thesis have to pro-
vide sufficient potential for node-local computation while running at fixed sampling
rates of a few hundred hertz. The demand for in-sensor computation can arise from
application-independent services such as encryption, which are not addressed by this
review. Instead, the focus here lies on application-specific feature extraction from
different application domains.

3.3.1 Condition Monitoring

Condition monitoring systems observe relevant runtime parameters of industrial pro-
cesses and machinery for early fault detection and predictive maintenance. Most ap-
plications observing acoustic signals or structural vibrations require sampling rates of
several thousand hertz, such as the 50 kHz bearing fault monitoring described in [Ny-
laenden2014]. The authors propose to either calculate a Root Mean Square (RMS)
value in the time domain, or to detect and classify peaks in the frequency spectrum.
For the latter, a hardware-accelerated 256 point radix-2 FFT is applied for the time-
to-frequency domain transformation. A similar approach is reported by [Shahzad2014]
for the 100 kHz monitoring of a rotating machinery.

Both systems far exceed the range of sampling rates targeted in this work. In con-
trast, the monitoring of induction motors based on current flow measurements are less
demanding, as the relevant physical phenomena to be observed are located close to
the power line frequency (e.g., 50 Hz). [Philipp2012] used a Zoom-FFT to detect peaks
slightly off from the power line frequency to detect broken bars inside an induction mo-
tor. To capture other faults such as dynamic eccentricity [Philipp2012] or inter-turn
short circuits [Martinez2013], sampling rates of up to 10 kHz are still required.

3.3.2 Structural Health Monitoring

SHM systems observe global dynamic properties (e.g., eigenfrequencies) of large in-
frastructure objects, such as bridges, poles, or buildings. Compared to the condition
monitoring applications, the observed structures are larger and the relevant (sampling)
frequencies thus considerably smaller (below 1 kHz). SHM applications thus better fit
the DPM requirements of the heterogeneous WSN mote proposed in this thesis.

WSNs have become popular for SHM in the last decades [Lynch2006]. Several re-
search groups have equipped a number of bridge structures with wireless sensor net-
works, ranging from small models with artificial excitation [Bocca2011], over medium-
size pedestrian bridges [Battista2013], up to large automotive traffic bridges [Chae2012;
Hu2013; Kim2007; Cho2010; Pakzad2008].

[Kim2007; Pakzad2008] installed 64 [MicaZ] motes (see Table 2) on the 1280 m main
span of the Golden Gate bridge in the San Francisco bay. Each mote was equipped with
two high precision and two wide range micro-electro-mechanical (MEMS) accelerome-
ters to capture different excitation scenarios (e.g., traffic, wind, and earthquakes). The
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nodes were synchronized with the FTSP [Maroti2004] resulting in a maximum jitter
of 10 µs in the 46-hop network. The sensor data captured at 1 kHz are down-sampled
to 50 Hz by averaging, and logged to an external flash memory afterwards. The au-
thors report an average power consumption of 358 mW for this sensor sampling. After
about 22 min measurement, the raw sensor data is collected at a central gateway, which
takes more than 12 h for all 64 network nodes. Finally, an offline system identification
is carried out and the resulting eigenfrequencies and mode shapes are compared to
theoretical models of the bridge. The first vertical bending and torsional modes were
detected with a relative error of 10 % and 19 % respectively.

[Bocca2011] instrumented a 4.2 m long wooden bridge model with 8 [MSP430]-based
WSN motes, each equipped with a 3-axis MEMS accelerometer with a resolution of
16 bit and a dynamic range of ±2 g. A clock skew-compensating synchronization proto-
col was used to keep the temporal jitter between the nodes below 5 µs. While exciting
the bridge model with random noise generated by an electro-dynamic shaker, the ac-
celeration sensors captured the movement of the structure at 200 Hz sampling rate.
During each 60 s measurement period, the acquired samples are buffered in an external
flash memory for later readout without any preprocessing or data aggregation. The
authors report problems with lost samples (due to the narrow write throughput of
the external memory) and an overall energy consumption of 3.2 J for data sampling,
buffering and final transmission. This equates to an average power consumption of
53 mW during the 60 s measurement periods. Finally, the gathered data is used for an
offline system identification. Compared to a wire-bound reference system, the first 14
structural modes were identified with a maximum error of 1.035 %.

[Chae2012] installed 45 motes based on 8 bit AVR MCUs on a 550 m suspension
bridge. Each mote was equipped with two different accelerometers, i.e., a high precision
force-balance sensor for capturing the truss vibration and a low-power MEMS sensor
for capturing cable tension. Both sensors were sampled at 60 Hz and the resulting
data was directly transmitted to a base station without any data aggregation. The
authors reported packet loss problems caused by high data throughput required for
transmitting the unprocessed data. Finally, an offline system identification was carried
out, but the comparison with a wire-bound reference system consisting of 360 sensors
failed due to broken links caused by cable fatigue.

[Hu2013] instrumented a 296 m highway bridge with 6 [MSP430]-based WSN motes.
Each mote was equipped with a high resolution (2 mg) MEMS accelerometer sampled
at 100 Hz. The network uses an energy-balanced time synchronization, which claims to
achieve a maximum jitter of 10 µs. Again, the sampled data was collected in an exter-
nal memory for each 250 s measurement period, and than transmitted to a central base
station without preprocessing. The authors report an average power draw of 290 mW
during sampling and data transmission. After an offline-analysis of the gathered data
based on multivariate autoregressive models, the detected eigenfrequencies were com-
pared to theoretical models of the bridge. Between 4 % and 18 % difference between
the detected and the expected eigenfrequencies was reported.

Except some simple down-sampling, none of the aforementioned monitoring systems
is based on compute-intensive in-sensor data aggregation. In contrast, the Illinois
SHM project [Cho2010; Battista2013] is based on the powerful [Imote2] system (see
Table 2) for complex in-sensor computations. [Cho2010] monitored a 484 m cable-
stayed span bridge with 70 nodes, each equipped with MEMS acceleration sensors.
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A complete decentralized Operational Modal Analysis (OMA) is performed based on
Frequency Domain Decomposition and Stochastic Subspace Identification. However,
also measuring only 5000 samples per day with a sampling rate of 10 Hz, the power-
hungry ARM processor depleted a 21 A h battery in less than two months.

Based on the same WSN platform, [Battista2013] monitored a 120 m pedestrian
bridge with 8 nodes, each sampling a MEMS accelerometer at 100 Hz. The sampled
data is analyzed immediately based on a Filtered Hilbert-Huang Transformation, which
itself is a combination of modal separation, bandpass filtering, and the Random Decre-
ment Technique (RDT) described in Section 7.3.1. The authors report an overall data
reduction of 96 %. At an operational duty cycle of 33 % (i.e., 10 min measurement every
30 min, a 15.6 A h-Li-Ion battery depleted after 14 days. This equates to an average
power draw of 172 mW from the 3.7 V supply.

These research projects show that SHM applications typically require sampling rates
of several hundred hertz, as targeted by this thesis. Furthermore, algorithms for effec-
tive in-sensor data aggregation exist, but they have been rarely used so far - probably
due to the required computational power of the WSN mote.
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CHAPTER 4
HaLoMote: Hardware-Accelerated Low Power Mote

This chapter details the architecture and implementation of the developed heteroge-
neous sensor node, the communication infrastructure connecting the computational
units, as well as the power management capabilities of the platform. Parts of this
chapter have already been published in [Engel2012a].

4.1 Architecture Overview

In Section 2.2, the trade-off between the flexibility of general purpose software pro-
cessors and the energy- and runtime-efficiency of application-specific processing archi-
tectures was described. Providing application-specific hardware accelerators for the
compute-intensive distributed data aggregation algorithms described in Section 3.3
should thus improve the computation vs. communication trade-off, and reduce the
energy consumption of the overall WSN mote. Apart from a few high volume WSN
applications such as smart homes, ASIC-based hardware accelerators are not viable
for COTS motes that have to be adaptable to a specific application at the time of
deployment or even at runtime. Therefore, this work examines the use of RCUs as
hardware accelerators for WSNs.

To integrate an RCU into a WSN mote, the design options for the computation
and communication architecture shown in Figure 12 have to be traded-off against each
other. As an RCU typically does not provide wireless communication capabilities, at
least a radio transceiver must be attached (Figure 12a). These transceivers implement
the physical layer (e.g., carrier frequency, symbol modulation) and part of the MAC
layer (e.g., channel sensing, address filtering, error checking), and provide a limited
message buffer that can be accessed by a digital interface. All other tasks of the
radio protocols (e.g., multi-hop routing, transport control) must thus be handled by
the RCU. As these are typically rather simple and sequential control flow-dominated
algorithms, waking up the RCU just to handle the radio protocol would not be energy
efficient. For the same reason, handling the radio stack on a softcore MCU inside the
RCU (Figure 12b) should be avoided.
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Figure 12: Design options for the computation and communication architecture
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When adding a dedicated MCU (Figure 12c) for all low priority tasks such as the
radio protocol, basic timekeeping, and the top-level control flow of the application (e.g.,
periodic sensor sampling), the platform can exploit its heterogeneity by selectively
shutting down temporarily unused computation and communication units. This basic
DPM principle is also applicable when the radio transceiver and the low-power MCU are
integrated into a single device (Figure 12d), as these RF-SoCs allow to suspend either
of both units separately. Compared to Figure 12c, the combination of an RCU and
an RF-SoC improves the data throughput between the hardware accelerator and the
wireless transceiver, as more of the limited number of MCU GPIO pins can be dedicated
for the inter-processor communication instead of being required for the communication
between the MCU and the transceiver. Therefore, the heterogeneous sensor node
developed in this thesis is based on the architecture shown in Figure 12d.

A second fundamental architectural design choice deals with the attachment of digi-
tal sensors (or analog sensors with a downstream ADC) and additional memory, often
required to temporarily buffer raw or aggregated sensor data. Attaching both peripher-
als to the RF-SoC (Figure 13a) allows to collect the number of samples required for the
data aggregation algorithm without ever waking up the hardware accelerator. However,
the entire stream of sensor data has to be transferred over the critical link from the
RF-SoC to the RCU to be aggregated. As the throughput between the processing units
is further limited by the RF-SoC requiring General Purpose Input/Output (GPIO) pins
to interface the sensors and the memory, the transfer of the raw data stream becomes
the bottleneck of the architecture.

This bottleneck can be mitigated by a shared memory used for the inter-processor
communication (Figure 13b and 13c), either by utilizing a dual-port memory, or by
synchronizing the memory access of both processors via the remaining direct connec-
tions between RCU and RF-SoC. While dual-port memory is typically more expensive
than a single-port memory (in terms of chip cost and energy consumption), it enables
more parallel operations on the heterogeneous platform such as transmitting one block
of the aggregated data while generating the next block. The shared memory approach
is most valuable if the sensors are attached to the RF-SoC (Figure 13b) and the data
aggregation can be performed on larger blocks of the raw sample data, so the RCU can
be kept sleeping until the next block is collected.

However, the sensors may have to be attached to the RCU (Figure 13c and 13d) if the
RF-SoC does not have enough GPIO pins to control all peripherals, e.g., if the sensors
can not be daisy-chained, or connected to a common bus. Furthermore, many event
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Figure 13: Design options for attaching sensors (S) and memories (M) to the compute units
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detection applications require an immediate processing of the sensor data to minimize
the detection delay. In these cases, only the aggregated data stream has to pass the
bottleneck from the RCU to the RF-SoC. A dedicated shared memory between both
computational units is thus not required and the architecture of Figure 13c is not
useful.

From the remaining two reasonable architectures (Figure 13b and 13d), the latter
was chosen as the foundation of the HaLoMote: With all peripherals being interfaced
by the RCU, the HaLoMote supports a broad range of applications with different sensor
and memory requirements. This flexibility is essential for the design space exploration
targeted by this work.

4.2 HaLOEWEn Implementation

After evaluating two proof-of-concept HaLoMote implementations based on composing
discrete evaluation boards for RCU and RF-SoC, a third revision was designed in coop-
eration with the Microelectronic Systems Research Group at the Technical University
Darmstadt [Philipp2011]. Figure 14 shows the main components of this board called
Hardware-Accelerated Low Energy Wireless Embedded Sensor Node (HaLOEWEn).
As motivated in Section 4.1, it heterogeneously combines a software-programmable
RF-SoC and an RCU.

The TI CC2531 (i.e., a [CC2530] with USB controller) was chosen as RF-SoC, as
it includes a 2.4 GHz IEEE [802.15.4] transceiver and is thus potentially interoperable
with many [ZigBee], [6LoWPAN], [WirelessHART] and ISA [100.11a] devices. Further-
more, the small 8 bit MCU core was chosen deliberately to increase the heterogeneity of
the platform, as the CC2531 just handles less complex computations, such as the radio
protocol and basic (yet precise) time-keeping. It also has access to the HMI peripherals
(e.g., LEDs) on the mainboard.

The RCU used as hardware accelerator is realized as a discrete FPGA. As stated
in Section 2.2, FPGAs based on non-volatile configuration storage are best suited for
energy constrained applications, as they provide deep sleep modes with fast shutdown

Mainboard
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NVM-FPGA
AGL1000

Sensors SRAM FRAM HMI

RF-SoC
CC2531

Energy Storage
> 2.7 V

1.2 V 1.5 V 3.3 V 2.5 V20 MHz

shutdown
GPIO

Figure 14: HaLOEWEn version 3 (2010): Basic components
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Vendor Family since CMem largest Device LCs VCC Pidle

Actel /
Microsemi

[IGLOOplus] 2008 Flash AGLP125 1,024 1.2 V 17 µW
[IGLOOnano] 2008 Flash AGLN250 2,048 1.2 V 24 µW
[IGLOO] 2008 Flash AGL1000 24,576 1.2 V 53 µW
[IGLOO2] 2014 Flash M2GL150 146,124 1.2 V 10 680 µW
[ProASIC3nano] 2008 Flash A3PN250 2,048 1.5 V 4500 µW
[ProASIC3] 2005 Flash A3P1000 24,576 1.5 V 12 000 µW
[ProASIC3L] 2008 Flash A3PE3000L 75,264 1.2 V 3300 µW

Lattice /
SiliconBlue

[iCE65] 2008 hybrid iCE65L08 7,680 1.0 V 54 µW
[iCE40] 2011 hybrid LP8K 7,680 1.0 V 300 µW
[iCE40ultra] 2014 hybrid iCE5LP4K 3,520 1.2 V 85 µW
[MachXO3] 2014 hybrid XO3LF-6900 6,900 1.2 V 4872 µW
[XP2] 2007 hybrid XP2-40 40,000 1.2 V 54 000 µW

Table 3: FPGA devices with non-volatile configuration storage (Pidle specifies lowest possi-
ble power consumption with RAM retention)

and wake-up times as well as a very low static power draw. At the design time of the
HaLOEWEn mote in 2010, only two FPGA vendors actually targeted ultra-low power
applications, as shown in Table 3. Actel, which was acquired by Microsemi in 2010,
offered the [IGLOO] and [ProASIC3] device families. By storing the device configu-
ration in on-chip Flash memory, the fabric of the FPGAs can be power-cycled within
a few microseconds. This process, named Flash*Freeze, also preserves the content of
the registers and BRAMs holding the runtime information. These Flash-based devices
are thus well suited for fast DPM. The [ProASIC3] devices, however, were designed
for more compute-intensive applications. Their large idle power consumption is not
acceptable for a WSN scenario.

SiliconBlue, which was acquired by Lattice Semiconducters in 2011, offered the
[iCE65] device family with a non-volatile bitstream storage, that is copied into the
SRAM-based configuration storage at startup. Although the (one time programmable)
NVM is integrated into the FPGA die (hybrid CMem), the configuration takes at least
50 ms, which renders fast DPM schemes infeasible. Furthermore, the largest [iCE65]
provides less than 7000 logic cells, which would restrict the HaLoMote target applica-
tions to very simple aggregation mechanisms. In addition to the FPGAs listed in Table
3, some older CPLD devices like the Xilinx [CoolRunner-II] or the Altera [Max5] also
use a hybrid CMem and are thus also not suitable for the HaLoMote.

In the end, only the Microsemi [IGLOO] family was a viable option for the
HaLOEWEn implementation in 2010. After Microsemi shifted towards more power-
consuming applications with the follow-up [IGLOO2] family and its SoC version (i.e.,
SmartFusion2), the old [IGLOO] family remains the best choice for ultra-low power,
yet demanding reconfigurable computing even today.

The HaLOEWEn mote is built with the large AGL1000 device, but pin compatibility
down to the AGL400 is assured. Target applications that can be implemented with
a smaller amount of logic resources can thus use the cheaper devices without the
need for redesigning the HaLOEWEn PCB. As shown in Figure 14, the FPGA is
driven by a 20 MHz external oscillator IC and supplied by four voltage rails generated
from a common energy source (e.g., a 3 V battery pack). The 1.2 V rail supplies the
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Figure 15: HaLOEWEn version 3 (2010): 100 mm× 62 mm PCB

FPGA core during normal operation, while the 1.5 V supply is required only during
Flash programming. The corresponding Voltage Level Converter (DC/DC) can thus
be disabled by a jumper, as soon as the device is programmed. The 2.5 V and 3.3 V
rails drive the peripherals, the RF-SoC, and the IO banks of the FPGA.

As described in Section 4.1, application-specific sensors and memories are directly
attached to the FPGA. By exposing the corresponding GPIOs pins to expansion
headers, HaLOEWEn3 can be easily adopted to different applications requiring specific
peripherals. The resulting HaLOEWEn PCB is shown in Figure 15.

While the HaLOEWEn mote already exceeded the performance and power efficiency
of homogeneous systems for real applications [Engel2012a], detailed power profiling (see
Figure 16) revealed that the 8051-based MCU of the HaLOEWEn3 RF-SoC required
significant energy, even with the radio transceiver completely shut-down: With the
control software on the MCU just initiating RCU operations (i.e., sensor sampling
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Figure 16: Per-component breakdown of the HaLOEWEn3 power consumption
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and data accumulation) at 128 Hz, the RF-SoC consumed between 34 % and 48 %
of the overall system energy (depending on the actual compute load on the RCU)
[Engel2012a]. More than half of the active time of the MCU (31 µs out of 58 µs) was
spent waiting for the clock source of the RCU to become stable after waking it up.

These practical experiences led to design improvements for a fourth refined imple-
mentation of the architecture, shown in Figure 17. A improved clocking scheme allows
the MCU to provide an auxiliary clock for the RCU until the main oscillator has com-
pletely started up (see Section 4.4.3). Furthermore, the new oscillator runs only at
8 MHz and can be scaled further down by a programmable pre-divider. In most cases,
the energy consumption of the RCU-internal clock conditioning component, such as a
PLL, can thus be eliminated.

For the HaLOEWEn4, the TI RF-SoC itself was replaced by a more recent Atmel
[ATmega256RFR2] device, which not only has higher radio throughput (in a special
non IEEE [802.15.4] compliant mode), but also more GPIO pins for communicating
with the RCU. Furthermore, it can be operated with just a 1.8 V supply, (instead
of the 2.5 V supply used for the CC2531), thus allowing for more efficient switching
regulators.

More precisely, a single step-down regulator (1.8 V) is used by HaLOEWEn4 for
the peripheral supply instead of two buck-boost converters (2.5 V and 3.3 V) required
by HaLOEWEn3. Furthermore, a single configurable step-down regulator is used by
HaLOEWEn4 to either generate the 1.2 V or the 1.5 V core supply for the FPGA. The
third DC/DC converter used by the HaLOEWEn4 is only required when the FPGA
is programmed and can thus be kept down most of the time. By exposing the FPGA
Joint Test Action Group (JTAG) interface to the MCU, over-the-air reconfiguration of
the whole platform is supported by the HaLOEWEn4.

Furthermore, the power and area-consuming HMI-peripherals (e.g., LEDs, switches)
were excluded from the mainboard. While they can still be attached for debugging pur-
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Figure 17: HaLOEWEn version 4 (2014): Basic components
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Figure 18: HaLOEWEn version 4 (2014): 46 mm× 30 mm PCB

poses, unused peripheral pins are now used to increase the communication bandwidth
between MCU and RCU.

Most monitoring applications require a significant amount of external memory. By
directly integrating four 1 Mbit serial SRAM devices on the mainboard, less demand
was imposed on the expansion headers (now 40 pins, down from 148). This significantly
shrunk the overall system size down to 46 mm× 30 mm (see Figure 18). Choosing mul-
tiple serial instead of a single parallel memory enables parallel independently addressed
memory accesses by the RCU. Furthermore, one or more SRAMs can be selectively
replaced with pin-compatible non-volatile FRAMs for even more aggressive power man-
agement, as described in Section 4.4.2. FRAM was chosen as persistent data storage
as it clearly outperforms Flash-based memory in write performance (i.e., access time,
granularity, and energy consumption) [Lueders2014]. In particular, the [MB85RS1MT]
FRAM modules can be written at 25 Mbit/s while just consuming 5 nJ per byte from
the 1.8 V supply rail. As detailed in Table 5, an equally sized Flash device can be
written at 260 kbit/s while consuming 332 nJ per byte.

4.3 Inter-Processor Communication

As in every heterogeneous architecture, the communication between the different com-
puting units has a large impact on the system level performance. Commonly, a mid-
dleware layer is employed to wrap the hardware/software interface.

In order to achieve this for a very constrained system such as HaLOEWEn, a num-
ber of issues must be addressed that do not come up for larger desktop or server-
class machines. In such systems, discrete RCUs and CPUs usually communicate using
memory-mapped IO (MMIO). However, due to pin-count restrictions, the MCU does
not externally expose its memory bus, thus necessitating the use of a different interface.

While the Universal Synchronous and Asynchronous Serial Receiver/Transmitter
(USART) of the MCU could be used to establish a low-pin count, but rather slow
serial link to the RCU, a sufficient number of MCU GPIO pins is available to realize
a still narrow, but much faster parallel bus. It consists of a bidirectional 9 bit to 20 bit
data, a 3 bit MCU→RCU command, and a 1 bit clock signal, as shown in Figure 19. The
actual data width depends on whether additional (HMI) peripherals also require GPIO
pins. An additional sleep signal is used for DPM as described in Section 4.4.

Based on this physical communication layer, a message-based application-independent
Application Programming Interface (API) was implemented permitting the MCU to
control the execution of multiple hardware (HW) kernels on the RCU. HW kernels are
typically used to interface sensors, access the external memory (which is only available
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Figure 19: Hardware kernels

to the RCU), implement digital filters, data compression, or other application-specific
data aggregation algorithms.

Each HW kernel has input and output data, an internal state, and start/done sig-
nals controlling its execution. HW kernels can thus be daisy-chained very easily. To
conserve bandwidth on the narrow parallel bus, the HW kernel selection is separated
from the data transfers (similar to virtual circuit switching). For example, sensor
kernels must be started in every sampling cycle, but a data compression channel is
only triggered after a sufficient number of samples has been collected. Thus, the vir-
tual channel only needs to be switched to the appropriate kernel just before and after
the data compression. Cyclically executing kernels can be set to auto-restart without
MCU intervention, beginning computing again once their previous results have been
retrieved.

Table 4 shows the commands implemented by the middleware. On the RCU side,
the entire protocol (including marshaling/demarshaling of parameters) is handled in a
dedicated HW block shared between the kernels.

The performance of this interface is primarily limited by the MCU-internal memory
throughput and GPIO toggle rates. A latency of about 1.5 µs per atomic operation is

Command data driven by Semantics and Parameters/Results

OBSERVE RCU retrieve execution states of all kernels
READ RCU read current output data from virtual channel
WRITE MCU write current input data to virtual channel
START MCU start kernel with given ID
RESET MCU reset kernel with given ID
SWITCH MCU switch virtual channel to given kernel ID
INC MCU value to be added to the selected kernel index
CONFIG MCU reconfigure kernel with selected ID

Table 4: Atomic operations for MCU ↔ RCU communication
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achieved for the 8 bit data signals of the HaLOEWEn3, resulting in a throughput of
5.3 Mbit/s. This can be increased by allocating additional GPIO pins not required
for peripherals to widen the data bus. An alternative USART-based communica-
tion link could achieve up to 4 Mbit/s when utilizing both USART modules of the
CC2531 RF-SoC in parallel. The proposed communication framework thus improves
the conventional approach by at least 33 %.

4.4 Power Management

Since both the RCU and MCU devices support DPM, a proper power management
scheme should be straightforward: The MCU is woken up periodically at the beginning
of each sampling interval to handle system management tasks such as the wireless
communication protocol or the high-precision time synchronization (Section 6.2). It
also retrieves previously computed data from the RCU (for possible transmission),
offloads new computations (if any) to the RCU, and then goes to sleep itself. The
RCU is powered up only if it actually has work to do.

The Microsemi [IGLOO] Flash*Freeze mode preserves the hardware-configuration as
well as the content of the on-chip state, while reducing its power draw to just 53 µW.
This sleep mode can be quickly entered and exited within a few microseconds transition
time, which is negligible even for sampling frequencies of several 100 Hz. The MCU
signals the RCU to enter and exit the Flash*Freeze mode by (de-)asserting the sleep
signal shown in Figure 19.

However, the interdependency between both compute units of the heterogeneous
architecture introduces difficulties for the overall DPM strategy, which are addressed
in the following sections.

4.4.1 Flash*Freeze Control

Figure 20a shows a sample schedule for a single output-only HW kernel (e.g., a sensor
controller). While the first line represents the active time of the MCU, the command,
data, and sleep lines correspond to the inter-processor communication signals shown in
Figure 19. The fifth line describes the active time of the RCU (i.e., not in Flash*Freeze
mode), followed by the time the RCU is actually executing a HW kernel. The last line
defines the time periods during which the RCU knows that it is ready to fall asleep, as
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data id 0 1 val

sleep
RCU active

HW kernel running
RCU ready to sleep

(a) Stalling the MCU

Sampling Cycle

READ
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Figure 20: Scheduling of DPM and inter-processor communication for a single output-only
HW kernel
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all HW kernels are completed. This signal is derived by a simple state machine in the
HW kernel controller observing the start and done flags of all kernels.

At the beginning of each sampling cycle, the MCU is woken up by its internal timer.
Afterwards, the MCU deasserts the sleep signal, so the RCU is woken up. Now, the
execution of the HW kernel is initiated by the MCU issuing the START command
of the HW kernel API with the id of the targeted kernel passed in the data signal.
Once the kernel has started, the RCU is not ready to enter the Flash*Freeze mode.
At this point in time, the MCU performs its management tasks (e.g., updating the
timer and handling the radio protocol), which is not shown in Figure 20. Complex
HW kernels such as the compression of larger datasets (see Section 5.2), will take
longer to complete than the MCU requires for its management operations. By using
the OBSERVE command, the MCU determines the execution status of the HW kernel
and stalls, until the kernel completes execution. Afterwards, the result of the kernel
can be read back to the MCU using the READ command. Finally, the MCU asserts
the sleep signal again to shutdown the RCU, before the MCU itself falls asleep.

Stalling the MCU just to wait until the RCU can be shutdown, is not energy efficient.
Although the MCU could fall asleep earlier and use a GPIO interrupt to wake up as
soon as the HW kernel is completed, the additional state transitions of the MCU
increase the mote’s energy consumption. To decouple the shutdown of the RCU from
the shutdown of the MCU, the HW kernel controller inside the RCU delays the actual
shutdown request until the RCU is ready to fall asleep (i.e., all kernels finished their
execution). This is achieved by a dedicated control bit inside the [IGLOO] fabric. The
RCU only enters the Flash*Freeze mode, if both the external and the internal shutdown
requests are asserted.

Figure 20b again shows a sample schedule for a single output-only HW kernel, now
exploiting the improved Flash*Freeze control to get rid of the lengthy OBSERVE com-
mand. Due to the auto-start on read feature, even the START command can be avoided
thus significantly reducing the active time of the power-hungry MCU. Note that the
value read by the MCU corresponds to the output of the HW kernel from the previous
sampling cycle, as the kernel is started after its result is fetched. This might be critical
for delay-sensitive applications.

4.4.2 Swapping Live Variables to External Memory

Although the [IGLOO] FPGA can enter and exit the Flash*Freeze mode very quickly,
the 53 µW static power consumption within this mode is at least an order of magnitude
larger than the power drawn by typical sleeping WSN software processors (see Table
17). To further reduce the power consumption of the FPGA, its voltage supply would
have to be shut down completely, either by disabling the appropriate DC/DC converter,
or by opening a power Field-Effect Transistor (FET). Note that these mechanisms are
not yet integrated into the HaLoMote implementations.

Due to the non-volatile configuration storage, the hardware accelerator will be op-
erable again immediately after ramping up its power supply. However, all runtime
information hold in the volatile (SRAM-based) registers and BRAMs is lost after each
power cycle. Before shutting down the FPGA, any information that will be required
again after the power cycle (i.e., the live variables) thus have to be swapped to an
external memory, from where it can be restored after the restart of the FPGA.
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The data swapping requires additional energy for the memory read and write opera-
tions and the additional time the FPGA has to be kept awake. The sleep period with
reduced power consumption must be long enough to recoup the swapping overhead. To
estimate the minimum sleep time per swapped bit, let Pr, Pw, and Ps denote the power
drawn by the memory during reading, writing and when shut down. Furthermore, let
Tr and Tw be the achievable throughput for streaming reads and writes, as well as
Pa and Pf be the power drawn by the FPGA in active and Flash*Freeze mode. The
swapping of n bit live variables for a sleep period t pays off, if

t · Pf >
n

Tw
(Pa + Pw) + (t− n

Tw
− n

Tr
)Ps + n

Tr
(Pa + Pr) (1)

⇔ t

n
>

1
Pf − Ps

(
Pa + Pw

Tw
− ( 1

Tw
+ 1

Tr
)Ps + Pa + Pr

Tr

)
(2)

Table 5 lists the power draw and throughput specification of three different types
of memory. The SRAM and the FRAM modules are actually integrated into the
HaLOEWEn4, while the third memory is a Flash device with the same capacity and
interface. The relative break-even time t

n depends on the power drawn by the FPGA
and is thus application-specific. However, assuming Pa = 30 mW for a worst case
analysis is reasonable (see Table 17).

The resulting break-even points for the different memory types are also listed in
Table 5. Due to its low write throughput, Flash memory is not appropriate for the
live variable swapping. The SRAM swapping pays off after 62 µs/bit, while the FRAM
requires 71 µs/bit to justify the swapping. When directly comparing the overhead of
SRAM and FRAM swapping against each other, the latter pays off if

2n

T SRAM
w

(Pa + P SRAM
w ) + (t− 2n

T SRAM
w

)P SRAM
s >

2n

T FRAM
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(Pa + P FRAM
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>

2
Ps,SRAM

(
Pa + P FRAM

w

T FRAM
w

− Pa + P SRAM
w − P SRAM

s

T SRAM
w

)
= 327 µs/bit (4)

Thus, for a sample live variable set of 100 B, swapping to SRAM is worthwhile for
sleep periods of at least 50 ms, and using FRAM instead of SRAM is reasonable only
for sleep periods of at least 262 ms. For a running measurement, the set of the live
variables between subsequent sampling periods is rather large, as it typically contains
buffered samples (e.g., taps of digital filters) and intermediate results (e.g., accumulated

Device Type Tw Tr Pw Pr Ps
t
n

[23A1024] SRAM 20 Mbit/s 20 Mbit/s 1.8 mW 1.8 mW 1.8 µW 62 µs
bit

[SST25WF010] Flash 0.26 Mbit/s 20 Mbit/s 10.8 mW 3.6 mW - 2993 µs
bit

[MB85RS1MT] FRAM 25 Mbit/s 25 Mbit/s 17.1 mW 17.1 mW - 71 µs
bit

Table 5: Power consumption and streaming throughput of different 1 Mbit memories oper-
ated at 1.8 V
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sensor channel statistics). The swapping is therefore not viable for the DPM between
subsequent sampling cycles for most of the applications addressed by the HaLoMote
with sampling rates of 100 Hz and above. Instead, such swapping can only be used
for supervisory power management when the application is not relying on continuous
monitoring.

The estimation of the break-even points assume that the number of bits swapped out
equals the number of bits swapped in. A dirty bit mechanism known from conventional
cache systems may reduce the number of bits to swap out. Classification algorithms
such as rainflow-counting [OConnor2010] are typical examples that benefit from this
mechanism, as a larger dataset is continuously updated but only a small subset of its
entries might have changed between subsequent DPM cycles.

4.4.3 Flexible Clock Generation

Since both the MCU and RCU rely on synchronous digital logic, they require a periodic
clock signal. MCUs typically provide internal oscillators based on resonating crystals or
simple capacitive circuits, which are automatically turned-off when the MCU is put to
sleep. In contrast, the [IGLOO] FPGA requires an additional clock source. Commonly,
an external oscillator IC is used for this purpose. The [LTC6930] oscillator clocking the
HaLOEWEn4 RCU was primarily selected for its energy efficiency. Nevertheless, it still
draws about 580 µW at 8 MHz, which is more than 10× the combined power required
by the MCU and RCU in sleep mode. Clearly, the oscillator should also be powered
down when the RCU is put to sleep. However, the start-up of the oscillator takes
about 45 µs (see Figure 21), which renders the fast Flash*Freeze capability of the RCU
(about 1 µs state transition time) a moot point. At higher sampling frequencies, more
sophisticated clocking schemes are thus required to support fast and energy-efficient
shutdown and wake-up of the hardware accelerator.

In this Section, five different clocking schemes are described and their impact on
the DPM scheduling of the HaLoMote is analyzed. The resulting energy efficiency is
reported in Section 4.4.4.
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Figure 21: Startup timing of the [LTC6930] external oscillator
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Figure 22: Clocking the RCU by an external oscillator controlled by the MCU

The most obvious clocking scheme is shown in Figure 22a. An external oscillator
IC directly drives the RCU while the MCU is controlling the DPM by shutting down
both the RCU and the oscillator via dedicated GPIOs pins. Most external oscillators
do not provide low-power modes, but require their supply voltage to be detached by a
dedicated transistor, or by shutting down the corresponding DC/DC converter. In the
latter case, the oscillator keeps toggling even after the converter is shut down, until the
voltage of the converter’s charge pump capacitor drops below the supply threshold of
the oscillator. For example, a typical 10 µF DC/DC output capacitor keeps supplying
the [LTC6930] oscillator with 321 µA for about 3 ms, before the supply voltage drops
from 1.8 V to 1.7 V. A fast shutdown thus has to be realized by a transistor switch.
Figure 22b details the power management timing resulting from the external clock
supply. After the MCU woke up and activated the power supply of the oscillator, the
hardware kernels cannot be started before the oscillator provides a stable clock signal.
As stated above, this long oscillator start-up delay is a major drawback. Even worse,
the MCU cannot put itself to sleep as long as the hardware kernels are running, as it has
to shutdown the oscillator power supply immediately after the hardware accelerator
has finished its tasks.

The late shutdown of the MCU can be avoided by directly powering the oscillator
with an RCU IO pin (see Figure 23a). The [IGLOO] FPGA can pull an IO pin to
ground when entering the Flash*Freeze mode, and back up to the supply voltage level
of the IO banks when waking up, even without a clock signal being present. Combined
with the sophisticated Flash*Freeze controller described in Section 4.4.1, this clocking
scheme unburdens the MCU from monitoring whether the RCU is currently active.
Furthermore, as the FPGA output pins are not buffered by a noticeable capacitance,
the oscillator stops toggling immediately after the FPGA has entered the Flash*Freeze.
The lengthy start-up time of the external oscillator, however, remains a weak point of
this clocking scheme.
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Figure 23: Clocking the RCU by an external oscillator controlled by the RCU
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Figure 24: Clocking the RCU by the MCU

Instead of using an external oscillator IC, a clock signal generated by the MCU can
drive the RCU as shown in Figure 24a. Many MCUs like the Atmel [ATmega256RFR2]
can provide clock signals at dedicated output pins. For all other devices, like the
TI [CC2530], an unused Serial Peripheral Interface (SPI) module can be repurposed
by repeatedly filling the SPI output register to keep the serial clock running (even
though no SPI transfers actually take place). This can be achieved by Direct Memory
Access (DMA) transfers without actually invoking the processor. As shown in Figure
24b, the major disadvantage of this scheme is the necessity to keep the MCU active
until the RCU has finished its own computations. As before, the MCU must be stalled
unless useful computations can actually be issued while waiting for the RCU. Thus,
this approach of using a MCU clock can only do better than the external oscillator IC
if the accelerator execution time is shorter than the oscillator IC startup time.

Figure 25a shows the combination of the two previously described clocking schemes.
This dual clocking approach uses the fast-starting auxiliary clock (ACLK) provided
by the MCU to drive the RCU while the external oscillator is slowly starting up to
generate the main clock (MCLK). The [ATmega256RFR2] can generate an ACLK of
up to 16 MHz, so about 720 RCU cycles can already be executed before the MCLK
becomes stable. As shown in Figure 25b, this avoids stalling the MCU and the RCU
at the beginning of a sampling cycle and allows for a fast shutdown of the MCU,
as the ACLK is not required to complete the hardware kernel execution (since the
MCLK has taken over). In practice, however, several issues have to be addressed when
implementing such a dual-source clocking scheme.

First, the RCU itself has to determine whether the MCLK is sufficiently stable
after the start-up. A simple counter on the RCU delays the switch-over from the
ACLK to the MCLK by an experimentally-determined number of MCLK cycles. To
improve the robustness of the MCLK stability detection under voltage and temperature
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Figure 25: Clocking the RCU by two sources
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variations, the number of MCLK cycles within each (or multiple) ACLK cycle can be
observed. As soon as the expected number of MCLK cycles was counted in two (or
more) subsequent ACLK cycles, MCLK-stability can be assumed. This feature is,
however, not yet implemented for the HaLoMote architecture.

Second, a valid switching from the ACLK to the MCLK has to be supported. Runt
pulses (leading to invalid clock periods shorter than the specified cycle duration) must
not reach the hardware kernels, as overclocked hardware would generate unpredictable
results. As shown in Figure 25b, switching to the MCLK immediately after it is
deemed stable may cause such runt pulses and a faulty clock signal. To avoid this,
the RCU-internal system clock must be forced low for at least one MCLK cycle after
the MCLK became stable and the auxiliary clock went low (ensuring a valid clock
signal after the switch-over).

Finally, if all hardware kernels can be completed on the ACLK before the MCU
falls back to sleep, the external oscillator should not even be started. To achieve
the best energy savings, the decision about whether the MCLK is necessary should
be made by the RCU at the start of each sampling cycle, before actually starting
the hardware kernels. This is possible for many applications with fixed or predictable
accelerator runtimes, as long as the minimum execution time of the MCU (e.g., required
for timekeeping) is known.

The last clocking scheme considered generates the clock on the RCU itself, as de-
scribed in [AC332], requiring neither an external oscillator IC nor the MCU clock. As
shown in Figure 26a, this oscillator is realized as a combination of an inverting NAND
gate and a configurable number of delay gates to control the clock frequency. The
AO14 cell is used as delay gate as it provides the largest IO delay (≈ 6.3 ns) within
the Microsemi cell library for the IGLOO device. By pulling two out of its three inputs
to ground (see Figure 26b), the remaining input (C) is not inverted. The delay chain
without the first NAND gate is thus not limited to an even length. The oscillator can
be controlled by low active signals to immediately force the clock output high (resetN),
or only after the next rising clock edge (idleN). The actual clock frequency is sensitive
to the number of delay cells as well as the RCU core voltage and operating temper-
ature, since no stable frequency reference (such as a quartz crystal) is involved (see
Section 4.4.4). If the associated frequency drift is acceptable for an application, this
scheme completely eliminates the flaws of the previous ones, as the MCU is no longer
involved in the RCU clock management at all, as shown in Figure 27b.

AO14 AO14 . . . AO14

idleN
resetN

clk

Configurable Delay

(a) Ring structure

Y

0
0

C

(b) AO14 cell

Figure 26: Implementation of an RCU-internal oscillator, consisting of a configurable num-
ber of AO14 cells used as delay elements as described in [AC332]
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Figure 27: Clocking the RCU by an internal oscillator

4.4.4 Evaluation

To analyze the effects of the different clocking schemes on the energy efficiency of
the heterogeneous platform, a synthetic benchmark related to the target application
described in Chapter 7.3 was executed on the HaLOEWEn mote. Essentially, a config-
urable number of computations and accompanied accesses to an RCU-external SRAM
were handled by a HW kernel in every sampling cycle. In parallel, the MCU was
performing timekeeping and queried status information from the RCU. The same al-
gorithm was implemented on a TI [MSP430] reference system, to compare the energy
efficiency of the heterogeneous architecture against a homogeneous software solution.
Detailed information about this benchmark running at 128 Hz sampling frequency can
be found in [Engel2012a].

The clocking schemes shown in Figures 23, 24, 25, and 27 were arranged by appropri-
ately connecting prototyping boards for the [IGLOO] AGL1000 FPGA, the [CC2530]
MCU and the 8 MHz [LTC6930] oscillator. The current flowing into a common 3.7 V
supply rail was measured by an Agilent [34411A] multimeter configured for 100 mA
range and an integration time of 2 s to average the current spikes into the switching
regulators. Thus, all losses caused by voltage regulators and the oscillator are included
in the power measurements.

Figure 28 details the measurement results when sweeping the number of accumula-
tions to be performed per sampling cycle from 0 to 100. First of all, the [MSP430]
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Figure 28: Load-Dependent power draw for the considered clocking schemes
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reference system is clearly outperformed by the four HaLOEWEn configurations, if
more than 15 accumulations per sampling cycle have to be performed. Obviously,
a WSN mote can only benefit from reconfigurable computing, if there is a sufficient
amount of computation to be offloaded to the hardware accelerator.

For less than 14 accumulations per sampling cycle, the HaLOEWEn driven by the
1 MHz serial MCU clock draws less power than when driven by the 8 MHz external
oscillator. In these cases, the runtime of the HW kernel clocked at 1 MHz is 49 µs,
as each accumulation takes 3.5 cycles on average. This closely matches the start-up
delay of the external oscillator and experimentally confirms the trade-off discussion in
Section 4.4.3.

The experiments have also determined that the MCU requires at least least 26 µs to
start the hardware kernel and prepare its timer for the next sampling cycle. As each
accumulation may require up to four cycles (i.e., 4 µs at 1 MHz SPI clock) on the RCU,
a maximum of six accumulations can be performed running just on the ACLK without
starting the external oscillator. This is reflected by the power consumption character-
istics of the dual oscillator clocking scheme in Figure 28. For up to six accumulations,
this scheme draws even less power than the clocking scheme from Figure 22: It does not
require the MCU (which supplies the ACLK) to remain awake and check whether the
RCU has completed the computation before the MCU can fall asleep again. Instead,
the RCU can continue autonomously as soon as the main clock becomes stable, and
the MCU can go back to sleep immediately. If more than six accumulations have to be
executed, the main clock is started up at the beginning of each sampling cycle, thus
raising the power draw to the level of the external oscillator scheme. With increasing
computational load, the dual oscillator scheme then benefits by executing at the rate
of the faster main clock.

To reduce the system level power draw below that of the dual clocking scheme, all
external oscillators and the need to stall any of the computing units before shutdown
must be eliminated. As shown in Figure 28, the internal oscillator achieves this goal
and outperforms all other clocking schemes. But the usage of such an internal oscillator
is quite unconventional, as its frequency is dependent on the operating temperature
and the RCU core voltage. As shown in Figure 29a, a ±10 mV core voltage variation
translates into a ±13 kHz frequency variation for 400 delay cells. Since the [LTC3388]
voltage regulator used to generate the RCU core supply voltage is specified to be stable
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Figure 29: Frequency stability of on-chip oscillator with 400 delay cells for variable supply
voltage and environmental temperature
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Figure 30: Effect of delay cell number and distance on the oscillator cycle time

within ±60 mV on its 1.2 V output voltage, the voltage-dependent frequency variation
will be limited to ±78 kHz or ±11 % of the 714 kHz center frequency. This far exceeds
the temperature-dependent frequency variation, which was observed to be just ±6 kHz
or ±0.8 % over a 76 ◦C temperature range (Figure 29b). Thus, the internal oscillator is
a feasible power-saving design choice if its target frequency is conservatively configured
to be about 15 % to 20 % less than the maximum clock frequency supported by the
specific hardware design (ensuring correct operation even if voltage variations lead to
a faster clock).

To selectively control the on-chip oscillator cycle time, two options have been inves-
tigated. Increasing the number of delay cells shows a linear effect on the cycle time
(Figure 30a). Modifying the distance between the delay cells increases the overall rout-
ing delay. To achieve this, each delay cell must be placed manually. Figure 30b shows
the effect of longer distances on the oscillator frequency. Due to the segmented na-
ture of the FPGA’s configurable interconnect, the relation between distance and delay
is non-linear. However, using longer interconnect delays allows for fewer delay cells
without changing the target frequency.

To compare the power efficiency of both design options (i.e., longer interconnects
or more delay cells), two 5 MHz oscillators have been implemented using 40 and 72
delay cells placed at a distance of 10 and 1 LUTs respectively. The power draw was
measured in the RCU Flash*Freeze mode with the oscillator running. Afterwards,
the static power consumption in Flash*Freeze mode (with disabled oscillator) was
subtracted to determine the power drawn only by the oscillator. The oscillator using
72 delay cells shows a 35 % smaller power consumption (see Table 6). For lower power
draw, it is thus advisable to commit more active LUT area for delay cells, than to rely
on interconnect segments for controlled delays.

Delay Cells Distance Frequency Power Consumption

40 10 5.02 MHz 272 µW
72 1 5.04 MHz 176 µW

Table 6: Power-Efficiency of on-chip oscillator architectures
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CHAPTER 5
Library of Reusable Hardware Accelerator Blocks

The hardware accelerator of the HaLoMote architecture is primarily intended to speed
up application-specific data aggregation and feature extraction algorithms. Never-
theless, there are many application-independent algorithms commonly required in
WSN scenarios, that might also benefit from hardware acceleration. Potential can-
didates comprise encryption and authentication, generic data compression, routing,
time synchronization, Real-Time Operating Systems (RTOSs), and digital filters. For
the following reasons, not all of these tasks are addressed in this work.

Symmetric and asymmetric encryption on RCUs have already been extensively re-
searched [Rodriguez-Henriquez2007]. The corresponding results can be directly applied
to the HaLoMote architecture.

Routing algorithms deal with the discovery and maintenance of routes and their
overhead is primarily caused by message exchanges (e.g., for neighbor detection) in-
stead of complex computations. Hardware acceleration may be helpful for complex
graph problems [Ahmed2009], but the required topology knowledge often prevents a
distributed implementation, as targeted by the HaLoMote architecture. Although the
hardware acceleration of generic routing protocols is not addressed in this work, a
flooding scheme tailored to SHM applications is presented in Section 6.1.

In addition to resource synchronization, event handling, and message passing mech-
anisms, the central element of an RTOS is the task scheduler. Several attempts were
made to realize some [Tang2014] or all [Yan2010] of these elements in hardware.
A hardware-accelerated task scheduler, however, must be able to preempt software
threads upon occurrence of asynchronous events (i.e., the reception of a radio packet).
The RCU thus would remain active most of the time, which is not affordable in energy-
constrained WSN scenarios.

Thus, this work is focused on accelerating other functions using dedicated hard-
ware.

5.1 Digital Filters

Digital filters are often required in WSN applications for frequency-dependent signal
conditioning (e.g., by FIR filters) or for signal transformations between the time and
the frequency domain (e.g., by FFT filters). These digital filters can be implemented as
dataflow structures and are thus well suited to be implemented on RCUs. The regular
filter structures can also be efficiently generated by HLS tools. In this section, the
energy required for hardware-accelerated FIR and FFT filters are compared against
appropriate MCU implementations.
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5.1.1 Finite Impulse Response Filter

A n-tap FIR filter with the filter coefficients (ai)n
i=0 transforms a discrete input se-

quence (xi)i∈N into the output sequence

ym :=
n∑

k=0
ak · xm−k ∀m ≥ n. (5)

By selecting appropriate coefficients, the frequency response of the filter can be
adopted to realize high-pass or low-pass filters, or to model the behavior of another
specific structure. With increasing filter order, the desired frequency response can be
modeled more accurately. In WSN applications, FIR bandpass filters are often used
for input signal conditioning, e.g., to eliminate low- and high-frequency components
such as static offsets or sensor noise.

In [Engel2011], a 384-tap FIR filter modeling the behavior of a bearing structure was
generated by [SynphonyHLS] (i.e., the predecessor of [SynphonyModelCompiler]) for
the Microsemi [IGLOO] M1AGL1000V2 device. Fixed-point arithmetic with a 16 bit
data path, 14 bit coefficients and 7 bit multipliers was used resulting from a bit width
optimization process. With a 20× folding of the hardware resources, the filter occupies
71 % of the available logic cells of the FPGA. When running the FPGA at 9 MHz, the
FIR execution takes 2.2 µs. At a sampling period of 400 Hz as required by the bearing
structure application, the 0.1 % duty cycle results in an average power consumption of
71 µW (FPGA core supply without IO banks).

In comparison, a sequential [MSP430] implementation of the same FIR filter also
running at 9 MHz draws 5.6 mW on average. The hardware accelerator thus improves
the energy efficiency by 79×.

5.1.2 Fast Fourier Transformation

A n-tap Discrete Fourier Transformation (DFT) filter transforms a discrete time do-
main sequence (xi)n−1

i=0 captured with the sampling frequency fs into the frequency
domain sequence

ym :=
n−1∑
k=0

xke−2πi km
n ∀m ≤ n

2 (6)

with ym representing the complex amplitude of the spectrum at the frequency bin
m
n · fs.

As stated in Section 3.3.1, many monitoring systems operate in the frequency do-
main. The FFT rearranges the structure of the DFT into a self-recursive formulation
for a more efficient O (n log n) implementation. It requires n to be a power of two.

In [Engel2012a], a 256-tap FFT was generated by [SynphonyHLS] for the Microsemi
[IGLOO] M1AGL1000V2 device. It uses integer arithmetic with 18 bit accuracy at the
input stage. When running the FPGA at 8 MHz, the FFT execution takes 6.3 ms and
consumes 46 µJ (FPGA core supply without IO banks).

In comparison, a sequential [MSP430] implementation of the same FFT filter also
running at 8 MHz takes 124 ms and consumes 259 µJ. The hardware accelerator thus
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improves the runtime-efficiency of the software-processor by 20× and the energy effi-
ciency by 5.6×.

5.2 Lossless Data Compression

In this section, a lossless data compression scheme is described, which is based on min-
imal assumptions about the nature of the data stream to be compressed. Furthermore,
a HaLOEWEn hardware accelerator is detailed, whose energy efficiency is evaluated
for two concrete examples in Section 7.1 and 7.2. The implementation and evaluation
of the compression kernel have already been published in [Engel2014a].

Lossless data compression can be considered as the most generic data aggregation
scheme. It should be applied, if all sensor data has to be forwarded to the base station,
either because the feature extraction requires information from all network nodes, or
because the network operator requires full-spectrum data for a comprehensive failure
analysis.

While reducing the communication demands and the related energy consumption of
the sensor nodes, data compression comes at the cost of encoder and decoder complex-
ity. As the decoding is typically performed at the (often mains-powered) base station,
the decoder complexity is generally not a major concern. This section thus focuses on
the encoder complexity.

To improve the compression quality, many encoders first collect a block of data to
analyze its statistical nature before compressing the block with the appropriate settings.
This two-pass strategy increases the memory capacity required on the node, as well as
the latency between data acquisition and transmission. The block size, and thus the
gains in compression quality, is therefore limited by the amount of available memory,
or tight real-time requirements in latency-sensitive applications. In addition, both
encoder passes require computation time and energy, both of which must be amortized
by the reduced communication effort.

5.2.1 Adaptive Differential Pulse Code Modulation and Rice-Encoding

Without detailed knowledge about the data characteristics of a specific application,
only the temporal correlation between the samples generated by each sensor can be
taken into account. Unless observing random data, the absolute difference between
successive samples can be expected to be smaller than the dynamic range of the sensor
signal with a high probability.

As described in [Sayood2005, Chapter 11], the Differential Pulse Code Modulation
(DPCM) exploits these temporal correlations by predicting the next sensor sample as
a linear combination of the previous M observed samples.

pi :=
M∑

k=1
ak · xi−k ∀i > M (7)

a1, . . . , aM ∈ R are the prediction coefficients for a predictor of order M . The predic-
tion order can be used to trade-off the compression quality against the computational
complexity of the encoder.
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Instead of transmitting the samples, the prediction error

di := pi − xi ∀i > M (8)

is forwarded to the downstream symbol encoder. If the samples can be predicted
accurately, the prediction error sequence has a zero mean and a small variance. To
exploit these features, a Rice symbol encoder is used that translate the prediction error
sequence into a compressed bitstream [Yeh1991].

As an initial step for Rice encoding, the sequence of signed prediction errors di is
converted to a sequence of unsigned values vi by a simple transformation:

vi :=
{

2di, for di ≥ 0
−2di − 1, for di < 0 ∀i > M (9)

The relevant property of this transformation is that small absolute values are mapped
to small unsigned values. The resulting values vi are then encoded into Rice-form bit
sequences

RW (vi) := concat
(

U( vi

2W
), BW (vi mod 2W )

)
∀i > M (10)

with W being the Rice parameter that balances the widths of a zero-terminated unary
code U and the binary block code BW in a bit-wise concatenation. Precise predic-
tions (i.e., vi < 2W ) can thus be represented by W + 1 bits. Infrequently occurring
larger prediction errors, caused by unforeseen spikes, can still be expressed losslessly
by exploiting the variable length unary code.

A small and comprehensive example for a third order DPCM and a Rice symbol coder
is presented in Table 7. The first three input samples are transmitted in uncompressed
form, i.e., as 8 bit block code in this example. The fourth sample is predicted as 17, so
the prediction error −7 must be transmitted. After mapping the signed error to the
corresponding unsigned value 13, the Rice symbol coder is applied in two steps. First,
the run length of the unary code is 13/24 = 0, so only the terminating 0 symbol is
generated. Second, the remaining 13 mod 24 = 13 is represented as 4 bit block code.
For the fifth sample, the prediction error is larger. The unary code thus yields a run
length of 50/24 = 3, and the remaining 50 mod 24 = 2 is represented as 4 bit block

i xi pi di vi vi/2W vi mod 2W B8(xi) U(vi/2W ) BW (vi/2W )
1 15 00001111
2 10 00001010
3 22 00010110
4 24 17 -7 13 0 13 0 1101
5 8 33 25 50 3 2 1110 0010

Table 7: Example for DPCM and Rice coder: M = 3, a1 = 0.5, a2 = 0.3, a3 = 0.2, W = 4
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code. Compared to encoding all 5 samples as 8 bit block code, the DPCM achieves a
compression ratio of 37/40 = 92.5 %.

As the compression quality of the DPCM scheme depends on the prediction accuracy,
the prediction parameters should be adapted to the characteristics of the input data
stream. In the ADPCM scheme, this adaption is performed on every block of N samples
x1, . . . , xN by calculating the auto-correlation values for the block:

rk := sk

N − k
0 ≤ k ≤M (11)

with sk :=
N∑

i=k+1
xi · xi−k 0 ≤ k ≤M (12)

These correlation values are then used to build a system of linear equations

rk =
M∑

i=1
ai · r|i−k| 1 ≤ k ≤M , (13)

whose solution results in prediction coefficients that minimize the variance of the pre-
diction error sequence [Sayood2005, Section 11.5.2]. The resulting coefficients must
precede the generated bitstream of each block, as the decoder can not perform the
coefficient adaption by itself. The coefficients, as well as the first M samples of each
block, are encoded by a fixed-length block code.

Resuming the example from Table 7, the correlation values for the N = 5 sample
block are r0 = 290, r1 = 273, r2 = 249, and r3 = 220. The resulting system of linear
equations

290 · a1 + 273 · a2 + 249 · a3 = 273
273 · a1 + 290 · a2 + 273 · a3 = 249
249 · a1 + 273 · a2 + 290 · a3 = 220

is solved to get the optimized prediction coefficient a1 = 1.13, a2 = −0.05, and
a3 = −0.16. With these coefficients, the compression ratio for this specific example is
improved to 90 %.

5.2.2 Hardware-Accelerated ADPCM

The computational demand of DPCM is small compared to other predictive com-
pression schemes such as the Free Lossless Audio Codec (FLAC) or Apple Lossless
Audio Codec (ALAC) discussed in Section 7.1.1. However, the online-adaption of the
prediction coefficients may overburden low-power MCUs, especially if multiple sensor
channels have to be processed in parallel (see Section 7.2.2). This section thus describes
the implementation of a ADPCM hardware kernel for the HaLoMote.

Figure 31 shows the structure of the ADPCM hardware kernel for compression of
one sensor channel. The compression module is generic and can be configured for static
or adaptive prediction. The gray modules of Figure 31 are used only for the adaptive
prediction. The block buffer is realized by on-chip BRAM and is initially filled with
a block of N samples. For the static DPCM compression, the block buffer is read

Library of Reusable Hardware Accelerator Blocks 53
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xi xi−1 . . . xi−M
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Prediction Error (Eq. 8) Bit-BufferRice (Eq. 9,10)

MACC
(Eq. 7,12)

Figure 31: Structure of the generic ADPCM hardware kernel. The gray modules are dedi-
cated to the online coefficient adaption

once to pass the uncompressed data through a shift register. After a new sample was
inserted into this shift register, the prediction of the next sample is calculated according
to Equation 7. By sequentially multiplexing the appropriate samples and coefficients
to the Multiply-Accumulate (MACC) module, pi is accumulated in M clock cycles.
Afterwards, the prediction error is calculated and passed to the Rice coder to produce
the bit sequence described by Equations 9 and 10. This bit sequence is sliced into bytes
and written back to the block-buffer (now in compressed form) by a bit-buffer module.
The Rice coder and the bit-buffer are running in parallel to the sequential predictor.

By using the same block-buffer for the uncompressed and the compressed data, an in-
place compression approach is achieved. This allows for more ADPCM modules to be
instantiated in parallel for multi-channel compression, as the BRAM of the AGL1000
FPGA used is limited to just 144 kbit. However, this approach presumes a compression
ratio smaller than 100 % (i.e., compression actually reduces the data size) for each prefix
of each sample block in the sample stream. If this constraint can not be guaranteed,
separated input and output buffers have to be used. As the spikiness of many data
streams (and thus the volume of post-compression data) is limited by the inertia of the
underlying physical or chemical systems, the possibility to perform in-place compression
is often useful.

For the adaptive ADPCM compression scheme, an additional coefficient optimization
pass precedes the compression pass. During this pass over the block-buffer, the auto-
correlation sums sk of Equation 12 are accumulated. Again, the time-multiplexed
MACC module is supplied with the appropriate operands from the sample shift register
(xi, . . . , xi−M ) and the accumulator set (s0, . . . , sM ). At the end of the pass, the
accumulated auto-correlation sums sk are used to generate the linear equation system
that has to be solved to retrieve the prediction coefficients (a1, . . . , aM ). As a trade-off
between prediction accuracy and the time and energy spent to calculate the coefficients
and the prediction values, fixed point arithmetic was chosen. The resulting coefficients
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are stored in Q4.12 format. The solver supports first-order predictors (M = 1), which
simplifies Equation 13 to

a1 = r1
r0

= s1 ·N
s0 ·N − s0

. (14)

By restricting the block size N to a power of two, the single remaining integer division
can be performed sequentially in 16 clock cycles. Higher predictor orders could be
realized, but were not necessary for the use cases analyzed in Chapter 7.

5.2.3 Test Setup for Energy Efficiency Evaluation

The energy efficiency of the ADPCM kernel is evaluated for two concrete applications
in Section 7.1 and 7.2. The test setup used to evaluate the energy efficiency of the
in-sensor data compression is, however, application independent in principle, and is
thus described in this section.

Figure 32 gives an overview of the HaLoMote test setup for multi-channel ADPCM
compression. It is based on the inter-processor communication API described in Section
4.3. The raw data stream to be compressed is hold inside the ROM of the MCU. The
data stream can thus be replayed to simplify the comparison of different ADPCM
configurations. The data stream may consist of interleaved samples from multiple
sensor channels, that are then distributed to multiple ADPCM kernels by a small
WRITE kernel. The compressed data stream generated by the compression modules
is sequentialized by the READ kernel and passed back to the MCU, which transmits
it wirelessly. The HaLOEWEn radio stack allows parallelizing the radio transmission
with the data transfer from the RCU to the MCU. Thus, the MCU duty cycle is
not stretched by the inter-processor communication. This is important for the energy
efficiency of the system (shorter duty cycles allow longer ultra-low-power sleep phases).
Finally, the COMPRESS kernel controls the execution of the compression modules and
tracks the number of generated output bytes.

HW-Kernel API

ROM RAMMCU

HW-Kernel Controller

WRITE READCOMPRESS

(A)DPCM
Fig. 31

(A)DPCM
Fig. 31

(A)DPCM
Fig. 31

RCU

Figure 32: Test setup with multiple ADPCM hardware kernels
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Channels Scheme BRAM Core Cells max Frequency

1 DPCM 8 (25 %) 1681 (7 %) 19.2 MHz
1 ADPCM 8 (25 %) 6728 (27 %) 10.5 MHz
3 DPCM 24 (75 %) 4419 (18 %) 22.4 MHz
3 ADPCM 24 (75 %) 14088 (57 %) 10.7 MHz

Table 8: Synthesis results for the Microsemi IGLOO AGL1000V2 device

Each hardware-accelerated data compression design was synthesized for the Mi-
crosemi [IGLOO] AGL1000V2 FPGA using Synplify Pro H-2013.03M-1 with retiming.
The compression modules were configured for 16 bit samples, 2048 samples per block
buffer and first order prediction, as required by both use cases analyzed in Chapter
7. As shown in Table 8, the design is primarily limited by the available memory and
restricted to four channels at the given block size. Even so, some area remains for
implementing higher order predictors.

To demonstrate the energy efficiency of the hardware-accelerated data compression,
the measurement setup shown in Figure 33 is used. The HaLOEWEn3 mote is supplied
by an external 3 V voltage source to power its internal components. The MCU drives
the RCU into its low-power Flash*Freeze mode, as long as no hardware-accelerated
computations are required. For precise time measurements, an external trigger is as-
serted by the MCU and recorded by an oscilloscope, as long as a compute task is
executed. The average current drawn by the system during the task execution is mea-
sured by an Agilent [34411A] multimeter, which provides a resolution of 3 µA at a
sampling frequency of 50 kHz.

For comparison with the hardware-accelerated encoders described in Section 5.2.2,
the DPCM and ADPCM compression schemes were also implemented on the TI CC2531
MCU of the HaLOEWEn3 mote. The energy required for transmitting the uncom-
pressed data stream is used as the baseline measurement. Each transmitted packet
carries a maximum of 116 payload bytes, i.e., the maximum payload defined by IEEE
[802.15.4].

As the runtime of the compression modules and hence the energy efficiency of the
compression scheme is is affected by the nature of the data stream to be compressed,
concrete results are presented in Chapter 7.

Oscilloscope

Multimeter

MCU

DC/DC

RCU

DC/DC

20 MHz
Oscillator

DC/DC

Voltage
Source

Trigger Flash*Freeze

2.5 V 1.2 V 3.3 V

3 V

Figure 33: Measurement setup
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5.3 Linear Regression

In this section, a resource-efficient formulation of the least-squares Linear Regression
(LR) algorithm, as well as its software and hardware implementation is proposed. This
approach has already been published in [Engel2015a].

LR can be applied in different WSN scenarios. As shown in Section 6.2, a wire-
less time synchronization protocol can use a regression-based clock drift estima-
tion to compensate the slightly different oscillator frequencies of all network nodes.
In addition, other WSN applications like node Received Signal Strength Indication
(RSSI)-based node localization [Vanheel2011], predictive compression [Carvalho2011],
or task scheduling [Ravinagarajan2010] have utilized the LR algorithm.

For a list of n data points (xk, yk)n
k=1, the slope of the regression line fitting the

points according to the least-squares method is given by

m :=
∑n

k=1 (n · xk − sx) · (n · yk − sy)∑n
k=1 (n · xk − sx)2 (15)

with sx :=
n∑

k=1
xk (16)

and sy :=
n∑

k=1
yk. (17)

Directly implementing this formulation leads to a linear runtime complexity with nar-
row operators, as the dominating multiplications are performed just on differences
between sums of data points.

If the LR is applied as a sliding window over a set of data points, i.e., the oldest
data point is discarded as soon as a new data point is inserted, the Rolling Linear
Regression (RLR) [Neely1966]

m := n · sxy − sx · sy
n · sxx − sx · sx (18)

with sxy :=
n∑

k=1
xk · yk (19)

and sxx :=
n∑

k=1
x2

k (20)

can be executed in constant time (see Algorithm 2). However, the dominating arith-
metic operator of Equation 18 is the multiplication of two sums of data points, which
requires a larger operator width than the operations required for Equation 15. Fur-
thermore, additional memory is required to store the rolling sums sx , sy, sxy and sxx
for the RLR approach.

To combine the constant runtime complexity of the RLR (Equation 18) with the
reduced operator and memory complexity of the simple LR (Equation 15), a novel
formulation of the sliding window LR called Rolling Linear Regression with Coordinate
Transformation (RLRCT) is proposed in the next section. Although being applica-
tion independent in principle, the benefits of the RLRCT compared to the RLR are
based on the bit width optimization of the underlying operators. Therefore, applica-
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tions employing the RLRCT have to specify an upper limit for the step width between
subsequent data points:

L := (Lx, Ly) :=
(

max
k∈N
|xk+1 − xk|, max

k∈N
|yk+1 − yk|

)
(21)

5.3.1 Rolling Linear Regression with Coordinate Transformation

The main idea of the RLRCT is to move the origin of the considered coordinate sys-
tem to the most recent data point in the sliding window, as shown in Figure 34.
Let (xk, yk)p

k=0 be the list of data points at a certain point in time. The coordinate
transformation translates these data points into

(x̄p,k, ȳp,k) := (xp − xk, yp − yk) ∀k ≤ p. (22)

This translation does not effect the slope calculated by the LR, but it limits the size
of the numerical data to be processed to n · L, where n still is the size of the sliding
window. The individual arithmetic operations for the RLRCT can thus be implemented
more efficiently than without applying the coordinate transformation.

The following formulas are stated only for the x values, but the same statements
hold for the y values. To apply the proposed transformation to the rolling sums of the
RLR with minimal effort, the RLRCT caches the translation steps

dxk := xk − xk−1 ∀p− n < k ≤ p (23)

between the last n data points. The absolute coordinates x̄p,k can be recovered for
p− n ≤ k ≤ p by accumulating the translation steps:

p∑
i=k+1

dx i
(Eq. 23)=

p∑
i=k+1

xi −
p∑

i=k+1
xi−1

= xp +
p−1∑

i=k+1
xi −

p−1∑
i=k

xi = xp − xk
(Eq. 22)= x̄p,k (24)

Algorithm 1
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Figure 34: Movement of sliding window and coordinate system by RLRCT update
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When moving the sliding window to the next data point xp+1, the coordinate trans-
formation (i.e., translation by dxp+1) must be applied to all coordinates, as

x̄p+1,k
(Eq. 24)=

p+1∑
i=k+1

dx i = dxp+1 +
p∑

i=k+1
dx i

(Eq. 24)= dxp+1 + x̄p,k (25)

As RLR does in Equation 18, RLRCT also relies on updating the rolling sum

sxp :=
p∑

k=p−n+1
x̄p,k (26)

= x̄p,p︸︷︷︸
0

−x̄p,p−n +
p−1∑

k=p−1−n+1
x̄p,k

(Eq. 25)= −x̄p,p−n +
p−1∑

k=p−1−n+1
dxp + x̄p−1,k

(Eq. 26)= n · dxp − x̄p,p−n + sxp−1 (27)

Instead of explicitly calculating x̄p,p−n, another rolling sum is introduced as

sdxp := x̄p,p−n
(Eq. 24)=

p∑
i=p−n+1

dx i

= dxp − dxp−n + sdxp−1 (28)

The sum of coordinate products

sxyp :=
p∑

k=p−n+1
x̄p,k · ȳp,k

= x̄p,p · ȳp,p︸ ︷︷ ︸
0

−x̄p,p−n · ȳp,p−n +
p−1∑

k=p−n

x̄p,k · ȳp,k

(Eq. 25,28)= −sdxp · sdyp +
p−1∑

k=p−n

(dxp + x̄p−1,k)(dyp + ȳp−1,k)

(Eq. 26)= sxyp−1 + dxp · syp−1 + dyp · sxp−1 + n · dxp · dyp − sdxp · sdyp (29)

is not actually handled as rolling sum in RLRCT. Instead, the entire numerator of
Equation 18 is accumulated as
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nump := n · sxyp − sxp · syp

(Eq. 27)= n · sxyp − (n · dxp − sdxp + sxp−1) · (n · dyp − sdyp + syp−1)
(Eq. 29)= n · sxyp−1 − sxp−1 · syp−1 − (n + 1) · sdxp · sdyp

+ sdxp(n · dyp + syp−1) + sdyp(n · dxp + sxp−1)
(Eq. 27)= nump−1 − (n + 1) · sdxp · sdyp + sdxp(sdyp + syp) + sdyp(sdxp + sxp)

= nump−1 − (n− 1) · sdxp · sdyp + sdxp · syp + sdyp · sxp (30)

The denominator of Equation 18 is accumulated accordingly:

denp = denp−1 − (n− 1) · sdx2
p + 2 · sdxp · sxp (31)

Algorithm 1 summarizes the RLRCT update procedure. In Line 1 and 2, the trans-
lation vector between the old and the new origin of the coordinate system is calculated,
before the origin is actually translated in Line 3 and 4. In Line 5, the sliding window is
moved by enqueuing the new data point and dequeuing the oldest entry. As no random
access to the intermediate data points is required by the RLRCT, the sliding window
is implemented as a First In, First Out (FIFO) structure F . The remaining Lines 6 to
12 realize the equations derived above to properly apply the translation vector to all
rolling sums.

Algorithm 1: Update procedure for Rolling Linear Regression with Coordinate
Transformation
Input: New data point (x, y)
Input: Previously received data point (x̂, ŷ)
Input: Accumulators sdx , sdy, sx , sy, num, den
Input: Sliding Window F
Output: Slope represented as fraction of num and den

1 dx := x− x̂;
2 dy := y − ŷ;
3 x̂ := x;
4 ŷ := y;
5 (d̂x , d̂y)← F ← (dx , dy) ; // move window

6 sdx += dx − d̂x ; // Equation 28
7 sdy += dy − d̂y;
8 sx += n · dx − sdx ; // Equation 27
9 sy += n · dy − sdy;

10 t := (n− 1) · sdx ;
11 num += sdx · sy + sdy · sx − t · sdy ; // Equation 30
12 den += sdx · sx · 2 − t · sdx ; // Equation 31
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Algorithm 2: Update procedure for Rolling Linear Regression (without Coordinate
Transformation)
Input: New data point point (x, y)
Input: Accumulators sx , sy, sxy, sxx
Input: Sliding Window FT
Output: Slope represented as fraction of num and den

1 xy := x · y;
2 xx := x · x;
3 (x̂, ŷ, x̂y, x̂x)← F ← (x, y, xy, xx) ; // move window

4 sx += x− x̂;
5 sy += y − ŷ;
6 sxy += xy − x̂y;
7 sxx += xx − x̂x ;
8 num += n · sxy − sx · sy ; // Equation 18
9 den += n · sxx − sx · sx ;

Algorithm 1 consists of 15 additions and nine multiplications (four of them with a
small constant). As shown in Algorithm 2, it is assumed that the RLR buffers the
additional values

(xyk, xxk)p
k=p−n+1 := (xk · yk, xk · xk)p

k=p−n+1 (32)

for the sliding window to avoid the recomputation of the products required in Line
6 and 7. The RLR requires fewer operations (10 additions, six multiplications) than
the RLRCT, but most of the RLRCT arithmetic operates on differences between sub-
sequent data points, instead of absolute data points. If the step width limitation
(Equation 21) is significantly smaller than the absolute data points, the bit width of
the RLRCT operations can be reduced. As will be shown in Section 6.2.3, this reduc-
tion in operator size can amortize the cost of the larger number of operations, thus
leading to a more efficient linear regression implementation. Furthermore, the RLRCT
requires less memory than the RLR to buffer the sliding window, as only two transla-
tion vectors have to be stored per entry instead of two full data points and two data
point products.

After execution of the update procedure, the slope of the linear regression line is
represented by num and den. The actual division is not executed by the update
procedure, to avoid losing accuracy at that point. Instead of representing m as a fixed-
point variable that can be multiplied with an value v later on, the slope division is
scheduled after this multiplication, i.e., v ·m = (v · num)/den.

5.3.2 Software Implementation

To analyze the benefits of the proposed RLRCT, Algorithm 1 and 2 as well as Equation
15, and an optimized version of Equation 15 for n = 2 was implemented on the CC2531
MCU of the HaLOEWEn3.
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Listing 1: 8051 assembler for a sample 24 bit× 16 bit multiplication x ·y = z in the directly
addressable memory

1 MOV A , _x+0 MOV B , _y+0 MUL AB MOV _z+0,A ; z [0 ]= x [ 0 ] ∗ y [ 0 ]
2 MOV R1 ,B ; R1=c a r r y
3
4 MOV A , _x+1 MOV B , _y+0 MUL AB ADD A , R1 MOV _z+1,A ; z [1 ]= x [ 1 ] ∗ y [0]+ c a r r y
5 CLR A ADDC A ,B MOV R1 ,A ; R1=c a r r y
6
7 MOV A , _x+2 MOV B , _y+0 MUL AB ADD A , R1 MOV _z+2,A ; z [2 ]= x [ 2 ] ∗ y [0]+ c a r r y
8 CLR A ADDC A ,B MOV _z+3,A ; z [3 ]= c a r r y
9 CLR A MOV _z+4,A ; z [4 ]=0

10
11 MOV A , _x+0 MOV B , _y+1 MUL AB ADD A , _z+1 MOV _z+1,A ; z [1]+=x [ 0 ] ∗ y [ 1 ]
12 MOV A ,B ADDC A , _z+2 MOV _z+2,A ; z [2]+= c a r r y
13 CLR A ADDC A , _z+3 MOV _z+3,A ; z [3]+= c a r r y
14 CLR A ADDC A , _z+4 MOV _z+4,A ; z [4]+= c a r r y
15
16 MOV A , _x+1 MOV B , _y+1 MUL AB ADD A , _z+2 MOV _z+2,A ; z [2]+=x [ 1 ] ∗ y [ 1 ]
17 MOV A ,B ADDC A , _z+3 MOV _z+3,A ; z [3]+= c a r r y
18 CLR A ADDC A , _z+4 MOV _z+4,A ; z [4]+= c a r r y
19
20 MOV A , _x+2 MOV B , _y+1 MUL AB ADD A , _z+3 MOV _z+3,A ; z [3]+=x [ 2 ] ∗ y [ 1 ]
21 MOV A ,B ADDC A , _z+4 MOV _z+4,A ; z [4]+= c a r r y

The 8051-ISA compliant compilers (e.g., [SDCC], [IAR] or [Keil]) support up to 64 bit
integer arithmetic operations with an operator granularity of 8 bit, 16 bit, 32 bit and
64 bit. As the main benefits of the RLRCT algorithm arise from optimized narrowed
operator sizes, these four levels of operator sizes are not sufficiently fine-grained. Thus,
the required operators (i.e., shift, inversion, accumulation, subtraction, multiplication,
division, and movement between memory regions) where implemented in 8051 assem-
bler with up to 96 bit wide representations at a granularity of 8 bit. Operands and
results may be constants or arrays allocated in the directly (data) or indirectly (xdata)
addressable memory region of the 8051 MCU. All intermediate variables and accu-
mulators are located in the directly addressable memory and the assembler routines
operate on that memory without accessing the stack. The implementation is optimized
for execution speed at the expense of a larger code memory footprint. An example for
a 24 bit× 16 bit multiplication is shown in Listing 1.

5.3.3 Hardware Implementation

As stated above, the benefits of the RLRCT arise from fine-grained operator
size optimization. Furthermore, the data-dependencies between the subsequent
RLRCT-operations allow for parallel executions of Lines 1 and 2, 3 and 4, 6 and
7, 8 and 9, as well as 11 and 12 of Algorithm 1. The RLRCT is thus well-suited for
hardware acceleration.

Three different architectures were implemented to trade-off execution speed against
resource requirements. All architectures buffer the data points (i.e., the sliding window
F ) in BRAM and perform the slope division as sequential shift-subtract steps. All
additions and multiplications are executed as single-cycle combinatorial logic. In the
Fully Parallel architecture, every arithmetic operation of Algorithm 1 is implemented
with dedicated logic. The data dependencies result in a seven cycle data path for
the LR. In the Single MAC architecture, a single multiply-accumulate operator is
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Figure 35: HW Kernel (µArchitecture) for RLRCT

implemented and the registers buffering the accumulators and intermediate results are
sequentially multiplexed to this operator, resulting in a 21 cycle computation for the
RLRCT.

Finally, the micro-coded µArchitecture shown in Figure 35 buffers all accumulators
next to the regression table in a dual-port BRAM. To efficiently utilize the BRAM, the
larger accumulators (i.e., num and den) occupy two memory locations (i.e., high and
low word). Three double word registers (T0, T1, T2) can be fed with data from the
BRAM, inputs of the HW kernels (i.e., x, y), results from previous ALU operations,
specific constants, or some derived values required for the slope division. Two registers
are selected as operands (A, B) for the ALU, which only supports the required basic
operations. Besides computing the sum, difference, product, and absolute difference of
A and B, a fraction A

B can be reduced from double to single word precision by right-
shifting the numerator and denominator by an appropriate (data-dependent) width.

As shown in Table 9, the 26 bit wide µInstructions used to control the µArchitecture
are grouped into fields configuring the BRAM addressing (i.e., P0A, P1A), multiplexers
(i.e., P0D, P1D, T0D, T1H, T1L, T2D, A, B) as well as the ALU operation. Vari-
ous efforts have been made to keep the µInstructions compact. For example, not all
BRAM addresses are available at both ports, not all registers can be mapped to both
ALU operands, and the port / register write enable information is integrated into the
related multiplexer configurations. To simplify the control logic of the µArchitecture,
the latencies resulting from BRAM and register access have to be considered when
coding the µInstructions. Furthermore, predication logic (i.e., T0D = T2D = 101) is
used to implement sequential (non-performing restoring) divisions without control flow
branches. Each write access to the sliding window F inside the BRAM increments an
internal circular counter thus combining the push and pop operation for dx and dy as
required by Algorithm 1. Each µInstruction is executed in one RCU clock cycle.

Table 10 lists the 28 µInstructions required to implement Algorithm 1. After an
initiation interval of two instructions, the ALU is utilized in every instruction. Ten of
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Bits Field Description Interpretation

25 - 22 P0A RAM P0 address 0000 : x̂ 1000 : rnum = num/2K

0001 : ŷ 1001 : rden = den/2K

0010 : sdx 1010 : diff = |rnum − rden|
0011 : sdy 1011 : temp
0100 : sx 1100 : FIFO F for dx and dy
0101 : sy 1101 : unused
0110 : num low 1110 : unused
0111 : den low 1111 : unused

21 - 20 P0D RAM P0 source 00 : no write to P0 10 : x
01 : RL 11 : y

19 - 17 P1A RAM P1 address 000 : num high 100 : neg = sgn(rnum − rden)
001 : den high 101 : unused
010 : rden 110 : unused
011 : temporary 111 : unused

16 - 15 P1D RAM P1 source 00 : no write to P1 10 : RL
01 : RH 11 : unused

14 - 12 T0D REG T0 source 000 : no write to T0 100 : R
001 : x 101 : R if R ≥ 0
010 : y 110 : RL
011 : P0 111 : unused

11 T1H REG T1 high source 0 : RH 1 : P1

10 - 8 T1L REG T1 low source 000 : no write to T1 100 : n− 1
001 : RL 101 : SHR(T1)
010 : RH 110 : unused
011 : P0 111 : unused

7 - 5 T2D REG T2 source 000 : no write to T2 100 : 0
001 : R 101 : T2 | 2i if R ≥ 0
010 : P0 110 : 2i

011 : n 111 : unused

4 A ALU operand A 0 : T0 1 : T1

3 B ALU operand B 0 : T1 1 : T2

2 - 0 OP ALU opcode 000 : A + B 100 : (A < B, |A−B|)
001 : A−B 101 : T1 < 0 ? A + B : A−B
010 : A ·B 110 : T1 < 0 ? A−B : A + B
011 : (A/2K , B/2K) 111 : unused

Table 9: 26 bit µInstruction controlling the RLRCT µArchitecture

the 28 instructions actually utilize both BRAM ports. The numerator num and de-
nominator den representing the slope of the regression line are produced by the ALU
in Instruction 21 and 26. Two additional instructions are used to prepare the multi-
plication of the slope with a certain value v as required for the time synchronization
application described in Section 6.2. Instruction 27 reduces the size of the numerator
(to rnum) and denominator (to rden) by a common factor 2K chosen large enough,
such that rnum and rden fit into single words inside the BRAM. Instruction 28 derives
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# P0A P0D P1A P1D T0D T1H T1L T2D A B OP R T0 T1 T2 P0 P1 RAM

1 0000 10 000 00 000 0 000 000 0 0 000 x̂ x̂=x
2 0010 00 000 00 001 0 011 000 0 0 000 x P0 sdx
3 1100 01 000 00 011 0 001 000 0 0 001 T0 − T1 P0 R F F++=RL
4 0100 00 000 00 100 0 000 010 0 0 000 T0 + T1 R P0 sx
5 0010 01 000 00 011 0 000 001 0 1 001 T0 − T2 P0 R sdx=RL
6 0001 11 000 00 100 0 000 011 0 1 001 T0 − T2 R n ŷ ŷ=y
7 0011 00 000 00 000 0 011 001 1 1 010 T1 · T2 P0 R sdy
8 0100 01 000 00 010 0 000 010 0 1 000 T0 + T2 y P0 sx=RL
9 1100 01 000 00 000 0 001 000 0 0 001 T0 − T1 R F F++=RL

10 0101 00 000 00 100 0 000 010 1 1 000 T1 + T2 R P0 sy
11 0011 01 000 00 011 0 000 001 0 1 001 T0 − T2 P0 R sdy=RL

12 0110 00 000 00 100 0 000 011 0 1 001 T0 − T2 R n
num
low

num
high

13 0010 00 000 00 000 1 011 001 1 1 010 T1 · T2 (P1,P0) R sdx
14 0101 01 000 00 100 0 000 010 0 1 000 T0 + T2 R P0 sy=RL
15 0000 00 000 00 100 0 000 000 0 1 010 T0 · T2 R
16 0011 00 000 00 100 0 100 000 0 0 000 T0 + T1 R n − 1 sdy
17 1011 01 000 00 000 0 001 010 1 1 010 T1 · T2 R P0 temp=RL
18 0100 00 000 00 000 0 001 000 1 1 010 T1 · T2 R sx
19 0000 00 000 00 100 0 011 000 0 0 001 T0 − T1 R P0
20 0010 00 000 00 000 0 000 001 1 1 010 T1 · T2 R sdx
21 0110 01 000 01 000 0 000 010 0 1 000 T0 + T2 P0 num=R

22 0111 00 001 00 000 0 001 000 1 1 010 T1 · T2 R den
low

den
high

23 1011 00 000 00 100 1 011 000 1 0 000 T1 + T1 R (P1,P0) temp
24 0000 00 000 00 100 0 011 000 0 0 000 T0 + T1 R P0

25 0110 00 000 00 000 0 001 000 1 1 010 T1 · T2 R num
low

num
high

26 0111 01 001 01 100 1 011 000 0 0 001 T0 − T1 R (P1,P0) den=R

27 1000 01 010 01 110 0 010 000 0 0 011 ( T0
2K , T1

2K ) RL RH rden=RH,
rnum=RL

28 1010 01 100 01 000 0 000 000 0 0 100 (T0 < T1,
|T0 − T1|)

neg=RH,
diff =RL

Table 10: µInstruction sequence implementing Algorithm 1 on the µArchitecture

the signum neg = sgn(rnum − rden) and the absolute differenz diff = |rnum − rden|,
which are used later on to calculate

v · num
den = v · rnum

rden = v + (−1)neg · v · diff
rden .

For v ≥ 0, the final sequential division can be executed without explicit sign analysis,
as both v · diff and rden are not negative. Furthermore, for slopes near one, i.e.,
rnum ≈ rden as expected in Section 6.2, v · diff is much smaller than v · rnum, thus
further simplifying the sequential division.

For the evaluation of the resource and energy efficiency of the software and hard-
ware implementations of the RLRCT, a concrete implementation defining the actual
operator sizes is required. These results can be found in Section 6.2.3.
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CHAPTER 6
Network Communication Primitives

In this chapter, primitives related to the wireless network communication are presented.
Although motivated by the target application described in Section 7.3, the routing and
synchronization mechanisms are reusable for similar applications. Parts of this chapter
have already been published in [Engel2014b; Engel2015a].

6.1 Transceiver Scheduling for Multi-Source Flooding

Routing protocols have a significant impact on distributed applications relying on
multi-hop wireless communication. The number of nodes involved to deliver an in-
formation (a data item) from a source to a sink determines the networks overall energy
consumption as well as the data throughput. Often, shortest routes can not be eas-
ily discovered, or are undesirable (e.g., when balancing communication load equally
over all network nodes or to provide robust communication over redundant paths).
In general, application-tailored routing protocols can exploit special characteristics to
improve throughput and energy consumption.

Flooding information into a network by multi-hop rebroadcasting is simple and ro-
bust, but also very inefficient [Ni1999]. As stated in Section 3.2.2, many application-
independent improvements of the basic blind flooding have been proposed during the
last decade to reduce the number of required rebroadcasts. Even better results can
be achieved by exploiting some (limited) knowledge about the communication needs
of the concrete applications. Even so, the approach presented here is applicable for a
wide spectrum of use cases.

The following assumptions are derived from the SHM application described in Section
7.3, but they hold true for many monitoring scenarios. First of all, a monitored object
is either excited or not at any point in time. If relevant information is detected at a
certain position on the object, it is quite likely that nearby sensors are also detecting
events. Thus, instead of assuming communication originating from a single source
node, parallel multi-source information flooding should be supported. Detected events
can often be characterized just by a few bits specifying the time and place where a
specific activity threshold was exceeded. It can thus be assumed that information from
multiple source nodes can be merged into a single message. Furthermore, if the sensor
nodes are attached to a structure, the network topology can be assumed to be static
(apart from node failures). And finally, as most distributed monitoring application
already rely on a highly accurate time synchronization mechanism for correct data
gathering (see Section 6.2), an accurate scheduling of data reception and transmission
can also be achieved without additional effort.

As the network topology is assumed to be static and the nodes are time-synchronized
to each other, a schedule can be derived that selects appropriate nodes as transmitters
and receivers in subsequent time slots (cycles). This static schedule must be known to
all nodes and is executed periodically, i.e., the source nodes buffer collected information
until the restart of the schedule. The main advantage of this scheme is twofold. First,
all nodes not scheduled for reception in a certain cycle can keep their radios turned off
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as they do not have to listen for potential incoming data. Second, knowledge of the
global topology can be used to deliberately aggregate information from specific source
nodes.

Due to the spatial and temporal correlation of the sensor nodes, at each restart of the
schedule it is most likely that either all source nodes have buffered some information,
or that no source node has buffered any information. In the first case, the schedule can
be executed as intended. In the second case, the source nodes actually scheduled for
transmission will not actually start sending, which must be recognized at the receivers
scheduled for listening by imposing a short timeout. These receivers, in turn, cancel
their scheduled forwarding transmission, thus propagating the transmission avoidance
until the end of the schedule. The energy overhead for an unused schedule is thus
restricted to a small number of clear channel assessments at the scheduled receivers.
The same mechanism of transmission avoidance must be applied if only a subset of
source nodes provides new information at the start of a new schedule. In this case, the
resulting flooding routes may not be optimal for the specific subset of source nodes.
However, the probability of those cases is small due to the spatial and temporal corre-
lations between the data sources, as stated above. The overall energy efficiency of the
flooding scheme will thus not be significantly affected.

The reminder of this section focuses on calculating an optimal s-to-all flooding sched-
ule for a given network topology.

6.1.1 Network Model and Cost Function

An application independent network model M is defined as

M = (N , N0, EI , EC , h) (33)
N ⊆ N (34)

N0 ⊆ N (35)
EI ⊆ N2 (36)
EC ⊂ EI (37)

h : N2 → N. (38)

This model combines two directed graphs MI = (N , EI) and MC = (N , EC) with a
common set of network nodes N . MC represents the networks single-hop connectivity,
i.e., node b ∈ N may receive information directly from node a ∈ N iff (a, b) ∈
EC . MI represents the interference relationship within the wireless network, i.e., the
transmission of node a prevents the successful reception of any other information at
node b iff (a, b) ∈ EI . MC is thus a subgraph of MI . The information-generating
source nodes are denoted as N0. The function h determines the minimum number
of hops between two nodes. These hop counts h are precomputed by the all-pairs-
shortest-path algorithm [Floyd1962]. For clarity, a will be used for nodes acting as
transmitters, b for nodes acting as receivers, s for source nodes and v for arbitrary
network nodes throughout this section.

The network model M can be generated from the known locations and the transmis-
sion and reception characteristics of all network nodes, as shown in Section 6.1.4. A
more accurate model accounting for obstacles can be obtained from well known online
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topology discovery algorithms (e.g., recursive neighborhood exchange [Dheap2003]), ex-
ecuted once after network deployment. However, detailed topology detection is outside
the scope of this thesis and M is thus assumed to be known and static.

A schedule S and an information assignment function I are defined as

S : N × N→ {RX , TX , IDLE} (39)
I : N × N→ 2N0 (40)

Thus, a schedule S assigns a radio transceiver status S(v , t) to each network node
v ∈ N in every scheduling cycle t ∈ N. The information assignment function I(v , t)
denotes the subset of source nodes that have already forwarded their information to
node v before cycle t such that the information is known to v in cycle t. Initially, only
the source nodes know about their information:

I(v , 0) =
{
{v}, if v ∈ N0
∅, otherwise (41)

The information is then propagated within each cycle t from any node a scheduled
for transmission to any node b within the transmission range of a if b is scheduled for
reception and not disturbed by another transmitter c:

I(b, t + 1) = I(b, t) (42)

∪



I(a, t), if (a, b) ∈ EC ∧
S(a, t) = TX ∧
S(b, t) = RX ∧
∀(c, b) ∈ EI \ {(a, b)} : S(c, t) 6= TX

∅, otherwise

The length L(S) of a schedule S is the minimum number of cycles required to flood
all source node information to all nodes in the network:

L(S) = min
t∈N
∀v ∈ N : I(v , t) = N0 (43)

The sum of scheduled receptions and transmissions are defined as the primary opti-
mization goal to minimize the networks overall energy consumption C(S) for a schedule
S:

C(S) =
L(S)−1∑

t=0
|{v ∈ N : S(v , t) 6= IDLE}| (44)

Radio transceivers draw about the same power when receiving and transmitting
data. Thus, receiving and transmitting the same amount of data consumes about
the same amount of energy. The cost function therefore does not distinguish between
transmission and reception costs. However, weighting factors could be integrated as
needed.

For two schedules of equal cost, the shorter schedule yields smaller latency and in-
creased data throughput. Therefore, the schedule length is the secondary optimization
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goal. Definition 1 summarizes the optimization problem to be solved in Section 6.1.2
and 6.1.3.
Definition 1 (Optimal Flooding Schedule)

For any network model M find a schedule S of finite length, such that

C(S) < C(Ŝ) ∨
(
C(S) = C(Ŝ) ∧ L(S) ≤ L(Ŝ)

)
(45)

for any valid schedule Ŝ.

6.1.2 Integer Linear Program for Optimal Scheduling

Finding an optimal solution for the problem stated in Definition 1 requires solving
multiple set-cover problems, e.g., finding the smallest number of forwarding nodes to
cover the remaining, not yet reached nodes. The optimal scheduling problem is thus
NP-complete. To find an optimal solution for non-trivial network sizes in a reasonable
time, parallel branch-and-bound algorithms have to be utilized. The network model
(Equation 33) and the information propagation rules (Equations 41 to 44) are thus
translated into an Integer Linear Program (ILP). A commercial ILP-solver is then
utilized to compute the optimal schedule (see Section 6.1.4).

The ILP-solver determines integer values for a set of variables. The solution space
is restricted by a set of constraints, which are relations between linear combinations
of the variables and constant values. Within this solution space, a single objective is
minimized. This objective is also a linear combination of the variables.

When working with binary variables, basic operations like disjunctions and conjunc-
tions have to be replaced by the following constraints:

y =
n∨

i=1
xi ⇔ y ≥ x1 ∧ . . . ∧ y ≥ xn ∧ y ≤

n∑
i=1

xi (46)

y =
n∧

i=1
xi ⇔ y ≥

n∑
i=1

xi − (n− 1) ∧ n · y ≤
n∑

i=1
xi (47)

To formulate the ILP for the optimal scheduling, the following binary variables are
used:

αa,t ⇔ S(a, t) = TX (48)
βb,t ⇔ S(b, t) = RX (49)
γt ⇔ ∃v ∈ N : S(v , t) 6= IDLE (50)

δs,v ,t ⇔ s ∈ I(v , t) (51)
εs,a,b,t ⇔ δs,a,t ∧ αa,t ∧ βb,t (52)

To define the necessary constraints for each schedule cycle t, an upper bound Lmax
for the length of the resulting schedule is required. This upper bound can be derived
from the network model, as a naive sequential blind flooding of all information would
not require more then |N | · |N0| cycles. Alternatively, the outcome of the heuristic
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scheduling in Section 6.1.3 can be used to define tighter bounds for the schedule length.
This is important, as the ILP formulation requires a total number of Lmax · (2|N | +
1 + |N0|(|N |+ |EC |)) variables.

Let T = {0, . . . , Lmax − 1} be the set of potential schedule cycles. The objective to
be minimized is described as

Minimize Lmax ·
∑
t∈T

∑
v ∈N

(αv ,t + βv ,t) +
∑
t∈T

γt (53)

to satisfy Equation 45. The right sum calculates the number of actually required
cycles L(S). The complete distribution of information tested in Equation 43 is ensured
by constraints (Equation 59). The left sum calculates C(S) according to Equation 44.
It is weighted by Lmax to make C(S) the primary objective.

The following constraints are required to distinguish between active and idle cycles:

∀t ∈ T , v ∈ N : γt ≥ αv ,t (54)
∀t ∈ T , v ∈ N : γt ≥ βv ,t (55)
∀t ∈ T : γt ≤

∑
v ∈N

(αv ,t + βv ,t) (56)

∀t > 0 : γt ≤ γt−1 (57)

According to Equation 46, γt = ∨
v ∈N αv ,t ∨ βv ,t is realized by Equations 54 to 56.

Thus, a cycle is active, iff any node is scheduled for transmission or reception in this
cycle. Equation 57 moves all idle cycles to the end of T .

The following constraints ensure correct information propagation:

∀s ∈ N0, t ∈ T : δs,v ,t = 1 (58)
∀s ∈ N0, v ∈ N \ {s} : δs,v ,Lmax−1 = 1 (59)
∀s ∈ N0, v ∈ N \ {s}, t < h(s, v ) : δs,v ,t = 0 (60)
∀s ∈ N0, b ∈ N \ {s}, t ≥ h(s, b), (a, b) ∈ EC :

εs,a,b,t−1 ≥ δs,a,t−1 + αa,t−1 + βb,t−1 − 2 (61)
3 · εs,a,b,t−1 ≤ δa,s,t−1 + αa,t−1 + βb,t−1 (62)
δs,b,t ≥ εs,a,b,t−1 (63)

∀s ∈ N0, b ∈ N \ {s}, t ≥ h(s, b) :
δs,b,t ≥ δs,b,t−1 (64)
δs,b,t ≤ δs,b,t−1 +

∑
(a,b)∈EC

εs,a,b,t−1 (65)

All source nodes know about their own information at any time (Equation 58). In the
last cycle, all nodes must know about all information (Equation 59). The information
s can not reach node v before cycle h(s, v ) (Equation 60). According to Equation
47, the Equations 61 and 62 realize εs,a,b,t−1 = δs,a,t−1 ∧ αa,t−1 ∧ βb,t−1. Therefore, an
information s is transmitted from node a to node b iff a knows about s and is scheduled
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interference

source node source node

α0,0 α1,1 α2,2
β2,0 β2,1 β0,2, β1,2
γ0 γ1 γ2
δ0,0,0 δ0,0,1, δ0,2,1 δ0,0,2, δ0,2,2 δ0,0,3, δ0,2,3, δ0,1,3
δ1,1,0 δ1,1,1 δ1,1,2, δ1,2,2 δ1,1,3, δ1,2,3, δ1,0,3
ε0,0,2,0 ε1,1,2,1 ε0,2,1,2, ε1,2,0,2

Figure 36: Example network with N0 = {0, 1}, N = N0 ∪ {2}, EC =
{(0, 2), (2, 0), (1, 2), (2, 1)}, EI = EC ∪ {(0, 1), (1, 0)} and its ILP solution
(variables set to 1)

for transmission and b is scheduled for reception (Equation 52). According to Equation
46, the Equations 63 to 65 realize δs,b,t = δs,b,t−1 ∨

∨
(a,b)∈EC

εs,a,b,t−1. Thus, node b
knows about information s in cycle t iff it knew about s in cycle t− 1, or received the
information from any node a in cycle t− 1.

Finally, the following constraints prevent interference and invalid transceiver usage:

∀t ∈ T , v ∈ N : αv ,t + βv ,t ≤ 1 (66)
∀t ∈ T , b ∈ N : |N | · βb,t +

∑
(a,b)∈EI

αa,t ≤ |N |+ 1 (67)

Equation 66 ensures that no node is scheduled for transmission and reception in
the same cycle. Due to Equation 67, a receiver b must not hear signals from multiple
transmitters. If b is not scheduled for reception, Equation 67 does not constrain the
solution space as the number of potential transmitters can not be larger than |N | − 1.

After passing the Equations 53 to 67 to the ILP solver, the resulting schedule is
constructed from the α and β variables.

Figure 36 provides a small example network. For Lmax = 4, the generated ILP for-
mulation comprises 68 variables and 141 constraints. In the ILP solution, 29 variables
are set to 1 representing an optimal schedule (0→ {2}; 1→ {2}; 2→ {0, 1}).

6.1.3 Heuristic Scheduling

As discussed in Section 6.1.2, finding an optimal schedule is NP-complete and the
ILP-solvers will thus not be able to find solutions for larger networks in an acceptable
time. To this end, an heuristic algorithm is proposed to find good (see Section 6.1.4
for an evaluation), but not necessarily optimal solutions for larger networks.

The main idea of Algorithm 3 is to select the set of transmitting nodes in each
scheduling cycle that transfers the maximum amount of new information to their
neighboring nodes. If called with an enabled collect flag, the algorithm tries to ag-
gregate the information of all source nodes at a central collector node vcollect before
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Algorithm 3: Heuristic scheduling for multi-source flooding
Input: Graph model M = (N , N0, EI , EC , h)
Input: collect flag
Output: Schedule S

1 t := 0;
2 S(v , t) := IDLE ∀v ∈ N ;
3 I(v , t) := ∅ ∀v ∈ N ;
4 I(s, t) := {s} ∀s ∈ N0;
5 if collect then
6 d := minv ∈N

∑
s∈N0 h(s, v );

7 D := {v ∈ N : ∑s∈N0 h(s, v ) = d};
8 d := maxa∈D |{(a, b) ∈ EC}|;
9 vcollect := a ∈ D : |{(a, b) ∈ EC}| = d;

10 while ∃v ∈ N : I(v , t) 6= N0 do
11 T := {v ∈ N : ∃(a, b) ∈ EC : I(a, t) 6⊆ I(b, t)};
12 d := maxv ∈T |I(v , t)|;
13 T := {v ∈ T : |I(v , t)| = d};
14 wmax := −∞;
15 foreach P ∈ 2T do
16 E := ∅;
17 foreach b ∈ N \ P do
18 D := {a ∈ P : (a, b) ∈ EI};
19 if |D| 6= 1 then next;
20 if (a, b) 6∈ EC then next;
21 if I(a, t) ⊆ I(b, t) then next;
22 E := E ∪ {(a, b)};
23 if collect ∧ I(vcollect , t) 6= N0 then
24 w := 0;
25 foreach s ∈ N0 do
26 D := {v ∈ N : s ∈ I(v , t)} ∪
27 {b ∈ N : ∃(a, b) ∈ E : s ∈ I(a, t)};
28 w := w −minv ∈D h(v , vcollect);
29 else
30 w := ∑

(a,b)∈E |I(a, t) \ I(b, t)|;
31 if w > wmax then
32 wmax := w;
33 Emax := E;

34 I(v , t + 1) := I(v , t) ∀v ∈ N ;
35 foreach (a, b) ∈ Emax do
36 S(a, t) := TX ;
37 S(b, t) := RX ;
38 I(b, t + 1) := I(b, t) ∪ I(a, t);
39 t := t + 1;
40 S(v , t) := IDLE ∀v ∈ N ;
41 postProcessing(M , S, I);
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flooding the whole network. Not all network topologies benefit from this aggregation.
Thus the algorithm should be run twice (with and without the collect flag) to obtain
best results.

In Lines 1 to 4, the cycle counter t, the schedule S and the information assignment I
are initialized. In Lines 6 to 9, the central node vcollect for the optional collect mode is
selected as the node with minimal distance to all source nodes and maximum number
of reachable neighbors. Each execution of the while-loop in Line 10 generates another
schedule cycle, until all information is distributed to all nodes. In Line 11, a list T of
potential transmitting nodes is selected. To keep the subsequent search-space as small
as possible, T is restricted to those nodes carrying the most information (Line 13). Due
to possible mutual interferences, it is not always the best solution to activate all selected
transmitters in the same cycle. Therefore, the subset P of T actually maximizing a
performance metric wmax is searched by the loop in Line 15. The performance metric
varies depending on operating mode (collect true or false), and over the course of the
search (see below).

In Lines 17 to 22, a list of edges E from the transmitters P to appropriate receivers is
determined. A node b is an appropriate receiver if it is not included in the transmitters
list (Line 17), if it is influenced by exactly one transmitter a ∈ P (Line 19) and if it
can actually receive additional information from a (Lines 20, 21).

In non-greedy mode (or in greedy mode, but with all information already aggregated
at the collector node vcollect), the algorithm aims to maximize the overall appear-
ance of new (previously unknown) information at receiver nodes. This computation
is performed in Line 30 for the currently examined subset P . In greedy mode, the
heuristic initially drives all information towards the collector node. Thus, until all
information has arrived there (I(vcollect , t) 6= N0), the current subset P is rated with
regard to the minimal hop distance of each information s to the collector node vcollect ,
summed in the loop at Line 25 across all s. Once all information has arrived at vcollect
(I(vcollect , t) = N0), the quality metric falls back to aiming for maximum information
distribution.

The best-so-far solution is maintained in wmax and Emax (Line 31). This solution is
used to schedule the nodes in the current cycle and expand the information assignment
for the next cycle (Lines 34 to 40).

The resulting schedule is further optimized in a post-processing step (Line 41) by
eliminating redundant data transfers. A data transfer from node a to node b in cycle t
is redundant, if it is dominated by a later data transfer from node c to node b in cycle
k > t, i.e., ∆I := I(b, t + 1) \ I(b, t) ⊆ I(c, k) and b is not scheduled for transmission
between cycles t and k. In this case, S(b, t) is set to IDLE and I(b, i) is reduced by ∆I
for t < i ≤ k. Afterwards, the transmission S(a, t) may have become superfluous if b
(now set to IDLE) was its only receiver in cycle t. Then, S(a, t) is set to IDLE . This
may result in a completely idle schedule cycle t, which has to be removed. Furthermore,
removing a transmission for node a may make another reception of a redundant. Thus,
these steps are performed repeatedly until no more redundant transfers can be found.

6.1.4 Evaluation

The difficulty to find an optimal schedule heavily depends on the network topology. In
sparse networks, the number of possible information routes to choose from is smaller
than in dense networks. However, in totally connected graphs the optimal solution is
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straightforward. To evaluate the proposed scheduling algorithms on a large number
of topologies, random test-cases are generated. For each test-case, a number of |N |
nodes is randomly placed in a two dimensional plane of a certain size l2 by assigning
x, y : N 7→ [0, l]. Without loss of generality, the first |N0| nodes are selected as the
source nodes. Two thresholds dC , dI ∈ R are used to derive the network-topology from
the euclidean distance between two nodes (a, b) ∈ N2:

d(a, b) =
√

(x(a)− x(b))2 + (y(a)− y(b))2 (68)
(a, b) ∈ EC ⇔ d(a, b) ≤ dC (69)
(a, b) ∈ EI ⇔ d(a, b) ≤ dI (70)

The inference and connectivity thresholds are derived from the 2-ray-ground radio
propagation model [Rappaport2001]:

PRX
PTX

= GTXGRX
L

h2
TXh2

RX
d(TX , RX)4 (71)

where PTX is the transmitted signal power, PRX is the received signal power,
d(TX , RX) is the distance between sender and receiver, hTX and hRX are the ver-
tical height of the transmitter and receiver antennas over ground. The system loss
factor L and the antenna gains GTX , GRX are usually disregarded.

As a practical example, the TI [CC2530] RF-SoC of the HaLOEWEn3 provides a
maximum PTX of 4.5 dBm (2.82 mW) and may successfully receive −82 dBm (6.31 pW)
signals while being subject to another −85 dBm (3.16 pW) noise signal (co-channel
rejection). With an assumed antenna height of 0.24 m, the connectivity and interference
ranges are calculated as

dC = 0.24 m · 4
√

2.82 mW
6.31 pW = 35 m (72)

dI = 0.24 m · 4
√

2.82 mW
3.16 pW = 41 m (73)

With these fixed settings, the density of the network topology can be adjusted by
the number of network nodes and the size l2 of the deployment area.

To evaluate the efficiency of the proposed optimal and heuristic scheduling algorithm,
the resulting cost for various network configurations is compared against traditional and
advanced flooding algorithms. These reference implementations share some common
characteristics. In each cycle, a set of potential forwarding nodes F ⊆ N is selected by
a protocol specific mechanism (see below). Out of these, a subset T ⊆ F is selected by
CSMA collision avoidance and a hidden terminal detection, i.e., >a, â ∈ T : (a, â) ∈
EI ∨ (∃b ∈ N : (a, b) ∈ EC ∧ (â, b) ∈ EI). All non-transmitting nodes in the
interference range of any transmitter are counted as receivers R = b ∈ N \ T : ∃a ∈
T : (a, b) ∈ EI}. All other nodes will turn off their radio after clear channel assessment
and thus do not consume a considerable amount of energy when compared to actually
receiving data.
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The main difference between the various reference implementations is the selection
of the potential forwarding nodes F . In blind flooding, all nodes that have received,
but not yet forwarded an information are included in F . This does not require any
knowledge about the network topology. In contrast, the self-pruning (sp) [Lim2001],
dominant-pruning (dp) [Lim2001], partial dominant-pruning (pdp) [Lou2002], total
dominant-pruning (tdp) [Lou2002] and the history-based 2-hop dominant-pruning
(h2dp) [Agathos2011] try to reduce F based on knowledge about the one- or two-
hop neighborhood of each node. Please refer to the original work for further details.

For this evaluation, CPLEX 12.5.1 is used as ILP solver running up to 8 threads.
The ILP formulation is passed to CPLEX in the LP file format. The solver is supplied
with an upper bound for the objective function derived from a preceding run of the
scheduling heuristic. All computations are executed on a compute server equipped
with 128 GB RAM and 32 AMD Opteron 6134 CPUs running at 2.3 GHz.

For networks of |N | = 20 nodes, 10 network configurations are considered by varying
the number of source nodes |N0| ∈ {1, . . . , 5} and the size of the deployment area l2 ∈
{100 m× 100 m, 150 m× 150 m}. For each configuration, 50 networks are generated at
random (within the given bounds). For each network, the various algorithms (flooding,
pruning, heuristic and ILP) are applied to generate a schedule. To simplify comparison,
the schedule costs (Equation 44) of the enhanced algorithms are normalized to the
outcome of the naive blind flooding. The resulting relative costs are averaged over the
50 random test-cases per network configuration.

Figure 37 shows the results for the larger deployment area (i.e., the sparse topology).
For a single source node, the existing pruning algorithms reduce the communication
costs by up to 35 % compared to the blind flooding baseline costs. These pruning al-
gorithms assume a certain preferred direction of information expanding from a single
source throughout the network. With a growing number of source nodes, this assump-
tion is no longer valid, resulting in the degraded improvement of less than 30 % cost
reduction for five source nodes. In contrast, the novel heuristic and ILP scheduler are
designed to manage multiple source nodes interfering with each other. Thus, their
performance advantage over blind flooding increases with the number of source nodes
up to 83 % for five source nodes.
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Figure 37: Averaged scheduling costs relative to blind flooding for 20 nodes in an
150 m × 150 m deployment area

76 Network Communication Primitives



1 2 3 4 50
20
40
60
80

100

Number of Source Nodes

Tr
an

sc
eiv

er
Ac

tiv
ity

[%
] sp dp pdp tdp h2dp novel: Heuristic ILP

Figure 38: Averaged scheduling costs relative to blind flooding for 20 nodes in an
100 m × 100 m deployment area

Similar observations can be made in Figure 38. Here, the smaller deployment area
results in denser networks. The number of redundant transmissions and receptions
performed in blind flooding thus increases and the relative cost of all other algorithms
decreases. Furthermore, the knowledge of the pruning algorithms about the two-hop
neighborhood becomes more valuable, as it now covers a larger part of the network.
The pruning algorithms achieve up to 55 % cost reduction for a single source node,
while the heuristic and optimal schedules computed by the novel methods achieve up
to 90 % cost reduction for five source nodes.

Figure 39 examines the heuristic schedule costs (i.e., the required number of trans-
missions/receptions) normalized to the optimal schedule costs. The percentiles describe
the range of heuristic schedule costs achieved by a certain percentage of the randomly
generated topologies. For example, the 60 % to 95 % percentile of the 150 m× 150 m
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Figure 39: Heuristic scheduling costs relative to optimal scheduling costs: 0 % to 100 %
percentile ( ), 60 % to 95 % percentile ( ), average (×) for the 50
randomly generated topologies.
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Figure 40: Averaged runtime of heuristic relative to runtime of ILP-solver (both executed
on the same compute server)

topologies with 4 source nodes ranges from 102.5 % to 107.7 %. That is, for 60 % out
of the 50 test topologies, the heuristic required not more than 102.5 % of the minimum
achievable transmissions and receptions, while 95 % out of the 50 test topologies re-
quired not more the 107.7 % of the minimum schedule cost. For networks with up to
three source nodes, the average heuristic results are less than 1 % worse compared to
the optimal results. Furthermore, the heuristic found an optimal solution in at least
60 % of the generated test cases with less than four source nodes. With an increasing
number of source nodes, the gap between the heuristic and the ILP solutions becomes
larger, but does not exceed 4 % on average for five source nodes. This slight quality
loss is the price for the highly accelerated computation, detailed in Figure 40. For
four sources in the dense topology, the heuristic (run in two passes, with collect both
enabled and disabled) executes in just 0.1 % of the time of the ILP solver. A speedup
of more than 1000× can be observed for networks with five source nodes. Note that
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Figure 41: Averaged schedule length relative to blind flooding for 20 nodes in an
150 m × 150 m deployment area
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Figure 42: Averaged schedule length relative to blind flooding for 20 nodes in an
100 m × 100 m deployment area

all execution times are measured as pure wall-clock time, not counting the eight-core
processing of the ILP solver as separate execution times.

The length of a schedule is the secondary optimization target defined by Equation
45. Figures 41 and 42 detail the average length of the schedules determined by the
considered flooding schemes. As for the transceiver activity, the proposed ILP and
heuristics clearly outperform the conventional pruning algorithms, especially for an
increasing number of source nodes and denser networks.

6.2 Precise Wireless Time Synchronization

Time synchronization is required in WSN applications mainly for two reasons. First,
data sampled from spatially distributed sensors cannot be properly interpreted without
knowledge of the exact sampling time. The acceptable uncertainty is typically a small
percentage of the application’s sampling period, which may range from several seconds
in environmental monitoring [Lazarescu2013] down to several milliseconds in vibration-
based structural health monitoring (Section 7.3), or even shorter in acoustic localization
applications [Astapov2014]. Thus, synchronization protocols with an accuracy of a few
microseconds are required for the more demanding applications.

A second reason for precise time synchronization derives from the large power con-
sumption of the radio transceiver when idly waiting for incoming messages. If the
sender and receiver are synchronized, the radio protocol can define short periods of
time in which transmissions can be initiated and received. Outside these windows, the
power-hungry transceivers can be shut down.

6.2.1 Necessity of Clock Drift Compensation

The local time at a sensor node a at a certain absolute time t is represented as a
timestamp la(t) := fa · (t− ta,0), which is the value of an oscillator driven counter
with oscillation frequency fa and start-up time ta,0. If two nodes a and b exchanged
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their timestamps (la(te), lb(te)) at a time te, then node b can calculate the timestamp
of node a at any subsequent time ts > te as

la(ts) = la(te) + fa · (ts − te)

= la(te) + fa

fb
(lb(ts)− lb(te))

= lb(ts) + la(te)− lb(te) + fa − fb

fb
(lb(ts)− lb(te)) (74)

= lb(ts) + la(te)− lb(te)︸ ︷︷ ︸
offset compensation

+ (fa − fb) · (ts − te)︸ ︷︷ ︸
drift compensation

Even if both nodes run at the same nominal frequency, the temperature and voltage de-
pendency of the oscillators result in small relative frequency deviations fa−fb

fb
, typically

in the range of a few parts per million (ppm), as shown in Figure 44. Manufactur-
ers specify the maximum frequency uncertainty over the entire operating temperature
range at even higher values (e.g., ±40 ppm for the TI CC2530). Without explicit drift
compensation, the timestamps used for offset compensation have to be exchanged at
a rate of at least (fa − fb)/(∆t · fb) to keep the synchronization uncertainty below
∆t. Even if the timestamp exchange can be piggybacked onto the application’s regular
communication payloads, the remaining additional communication effort is still unde-
sirable for small ∆t. The next section therefore shows how to efficiently integrate the
clock drift compensation into a wireless synchronization protocol.

6.2.2 Organization of Timestamp Exchange and Clock Drift Estimation

As in the FTSP [Maroti2004], a single node r is selected as time reference, i.e., its
local time lr represents the global time g all other nodes try to synchronize with. More
precisely, in addition to its local time la, every node a derives an assumption ga about
the global time. Under perfect synchronization, g(t) = ga(t) is achieved for any time t
and all nodes a. As this section focuses on the LR-based drift compensation, dynamic
reselection of the reference node, as it is described by [Maroti2004], is not considered
here further.

The synchronization layer should be inserted between the MAC and the network
layer to ensure that all nodes get synchronized, even if they are just routing pack-
ets. This violates the compliance with standardized protocols like [ZigBee]. However,
interoperability with COTS [ZigBee] devices is not the primary design goal of the
HaLOEWEn mote. The synchronization layer adds up to 6 B to the radio packet. The
first byte indicates whether or not the sender has already been synchronized to the
reference, i.e., it is the reference or it received a sufficient number of timestamps to
perform the offset and drift compensation between its local clock and the reference
clock, as described below. If the sender a is synchronized, a 5 B timestamp ga(tTX) is
appended to represent the senders assumption of the global time of the current start
of frame delimiter (SFD) transmission.

To calculate this timestamp, the sender a first inserts the PHY and the MAC header
and the first byte of the synchronization header into the radio buffer and initiates the
transmission. After the SFD was transmitted at time tTX , the sender calculates ga(tTX)
from the captured local time la(tTX). At the reference node, the local time is just
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Algorithm 4: Conversion from local to global time
Input: Local timestamp l
Input: Last exchanged synchronization point (ĝ, l̂)
Input: Clock drift represented as num and den
Output: Global timestamp g corresponding to l

1 t := l − l̂;
2 g := ĝ + t + (t · (num − den))/den ; // Equation 74

used as global time, while all other nodes apply Algorithm 4 to the local timestamp.
This algorithm realizes Equation 74 based on the outcome of the linear regression
(Section 5.3) applied to the last exchanged synchronization points. More specifically,
the ratio between num and den equals the ratio between the oscillator frequencies
of the reference node and the local node, i.e., num/den = fr/fa. To avoid a radio
buffer underrun, Algorithm 4 must be finished before the previous header data was
transmitted (i.e., 8 B/250 kbit/s = 256 µs).

Upon reception of the SFD of a radio packet by node b at time tRX , the receiver timer
captures the local timestamp lb(tRX). If the sender a was synchronized to the reference,
the global timestamp ga(tTX) is included in the synchronization header of the packet.
Node b than is provided with its local and a global timestamp nearly generated at the
same time. The remaining difference between tRX and tTX results from the propagation
delay between sender and receiver (i.e., 3.3 ns/m) and should not be significant for
node distances of a few meters. In practice, however, tRX − tTX = (3.51± 0.04) µs
was measured by observing the SFD sampling events automatically generated by the
transceiver hardware with an oscilloscope. A similar systemic offset was observed by
[Akhlaq2013]. It is compensated for by subtracting ∆SFD := 3.51 µs · 32 MHz = 112
from lb(tRX), where 32 MHz is the timer frequency of the HaLOEWEn3 motes. After
this error compensation, the receiver b uses the global and the local timestamp as new
data point for the sliding window linear regression to update its regression slope with
Algorithm 1.

In this manner, the synchronization information is flooded over multiple hops into
the network. To perform a certain action (e.g., sensor sampling) simultaneously, all
synchronized nodes must agree on a certain global time, convert this time into their
local time by applying Algorithm 5, and configure their timers to generate an interrupt
at the calculated local time.

Algorithm 5: Conversion from global to local time
Input: Global timestamp g
Input: Last exchanged synchronization point (ĝ, l̂)
Input: Clock drift represented as num and den
Output: Local timestamp l corresponding to g

1 t := g − ĝ;
2 l := l̂ + t− (t · (num − den))/num ; // Equation 74
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6.2.3 Evaluation

In this section the synchronization accuracy of the protocol described in Section 6.2.2
is analyzed for different configurations of the synchronization period and the regres-
sion table size. The synchronization accuracy is affected by hardware details of the
utilized TI CC2531 radio transceiver (e.g., oscillator stability, timestamp accuracy and
radio-triggered timestamp capturing) as well as the network topology and other envi-
ronmental conditions (e.g., temperature stability). After restricting the design space to
reasonable configurations for the synchronization period and the regression table size,
the resource requirements of the various LR implementations are compared against
each other.

The network setup shown in Figure 43 was used to evaluate the achievable synchro-
nization accuracy. Five receiver nodes are located in the broadcast range of a gateway
node. The latter dumps measurement results to the PC over a serial connection and
acts as the time reference in the synchronization protocol. All nodes are not more
than 1 m apart from each other, so the propagation delay is smaller than 3 ns and can
be ignored. Note that the synchronized nodes are required to be within the broad-
cast range of the gateway only to simplify the test of the synchronization accuracy.
The synchronization protocol itself relies on exchanging timestamps along the linear
multi-hop chain and does not require any broadcasts.

Once per second, the gateway initiates a new measurement consisting of two phases.
The test phase is started by a broadcast from the gateway to all other nodes (Mes-
sage 1 in Figure 43a). The gateway captures the broadcast transmission time g(tTX).
Each receiving node i captures its local broadcast reception time li(tRX), derives the
local broadcast transmission time as li(tTX) ≈ li(tRX)−∆SFD, and calculates the cor-
responding assumed global time gi(tTX) using offset and drift compensation. These
timestamps are reported back to the gateway in a linear chain starting at node 5
(Messages 2 to 6 in Figure 43a). The actual synchronization accuracy Ai and the
actual clock drift Di of node i relative to the reference are derived from the received
timestamps as

Ai(tTX) := gi(tTX)− g(tTX)

Di(tTX) := g(tTX)− g(tTX − 1 s)
li(tTX)− li(tTX − 1 s) − 1

where tTX − 1 s denotes the broadcast event of the previous test phase.

Gateway PC

N3N2N1 N4 N5

1

2345

6

(a) Test phase
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12131415
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(b) Update phase

Figure 43: Network setup for timestamp capturing
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Immediately after the test phase, the update phase is started by the gateway trans-
mitting a unicast request (Message 7 in Figure 43b) to node 1, which is forwarded in a
linear chain (Message 8 to 11) to node 5. Each node captures its local request reception
time and the subsequent local request transmission time and reports them back to the
gateway (Message 12 to 16). The actual synchronization update (i.e., insertion of the
exchanged timestamps into the regression table and update of the slope parameters) is
only performed in every tenth update phase. Thus, the effective synchronization period
of the whole network is 10 s. However, the timestamps captured during the update
phase allow for an offline simulation of the whole synchronization protocol. This sim-
plifies the analysis of the impact of the regression table size and the synchronization
period on the synchronization accuracy. All data presented below for a regression ta-
ble size other than two, or a synchronization period other than 10 s, result from these
simulations.

The left side of Figure 44 shows the clock drift of the five receiver nodes relative to
the reference clock. For the first 55 min, all nodes were kept at a fixed temperature
of about 21 ◦C. Under this condition, the standard deviation of the drift amounts to
0.1 ppm at all nodes. Afterwards, node 4 was cooled down to 7 ◦C resulting in a drift
drop of about 3 ppm. In the same time, node 3 was heated up to 52 ◦C before cooling
down to 40 ◦C again. This resulted in a drift step of 4.5 ppm and 2.5 ppm respectively.
The right side of Figure 44 aggregates the clock drift characteristic into a histogram
for each receiver node. The insights gained from this measurement are twofold. First,
without clock drift compensation, node 1 would have to exchange timestamps with
the reference node at least every 200 ms to keep the synchronization inaccuracy below
1 µs. Thus, high precision time synchronization has to provide drift compensation to
keep the communication overhead manageable. Second, even if the sensor nodes in
typical WSN applications will not be exposed to sudden large temperature changes in
an outdoor scenario, a significant variation of the clock drift can be expected if the
subset of nodes, that are exposed to full sunlight, is changing.
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Figure 44: Observed clock drift relative to gateway under temperature variation (0 min to
55 min: 21 ◦C, 55 min to 80 min: 7 ◦C at N4, 55 min to 65 min: 52 ◦C at N3,
65 min to 75 min: 40 ◦C at N3)
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Figure 45: Impact of the synchronization period on estimated clock drift at N1 (regression
table size = 2)

The influence of the node’s supply voltage on the clock drift was also investigated as
the supply of battery-powered sensor nodes cannot be assumed to be stable. However,
due to the voltage converters inside the MCU, the reduction of the supply voltage from
3 V to 2 V did not significantly influence the clock drift at the corresponding node.

Figure 45 shows the actual clock drift of node 1 relative to the reference (captured
at 1 Hz as described above) and its estimation about its own clock drift derived by LR
with a synchronization period ranging from 10 s to 100 s and a fixed regression table size
of two. As expected, the estimation becomes more inaccurate with longer synchroniza-
tion periods. Figure 46 shows how this inaccuracy in drift estimation translates into
synchronization inaccuracy. The maximum absolute clock deviations for the different
synchronization periods are 0.7 µs, 2.4 µs, 5.7 µs and 8.3 µs respectively. In general, the
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Figure 46: Impact of the synchronization period on the synchronization accuracy at N1
(regression table size = 2)
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Figure 47: Impact of the regression table size on estimated clock drift at N1 (synchroniza-
tion period = 10 s)

appropriate synchronization period depends on the concrete accuracy demands of the
application.

Figure 47 shows the actual clock drift of node 1 relative to the reference and its
estimation about its own clock drift derived by LR with a regression table size ranging
from 2 to 8 elements at a fixed synchronization period of 10 s. Larger regression tables
have an effect similar to the smoothing of the drift estimation occurring for larger
synchronization periods. Indeed, larger regression tables actually do not improve the
average synchronization accuracy, as shown in Figure 48. However, even for a table
size of 8, the maximum absolute clock deviation does not exceed 1 µs.

The real benefit of larger regression tables becomes obvious only if the actual clock
drift is more spiky, e.g., due to temporary temperature fluctuations, as shown in Figure
49. While the average clock deviation is not improved by the larger regression tables
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Figure 48: Impact of the regression table size on the synchronization accuracy at N1 (syn-
chronization period = 10 s)
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Figure 49: Impact of the regression table size on estimated clock drift at N3 (heated up to
40 ◦C, synchronization period = 10 s)

as shown in Figure 50, the maximum absolute error is reduced from 2.8 µs to 1.7 µs
when choosing a table size of 8 instead of 2.

Finally, the synchronization accuracy over multiple hops is shown in Figure 51a.
Even at the fifth hop, the maximum absolute clock deviation can be kept below
1 µs. However, the average deviation is increased by about 30 ns per hop. This
might be caused by the fixed compensation time for the SFD delay as described in
Section 6.2.2. The accuracy of this compensation is limited by the timestamp resolu-
tion of 1/32 MHz = 31 ns. When simulating the synchronization with ∆SFD = 111.5,
the mean synchronization error is kept stable over multiple hops as shown in Figure
51b. Although not yet implemented in the HaLOEWEn system, this error compensa-
tion with sub-timestamp precision can be realized by a pulse-wide modulated correction
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Figure 50: Impact of the regression table size on the synchronization accuracy at N3 (heated
up to 40 ◦C, synchronization period = 10 s)
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Figure 51: Impact of the hop distance to the reference node on synchronization accuracy
(synchronization period = 10 s, table size = 2)

term, i.e., toggling between ∆SFD = 111 and ∆SFD = 112 with each synchronization
period.

As shown in Figure 46, the synchronization period should not exceed 10 s to achieve
a synchronization accuracy of 1 µs. At a timestamp resolution of 1/32 MHz, the differ-
ences between successive timestamps inserted into the RLRCT (Algorithm 1) can thus
be represented with 29 bit. Furthermore, regression tables with more than 8 entries
do not improve the synchronization accuracy. More precisely, a regression table size
of 4 is advisable as a trade-off between the achievable accuracy during stable environ-
mental conditions (Figure 48) and the outlier reduction during dynamic temperature
variations (Figure 50).

The arithmetic operators required for the various LR implementations described in
Section 5.3 were optimized based on these assumptions (i.e., 8 entries per regression
table, 29 bit sufficient to represent the difference between successive timestamps) and
implemented on the HaLOEWEn3. The three different hardware accelerator architec-
tures were synthesized for the Microsemi IGLOO M1AGL1000 FPGA with Synplify
Pro (ME I-2014.03M-SP1). The resulting resource requirements are summarized in
Table 11. The Full Parallel architecture does not fit on the target device, so its us-

Implementation Fully Parallel Single MAC µArchitecture

Core Cells [%] 141 63 50
BRAM [%] 12 6 15
fmax [MHz] 8.7 7.1 8.5
Regression [cycles (µs)] 7 (0.8) 21 (3.0) 29 (3.4)
Conversion [cycles (µs)] 27 (3.1) 29 (4.1) 32 (3.8)

Table 11: Ressource requirements of hardware accelerator architectures on M1AGL1000
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age is restricted to larger FPGAs. Both other architectures occupy slightly more than
half of the FPGA logic resources, mainly due to the usage of combinatorial multipli-
ers. Compared to the linear regression (executed once per synchronization period), the
timestamp conversion is performed more often (typically once per sampling period).
As the µArchitecture implements this critical operation faster than the Single MAC im-
plementation, the former is used for the hardware-accelerated RLRCT in the following
comparisons with the software solutions.

Figure 52 shows the overall execution time for the different regression implementa-
tions measured with an oscilloscope. All O (1) implementations (i.e., RLR, RLRCT,
HW, OPT) outperform the O (n) implementation (i.e., LR) even for n = 2. Further-
more, the proposed RLRCT is 22 % faster than the RLR implementation. For n > 2,
the hardware accelerator outperforms the best software implementation by 66 %. If a
regression table of size 2 satisfies the application accuracy requirements, the optimized
software implementation (referred to as OPT in Figures 52 to 54) actually computes
the fastest regression.

Note that 95 % of the time required by the hardware accelerator is spent transferring
the 80 bit timestamp pair from the MCU to the FPGA. Replacing the combinatorial
by a sequential multiplier in ALU of the µArchitecture implementation (Figure 35) can
thus be used to reduce the logic resources required by the hardware accelerator without
significantly increasing its overall execution time.

All software implementations of the time conversion require 118 µs for the offset and
drift compensation. The hardware accelerator requires only 72 µs, including the inter-
processor communication. The sensor node thus benefits from the hardware accelerator
even for the smallest regression tables.

Beyond execution time, memory is another limited resource on embedded systems.
As shown in Figure 53, the proposed RLRCT clearly outperforms the RLR in terms
of required RAM, as its regression table requires only 2n · 29 bit, while the RLR
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Figure 52: Overall execution time for the LR implementations (LR = Equation 15,
RLR = Algorithm 2, RLRCT = Algorithm 1, HW = Accelerated µArchitecture,
OPT = Equation 18 optimized for n = 2)
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Figure 53: MCU-RAM requirement of the LR implementations (LR = Equation 15,
RLR = Algorithm 2, RLRCT = Algorithm 1, HW = Accelerated µArchitecture,
OPT = Equation 18 optimized for n = 2)

buffers 2n · (40 + 80) bit. For regression tables larger than 12 entries, the RLRCT
also requires less RAM than the LR implementation and is thus favorable in memory
constrained systems. Although such large tables are not required for the wireless time
synchronization, other LR applications like RSSI-based node localization [Vanheel2011]
rely on larger tables and might thus benefit from the RLRCT approach.

As the assembler-based implementation of the arithmetic operations are optimized
for execution speed, the instruction memory required by the different LR algorithms
is relatively large. As shown in Figure 54, RLRCT requires 15 % less ROM for stor-
ing instructions than RLR, although the RLRCT has to perform more arithmetic
operations.
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Figure 54: MCU-ROM requirement of the LR implementations (LR = Equation 15,
RLR = Algorithm 2, RLRCT = Algorithm 1, HW = Accelerated µArchitecture,
OPT = Equation 18 optimized for n = 2)
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CHAPTER 7
Targeted Applications

After describing the HaLoMote architecture and some application-independent build-
ing blocks for computation and communication, three specific monitoring applications
are presented in this chapter. The first two of the presented applications benefit from
the energy-efficient lossless data compression capabilities of the HaLoMote. Both ap-
plications restrict the affordable sample block size either by critical delay or memory
constraints. The third application requires a specific hardware accelerator for the de-
centralized feature extraction. The third application will thus be discussed more in
detail, and evaluated at system level in the next chapter.

7.1 Monitoring Neural Activities of Primates

At the German Primate Center in Göttingen, the neural activities of primates solving
different tasks are measured by a micro-electrode inside the probands brains [Rafflen-
beul2012]. As the apes have to move freely over a wide testing area, wired instru-
mentation is impractical, and thus the sensor data sampled with 16 bit resolution at a
frequency of 24.414 kHz has to be transmitted wirelessly to a control station. Figure
55 shows an sample block extracted from the neural data. The data rate of 391 kbit/s
required for the transmission of the raw data stream exceeds the capability of the low-
power IEEE [802.15.4] transceiver specification. The captured data stream thus has
to be compressed by about 50 %, before it can actually be transmitted by an IEEE
[802.15.4] transceiver.
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Figure 55: 8192 samples of neural activity data (min = -155, max = 169, mean = 6.3,
stddev = 45.5)
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Based on the received neural data, the variable penetration depth of the micro-
electrode is controlled remotely by an operator at the control station. In order to allow
timely interactive manipulation of the probe depth, the maximum end-to-end latency
is restricted by the human response time of about 100 ms. Thus, the maximum block
size used by a two pass encoder may not exceed 2400 samples at 24.414 kHz.

In this section, the several lossless compression schemes are applied to the neural
data. Based on a trade-off between data reduction and computational effort, a specific
compression scheme is selected and the energy efficiency of its hardware-accelerated
implementation on the HaLOEWEn mote is evaluated. This analysis has already been
published in [Engel2014a].

7.1.1 Compressibility of the Monitored Data

As a baseline analysis, various compression algorithms have to be applied to the neural
data to figure out a well suited candidate for an embedded implementation. The raw
data sample stream was split into blocks of different size and fed into the compression
algorithms listed in Table 12 with their specific run-time options. Static overhead (i.e.,
file headers not related to compression parameters) generated by these tools was dis-
regarded when calculating compression ratios. In addition to using these off-the-shelf
dictionary-based and predictive encoders, a software implementation of the ADPCM
compression scheme with downstream Rice encoding was used, as presented in Section
5.2. This allows for a fine-grained trade-off between encoder complexity and com-
pression ratio. Audio encoders also relying on Rice encoding (e.g., MP4ALS, ALAC,
or FLAC), optimize the Rice parameter (W in Equation 10) for each sample block.
In contrast, the ADPCM implementation employed in this section uses a fixed Rice
parameter (W = 4) found by static optimization on the entire sensor channel.

The compression ratios (compressed data size / uncompressed data size) achieved
by the different compression algorithms are shown in Figure 56. Compression ratios
larger than 100 % are clipped. As expected, the compression ratios of all encoders
improve with increasing block sizes. With the exception of MP4ALS, the predictive
audio encoders clearly outperform the dictionary-based compression schemes. Given
the audio-like characteristics of the neural activity data, this in itself is not surprising.
However, the additional encoder complexity necessary for adapting the higher order lin-
ear predictor coefficients in the algorithms used in MP4ALS, ALAC, or FLAC does not
improve the compression ratios significantly compared to the static first-order DPCM
predictor. For instance, at a block size of 2048 samples, the FLAC encoder achieves

Codec Options Version Algorithm Overhead

BZIP2 -9 1.0.6 RLE + BWT + MTF + Huffman 24 B
RAR -m5 -en 5.00 proprietary 55 B
ZP c3 1.00 context modeling + arith. coding 221 B
MP4ALS -7e RM23 adapt. linear prediction + Rice 34 B
FLAC -8 1.3.0 adapt. linear prediction + Rice 8292 B
ALAC ffmpeg 0.8.7-6 adapt. linear prediction + Rice 0 B

Table 12: Compression algorithms and options used in further evaluation
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Figure 56: Reduction of neural activity data achieved by various compression schemes

only a 3 % improvement in compression ratios at the cost of double the execution time
when compared to the DPCM encoder running on the same platform.

7.1.2 Energy Efficiency of Hardware-Accelerated Data Compression

The DPCM compression is sufficient to reach the target compression ration of 50 %
even for small block sized, i.e., minimal end-to-end delay of the signal processing chain
from the micro-electrodes to the human operator controlling their penetration depth.
The ADPCM hardware accelerator presented in Section 5.2 configured for first-order
prediction (either static or adaptive) is thus used for further evaluation of the overall
energy efficiency of the in-sensor compression. Furthermore, the maximum block size
of 2048 samples is used, derived from the delay-restrictions of the application. The test
setup is detailed in Section 5.2.3.

Table 13 summarizes the results for processing the neural data. Both DPCM and
ADPCM compression reduce the data size down to 1577 B (38.5 %), making the simpler
DPCM algorithm a better choice for this application. The DPCM execution on the
MCU takes more than double the 61.2 ms required for transmitting the compressed
data stream. The MCU thus has to be kept active beyond the pure transmission time

Compression Compressed Compression + Transmission
Time Current Energy Data Time Current Energy

Scheme On [ms] [mA] [µJ] [B] [ms] [mA] [mJ] [%]

None 4096 158.8 41.5 19.77 100.0
DPCM MCU 132.2 11.8 4680 1577 184.6 21.6 11.96 60.5

ADPCM MCU 249.4 11.8 8829 1577 310.4 17.5 16.30 82.4
DPCM RCU 1.4 10.7 45 1577 62.6 41.9 7.87 39.8

ADPCM RCU 2.6 10.7 83 1577 63.8 41.3 7.90 40.0

Table 13: Energy required to compress/transmit 2048 samples of neural activity data
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of the prior packet in order to perform the compression of the current packet. As the
current drawn by the system during compression exceeds the current drawn in low-
power mode by about 120 times, the longer duty cycles lead to deteriorated overall
energy efficiency. Furthermore, the MCU is not even able to support the sampling
frequency required by the application. At the targeted 24.414 kHz, the processing of
the 2048 samples must not take longer than 84 ms. This is achieved by the hardware-
accelerated compression modules. In addition, the RCU to MCU data movement occurs
in parallel to the ongoing data transmission, and the very short execution time of the
compression stretches the duty cycle before going back to sleep only marginally. This
leads to an almost complete translation of compression ratio (38.5 %) into system level
energy savings (39.8 %) for the hardware-accelerated DPCM.

7.2 Condition Monitoring of Heavy Industrial Machinery

The second application used for evaluating the hardware-accelerated data compres-
sion deals with detecting damage or fatigue of the rotating parts of large industrial
machines. This condition monitoring is used to schedule inspection and maintenance
intervals before unanticipated major damage leads to high repair costs and downtime
of the machinery. Since the monitoring algorithms observe long-term trends in the
acquired data, this application is latency insensitive. However, multiple sensor chan-
nels have to be handled in parallel for this application, thus increasing the demand
for processing power and memory for this application. Note that the sensor nodes are
located on heavily vibrating parts of the machine, which would quickly wear out fixed
cable connections, thus making low-power wireless communication preferable.

The raw data streams are gathered from a three channel MEMS sensor sampled at
1 kHz with a resolution of 16 bit per channel. Table 14 shows the relevant statistical
characteristics of the captured signals. The actual waveforms cannot be shown here for
confidentiality reasons. A Rice parameter of W = 11 was found to be most appropriate
for all three sensor channels. The analysis described in this section has already been
published in [Engel2014a].

Channel 1 2 3

Min -3872 -4156 -22466
Max 5203 13104 16307
Mean 110 2919 -3339
Stddev 1213 2374 13041

Table 14: Statistical characteristics of 8192 samples of machinery condition monitoring data

7.2.1 Compressibility of the Monitored Data

Just as for the neural data monitoring application in Section 7.1, a PC-based baseline
analysis of the compressibility of the condition monitoring data is carried out. The
resulting overall compression ratios are shown in Figure 57. Again, the predictive
audio codecs are most appropriate. At a block size of 2048 samples, FLAC produces
results 6 % smaller than DPCM. This improvement comes however at the cost of a
doubled execution time.
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Figure 57: Reduction of condition monitoring data achieved by various compression algo-
rithms

The ADPCM scheme is examined more in detail for this application. Figure 58
quantifies the impact of the prediction order. For small blocks, the size of the additional
prediction parameters, which have to be encoded in the output stream, exceeds the
benefit of improved compression ratios due to the reduced prediction error variance.
For blocks of 2048 samples, the compression ratio strictly decreases with the prediction
order, but only marginal improvements (about 1.2 %) can be achieved by increasing
the prediction order above 4. The difference of the compression ratio between first
and fourth order prediction amounts to 6 % for the largest block size. Thus, adaptive

32 64 128 256 512 1024 20480
10
20
30
40
50
60
70
80
90

100

Block Size

Co
m

pr
es

sio
n

Ra
tio

(%
)

Prediction Order 1 2 3 4 5 6 7 8 9

Figure 58: Impact of prediction order on ADPCM compression ratio
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prediction should be used for condition monitoring if the target platform supports
storing a sufficient amount of samples (recall that there are three data channels, and
double-buffering may be necessary for parallel sampling and encoding).

In conclusion, the adaptive schemes reached the best compression ratios for larger
sample blocks, while static DPCM proved superior on small blocks. Thus, for delay-
sensitive applications or memory-constrained platforms, the simple DPCM scheme
should be applied. In all other cases, FLAC can improve the compression ratio of
DPCM by about 5 %. Note that FLAC is just a combination of ADPCM with an
extensive search for the optimal prediction order. For data sources with known charac-
teristics, a static selection of the prediction order may be sufficient. Compared to the
static DPCM, the adaptation of the prediction coefficients in ADPCM only becomes
worthwhile if the additional energy required for the second compression pass is smaller
than the energy savings resulting from the 5 % data size reduction. Therefore, energy
efficiency of a hardware implementation of the ADPCM algorithm is also examined in
the next section.

7.2.2 Energy Efficiency of Hardware-Accelerated Data Compression

The ADPCM hardware accelerator presented in Section 5.2 configured for first-order
prediction (either static or adaptive) is used for further evaluation of the overall en-
ergy efficiency of the in-sensor compression. Although the energy efficiency of higher
order prediction would be worth examining, this feature is not yet supported by the
HaLOEWEn implementation presented in Section 5.2. Furthermore, the maximum
block size of 2048 samples is used, derived from the restricted on-chip memory of the
HaLOEWEn3 (see Table 8). The test setup is detailed in Section 5.2.3.

Processing of the condition monitoring data is evaluated in Table 15. Here, the adap-
tive predictor improves the compression ratio over DPCM such that a complete radio
packet is saved. On the MCU, however, compressing the three data channels takes
so much time, that the energy required for compression cannot be amortized over
the transmission savings, instead leading to an efficiency deterioration. The hardware-
accelerated encoders fare much better: Since all channels can be compressed in parallel,
the total execution time only slightly increases over that of the single channel encoder
used in Table 13. As before, the encoders using the RCU convert nearly all of the
data volume savings into actual energy savings, i.e., only 81.3 % of the baseline en-
ergy.

Compression Compressed Compression + Transmission
Time Current Energy Data Time Current Energy

Scheme On [ms] [mA] [µJ] [B] [ms] [mA] [mJ] [%]

None 12288 474.4 41.6 59.21 100.0
DPCM MCU 531.0 11.9 18957 9836 912.0 24.3 66.48 112.3

ADPCM MCU 906.0 11.9 32344 9732 1281.0 20.6 79.17 133.7
DPCM RCU 1.6 10.7 51 9836 381.6 42.5 48.62 82.1

ADPCM RCU 2.9 10.7 93 9732 378.9 42.4 48.15 81.3

Table 15: Energy required to compress/transmit 3× 2048 MEMS samples
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7.3 Distributed Structural Health Monitoring

Civil infrastructures such as bridges are prone to fatigue and other load-induced dam-
age. With increasing age, inspection intervals have to be scheduled more frequently to
assure the secure operation of the infrastructure. As manual inspections are costly, they
have to be complemented by automated Structural Health Monitoring (SHM) systems.
By periodically observing modal properties such as the eigenfrequencies, mode shapes,
or the damping of the structures, damage or fatigue can be identified by significant
deviations of these properties from reference measurements.

As shown on the left hand side of Figure 59, modal parameters of an object are
typically derived by observing the structural response to an artificial excitation. The
Experimental Modal Analysis (EMA) requires the knowledge about the excitation and
the response to derive the modal parameters. While large structures can be excited
by appropriate equipment, a significant amount of energy is required to drive such
large shakers and impact hammers. Furthermore, the excited structures often have to
be taken out of service to assure safety and measurement accuracy. For continuous
automated SHM, the identification of the modal properties thus has to be based on the
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Figure 59: SHM dataflow based on experimental and operational modal analysis
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natural ambient vibration of the structure caused by wind or traffic, as shown on the
right hand side of Figure 59. The major challenge of this Operational Modal Analysis
(OMA) is the extraction of the features within the structural response, which are only
related to the structure but independent from the random excitation. The Random
Decrement Technique (RDT) was proposed for this purpose [Cole1973]. Finally, by
comparing the derived modal parameters with reference parameters identified for a
well known (healthy) state of the structure, damage can be identified of even localized.

The modal analysis and damage detection requires information gathered from all
over the structure to capture the global properties of the observed object. These
algorithms are therefore typically executed on a centralized controller. On the other
side, the sensing of the structural response has to be decentralized, as the sensors are
distributed all over the structure. As will be shown in Section 7.3.2, the RDT requires
only little information from other neighboring sensors while strongly aggregating the
local sensor data. The RDT should therefore also be decentralized. Nevertheless,
RDT-based SHM installations using conventional WSNs with small MCUs often avoid
the decentralization of the RDT due to its computational complexity.

The remaining part of this section therefore shows, how the HaLoMote can be used to
efficiently decentralize the RDT. The SHM application and the hardware-accelerated
RDT implementation on the HaLOEWEn3 mote have already been published in [En-
gel2012a; Engel2014c; Engel2015c].

7.3.1 Random Decrement Technique

For the RDT, a set of sensors S ⊂ N is distributed all over the structure to acquire
its vibrations in terms of acceleration or deflection as time series (xs : T 7→ V )s∈S .
For a finite sampling rate and measurement duration, the time domain is also finite
and discrete, i.e., T = {0, . . . , nt − 1} ⊂ N. For simplicity, V ⊂ R can be assumed by
abstracting from the finite measurement accuracy.

As the OMA aims to discover the dynamic characteristics of the observed structure,
the static components of the acquired signals (gravity or prestress) have to be elimi-
nated by a high-pass filter, e.g., by applying an FIR filter of order nf ∈ N with nf + 1
appropriate coefficients ck ∈ R. A reformulation of Equation 5 for the time series input
yields

x̂s(t) :=
min(nf ,t)∑

k=0
ck · xs(t− k) ∀(s, t) ∈ S × T . (75)

To eliminate the random signal components, the RDT selects a subset of the sensors
as references R ⊆ S and a trigger level lr ∈ V for each reference r ∈ R. In practice,
sensors exposed to the largest vibration amplitudes are typically selected as references,
to observe the structure’s activity even under shallow excitation. Furthermore, the
trigger levels have to be chosen above the noise floor of the acquired sensor signal. The
points in time t ∈ T , at which a reference signal x̂r crosses lr, are referred to as trigger
events

Er := {t ∈ T :(x̂r(t) ≥ lr ∧ x̂r(t− 1) < lr)∨ (76)
(x̂r(t) < lr ∧ x̂r(t− 1) ≥ lr)} ∀r ∈ R.
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Figure 60: Accumulation of triggered signal windows for the Random Decrement Tech-
nique. Each window represents the qualitative behavior of the sensor signal (i.e.,
acceleration or deflection) over time.

A signal window (x̂r(t + k))nw−1
k=0 of fixed length nw ∈ N starting at a trigger event

is composed of the structure’s response to its initial displacement x̂r(t) = lr, its re-
sponse to the initial velocity and the random ambient excitation, as shown in Figure
60. Assuming a zero-mean excitation, the random components are extinguished when
accumulating a sufficient number of these triggered windows. The velocity response will
also be eliminated, as each rising signal edge (with positive initial velocity) is followed
by a falling signal edge (with negative initial velocity). Thus, the accumulated signal
windows converge against the displacement response, which describes the structures
free decay and can thus be used to derive its modal properties.

To estimate the mode shapes of the structure, spatial correlations between different
sensor positions are required. Therefore, signal windows from all sensors are accumu-
lated for each trigger event, resulting in |S| · |R| so called RD sequences

Ds,r(k) :=
∑

t∈Er

x̂s(t + k) ∀(s, r) ∈ S ×R, 0 ≤ k < nw. (77)

7.3.2 Distributed Random Decrement Technique

The accumulation of the RD sequence Ds,r requires an information transfer about the
occurrence of the trigger events t ∈ Er from signal r to signal s. In a distributed WSN
scenario, all sensors signals are captured by a dedicated sensor node. Although each
sensor node may capture multiple nearby sensor signals, information about the trigger
events have to be transmitted wirelessly from the reference nodes (capturing a reference
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signal) to all other nodes in the network. When monitoring structures larger than the
transmission range of the wireless transceivers (i.e., suspension bridges), the transport
of the trigger information has to be organized by a multi-hop routing protocol.

In Section 6.1, a multi-source flooding mechanism was proposed for this purpose.
The complete dissemination of the trigger events, i.e., the schedule length determined
by the ILP or the corresponding heuristic, depends on the network size, its density, and
the number of source nodes (i.e., |R|). To simplify the DPM of the network nodes, the
sampling cycles are used as scheduling cycles, to avoid additional transitions between
active and sleep states. Using this static scheduling approach, the maximum number
of sampling cycles required to transfer trigger events from each reference node to all
other nodes can by determined at the time of deployment. Let ∆ denote this maximum
communication delay.

In the multi-source flooding scheme, each trigger event is represented by the ID of
its originating reference node and the age of the event. The latter starts at zero during
the trigger event generation, and is incremented in every sampling period at all nodes
that have received and stored the event. At the receiver nodes, the age information
is used to properly calculate the RD sequences, as described in the next section. The
reference ID as well as the age information can be represented by a few bits (≤ 10 bit for
both in realistic scenarios), thus fulfilling the prerequisites of the multi-source flooding
mechanism stated in Section 6.1.

The trigger event flooding is only required as long as the RD sequences are accumu-
lated. Once the number of processed trigger events fulfills the accuracy requirements of
the application, the RD sequences have to be transmitted to a base station in addition
to some statistical measures of the reference signals (i.e., channel variance and number
of generated trigger events). The RDT thus aggregates the |S| · |T | raw sensor samples
down to |S| · |R| · nw RD samples. The aggregation factor |T |

|R|·nw
increases with the

measurement duration. nw is typically chosen such that the RD sequences show the
free decay of the structure, which may take several seconds for large bridges. After a
measurement duration of several hours, which is often required to collect a sufficient
number of trigger events, the aggregation factor typically exceeds two or more decades.
For example, the laboratory-scale testbed presented in Chapter 8 uses |R| = 2 refer-
ences to trigger signal windows, each consisting of nw = 256 samples. After a 10 min
measurement at 400 Hz sampling rate (i.e., |T | = 2.4× 105) the RD sequences that
have to be transmitted to the subsequent OMA are 469× smaller then the the original
raw sensor signals. In addition to eliminating the random parts of the sampled signals,
this strong aggregation capability is the major benefit of the RDT for the distributed
WSN implementation of SHM applications.

However, the RDT increases the demand for in-sensor preprocessing. The computa-
tional complexity of the RDT is dominated by the FIR filter and the memory accesses
required for the accumulation of the RD sequences. The latter becomes particularly
complex if these sequences cannot be stored in the few kilobytes of RAM provided
by most WSN processing units, thus requiring access to external memory. RDT pre-
processing scales linearly with the number of sensor channels to be processed by each
sensor node. Each sensor typically provides three channels to capture the multidimen-
sional movement of the structure, and multiple nearby sensors may be connected to a
single sensor node to simplify the deployment. Thus, assuming three to twelve sensor
channels per mote is not unrealistic. As the sensor channels can be processed indepen-
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dently of each other, most of the RDT preprocessing can be parallelized. Section 7.3.3
details the RDT implementation on the HaLoMote RCU.

7.3.3 Hardware-Accelerated Random Decrement Technique

In this section, an RDT hardware kernel for the HaLoMote architecture is presented.
The hardware signals and modules presented in Figure 61 to 65 are associated with
Equations 75 to 80. More precisely, the labels refer to the channel index s of the
captured sensor input and the current time slot (i.e., sampling cycle) t, in which x̂s(t)
is generated by the high-pass filter.

Figure 61 shows the FIR implementation of this high-pass filter. As described at the
end of this section (Figure 66), the FIR is executed in parallel to the sensor sampling.
At the end of time slot t, the unfiltered sensor sample xs(t + 1) for the next time slot
is thus already present at the FIR input, while the filtered value x̂s(t) is present at the
FIR output. The filter itself is executed sequentially, thus requiring only one MACC
unit to combine the constant coefficients ck with the FIR taps buffered in BRAM.

The filtered value x̂s(t) is passed through an additional FIFO buffer, which is in-
tegrated into the same BRAM as the FIR taps. Delaying the filtered samples by ∆
time slots is required to compensate the maximum time required for the trigger event
flooding over the entire network, as described in the previous section.

Figure 62 shows the computational logic required for each sensor channel. A sensor
specific control module requests the samples over the digital sensor interface. Although
most of the control lines of the sensor interfaces (e.g., SPI or I2C) could be shared
between multiple sensors, each sensor channel is controlled by a dedicated interface to
allow for parallel independent sensor sampling.

Sensor Control FIR+FIFO (Fig. 61)
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Figure 62: Sensor interface, trigger event detection and precomputation required for calcu-
lating the standard deviation
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The sensor samples are filtered and delayed by the module shown in Figure 61, as
described above. The filtered samples are used to detect trigger events by comparing
the current x̂s(t) and the last x̂s(t − 1) value with the trigger level ls as described
by Equation 76. Furthermore, the filtered values and their squares are accumulated
as running sums. As will be shown in Equation 80, these sums are required to de-
rive the standard deviation of the sensor channel for a normalization step of the final
OMA. Both, the trigger event detection and the standard deviation calculation are
only required for sensor channels configured as RDT references (i.e., if s ∈ R). To
simplify the network configuration, the reference-specific hardware is provided for each
sensor channel and the software processor decides which of the results to use for further
processing.

Figure 63 shows the module used for accumulating the delayed samples to an RD
sequence stored in BRAM. External trigger event-specific logic (see Figure 64) decides
whether and which memory position to modify. Additional clear logic is required to
initialize the buffer at the start of each measurement.

Figure 64 shows the handling of trigger events for the reference channel r. This
logic is required at all sensor nodes, not only at the sensor node sampling the reference
signal. A trigger event er,k ∈ Er defined by Equation 76 is characterized by its current
age t − er,k, i.e., the number of sampling cycles since it was generated by the logic
shown in Figure 62. New events can be inserted into the list, and the age of each
event in the list is incremented in every sampling cycle. As soon as t− er,k = ∆, the
sample at the output of the delay buffer x̂s(t−∆) = x̂s(er,k) corresponds to the filtered
sample of sensor s from the time slot er,k, in which the trigger was generated at sensor
r. Therefore, trigger events at least as old as ∆ cause an accumulation of the delayed
sample to the appropriate RD sequence, i.e., Ds,r += x̂s(t− er,k−∆). Two RCU clock
cycles are required for reading the old and writing the new value. However, due to
the dual port BRAM, subsequent accumulations can be interleaved, thus resulting in a

t− er,m t− er,m−1 t− er,1

inc

age to insert

≥

−

BUF
∆

BUF

. . .

wen

waddr
raddr

Figure 64: Handling of trigger events Er = {er,1, . . . , er,m} for reference r ∈ R
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throughput of one accumulation per sampling cycle. Trigger events older than nw +∆
are removed from the event list.

The main difficulty of the trigger event management is that the sequence of event
insertions does not necessarily have to match the sequence of event removals. For
example, a trigger event generated at the local node will be inserted immediately with
an age of 0. In the next sampling cycle, another trigger event generated at a remote
node may arrive that already traveled for 10 sampling cycles on a multi-hop path to the
local node. This second trigger event will thus be inserted after the first event, but it
will be removed before the first event. To avoid the fragmentation of the data structure
storing the trigger events, a shift register based queue is used. In each sampling cycle,
each trigger event is dequeued and enqueued again after its incrementation unless it is
old enough to be removed. New events are enqueued afterwards. The actual length of
the queue is managed by dedicated logic and corresponds to the number of currently
active (i.e., overlapping) signal windows triggered by the reference channel r.

S0
Fig. 62

D0,0 Fig. 63

D0,1 Fig. 63

SPI[0]
l0

t ∈ E0∑
x̂0∑
x̂2

0

x̂0(t−∆)

S1
Fig. 62

D1,0 Fig. 63

D1,1 Fig. 63

SPI[1]
l1

t ∈ E1∑
x̂1∑
x̂2

1

x̂1(t−∆)

S2
Fig. 62

D2,0 Fig. 63

D2,1 Fig. 63

SPI[2]
l2

t ∈ E2∑
x̂2∑
x̂2

2

x̂2(t−∆)

S3
Fig. 62

D3,0 Fig. 63

D3,1 Fig. 63

SPI[3]
l3

t ∈ E3∑
x̂3∑
x̂2

3

x̂3(t−∆)

Ds,r(k) clear clearAddr

read readAddr

T0
Fig. 64

T1
Fig. 64

waddr

raddr

waddr

raddr

wen

wen

age to insert

age to insert

Figure 65: RDT kernel for four sensor channels and two reference signals
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Sampling Cycle

RCU active RCU idle

Sampling
Filtering

FIFO delay
Trigger event detection
Stddev precomputation

Accumulation
Trigger event insertion

Figure 66: Scheduling of parallel computations

Figure 65 shows the combination of all these modules to realize an RDT kernel
for |S| = 4 sensor channels and |R| = 2 reference signals. The SPI ports of this
module are connected to the discrete digital sensors. All other ports are controlled
by the HaLoMote MCU using the communication infrastructure described Section 4.3.
The BRAM addressing for the RD sequences are overruled for clearing and reading of
individual RD sequences. As all RD sequences of a single reference channel share the
same addressing signals, BRAM can be shared among those modules.

Figure 66 details the RDT kernel execution sequence. At the start of each sampling
cycle, the MCU wakes up the RCU, which starts requesting the next sensor samples.
The number of RCU cycles required for this operation depends on the number of bits
to read, which typically do not exceed 3 · 16 bit. The high-pass filter operates on the
sample from the previous sampling cycle and can thus be executed in parallel to the
sensor sampling. The filtering takes nf + 1 RCU cycles. The trigger event detection,
the computation for the standard deviation, and the handling of the delay FIFO require
one additional RCU cycle after the filtering operation. The accumulation of the delayed
sample value from the last sampling cycle to the RD sequences is performed in parallel
to the filtering. It requires one RCU cycle per registered trigger event. If available,
new trigger events are inserted just before the RCU is shutdown again. As long as
the number of registered trigger events does not exceed the order of the FIR filter, the
overall execution time of the RDT kernel is fixed.

A small example shown in Figure 67 illustrates the distributed processing principle
and the delayed trigger handling of the RDT implementation described in this section.
To keep it simple, only two sensor signals S = {a, b} are considered and Figures 67a
and 67b show the already low-pass filtered sensor samples. Signal a is chosen as the
sole reference signal R = {a} with a trigger level of la = 7.5. The first trigger level
overshoot (undershoot) of x̂a at Time 1 (3) triggers the first (second) signal window to
be extracted from the response signal, as shown in Figure 67b. If the signals a and b
are sampled at different nodes within the WSN, the trigger events Ea = {1, 3} have to
be forwarded from the reference to the response node. This is achieved by combining
the reference index a with the age t − ea,i into a wireless packet flooded through the
network, as described in Section 7.3.2. The red (blue) arrow in Table 67c illustrates
this wireless event distribution assuming that the first (second) trigger event requires
five (two) sampling cycles to reach response node. Although the flooding mechanism
described in Section 6.1 assures a fixed delay between the reference and response node,
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x̂a(t)

(a) Filtered reference signal
0 1 2 3 4 5 6 7 8 90

2
4
6
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Window 1

Window 2

t

x̂b(t)

(b) Filtered response signal

t 0 1 2 3 4 5 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 12 12 12
RCU cycle 9 9 9 9 9 9 0 1 9 0 1 2 9 0 1 2 9 0 1 2 9 0 1 2 9 0 1 9 0 1 9

On Reference Node:

x̂a(t) 6 9 8 3 0 1 1 1 2 2 2 2 5 5 5 5 7 7 7 7 4 4 4 4
t ∈ Ea 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

On Response Node:

age to insert 3 6 6 6
|Ea| 0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 0 0
t− er,1 3 4 4 4 6 5 5 5 7 6 6 6 8 7 7 7 9 8 8 8 9 9 9
t− er,2 6 5 7 7 7 6 8 8 8 7 9 9 9 8
wen 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1
raddr -3 -2 -2 0 -1 -1 1 0 0 2 1 1 3 2 2 3 3
waddr -3 -2 0 -1 1 0 2 1 3 2 3

x̂b(t) 8 5 1 2 6 7 7 7 4 4 4 4 0 0 0 0 3 3 3 3 9 9 9 9
x̂b(t−∆) 8 8 8 5 5 5 5 1 1 1 1 2 2 2 2 6 6 6 6 7 7 7 4 4 4

Db,a(0) 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5+2 7 7 7 7 7 7 7 7 7 7 7
Db,a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1+6 7 7 7 7 7 7 7
Db,a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2+7 9 9 9 9
Db,a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6+4

(c) Control signals

Figure 67: Example for the main processing sequence of the distributed RDT for
S = {a, b}, R = {a}, la = 7.5, nt = 10, nf = 8, nw = 4, ∆ = 6.

the robustness of this RDT implementation against variable network delays can be
demonstrated with these example delays.

For an assumed FIR length of nf = 8 and an even smaller delay of the serial sensor
sampling, the RCU executes ten clock cycles in every sampling period, as described by
Figure 66. Out of these ten clock cycles, Table 67c shows only the cycles required to
demonstrate the trigger event handling and RD sequence calculation. While the FIR
output changes at the end of cycle 8 and thus becomes visible in cycle 9, the FIFO
output changes at the end of cycle 9 and thus becomes visible in the first cycle of the
next sampling period. After receiving the first (second) trigger event in the sampling
period t = 5 (6) and inserting the event into the active trigger queue Ea, the active
trigger events are handled in the first two or three RCU cycles of the sampling periods
six to twelve. As described in Figure 64, this handling includes the derivation of the
read and write signals for the RD sequence accumulator (i.e., wen, raddr, and waddr)
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by comparing the queue head (i.e., t − ea,1) with the length ∆ of the delay FIFO.
As ∆ = 6 is assumed for this example, the first (blue) trigger event activates the
accumulator in the sampling periods seven to ten, while the second (red) trigger event
activates the accumulator in the sampling periods nine to twelve. The nw = 4 element
wide RD sequence Db,a is thus generated by accumulating the output x̂b(t−∆) of the
delay FIFO to the appropriate memory locations. Trigger events that would reach an
age of ∆+ nw = 10 are removed from the event queue in the sampling cycles ten and
twelve. The accumulated RD sequence Db,a is the RDT result and required for the
subsequent modal analysis, as described in the next section.

7.3.4 Operational Modal Analysis and Damage Detection Principles

[Asmussen1997] proved that a connection between the RD sequence Ds,r and the cor-
relation sequence Rs,r can be established by normalizing with the number of detected
trigger events |Er|, the trigger level lr and the standard deviation of the reference
signals:

Rs,r(k) := Ds,r(k) ·

√
σ2

r

lr · |Er|
∀(s, r) ∈ S ×R (78)

σ2
r := 1

|T |
∑
t∈T

x̂r(t)−
 1
|T |

∑
t∈T

x̂r(t)
2

r ∈ R (79)

= 1
|T |

∑
t∈T

x̂r(t)2 −
 1
|T |

∑
t∈T

x̂r(t)
2

r ∈ R (80)

The second formulation for the variance of the reference signal r results from applying
the binomial formula. To calculate the variance, only the running sums of x̂r and x̂2

r

thus have to be collected by the sensor nodes.
In the WSN testbed described in Chapter 8, the OMA and the subsequent damage

detection is executed at a central base station running [MATLAB] and not at a dedi-
cated WSN mote. The individual OMA steps are therefore just summarized briefly in
this section. More details can be found in [Engel2014c].

Having received all RD sequences from the WSN, the base station derives the corre-
lation sequences according to Equation 78. Afterwards, a single block Discrete Fourier
Transformation (DFT), followed by a Frequency Domain Decomposition (FDD) for
each frequency bin of the observed spectrum is executed [Brincker2000]. In particular,
a Singular Value Decomposition (SVD) is followed by a peak-detection on the resulting
singular values to find the eigenfrequencies of the observed structure.

The FDD also yields the mode shapes of the structure for each of the detected
eigenfrequencies, i.e., the maximum deflection φs of the structure at the position of the
sensor s. After normalizing the mode shape to

Fs := φ2
s∑

k∈S φ2
k

∀s ∈ S, (81)
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it can be compared with a mode shape (F̄s)s∈S captured during a reference measure-
ment. A damage index for each sensor position is derived as

DI s := Fs + 1
F̄s + 1

− 1 ∀s ∈ S (82)

Based on the Modal Strain Energy (MSE) method [Stubbs1995], an increased DI s is
expected, if the structure’s stability has changed between the reference and the current
measurement near the sensor s.
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CHAPTER 8
System Level Evaluation: Distributed Monitoring of a
Railroad Bridge Model

The SHM demonstrator used to evaluate the capabilities of the HaLoMote architecture
in a complete WSN application consists of a bridge model equipped with a network
of HaLOEWEn motes. These motes are performing the RDT as described in Section
7.3, to act as a decentralized Data Acquisition (DAQ) system. In addition, an embed-
ded PC running [MATLAB] is used for the centralized OMA and damage detection
algorithms. The bridge can be excited by an impact hammer, or a train model. A
wire-bound DAQ system can be installed to capture baseline (“ground truth“) mea-
surements. This demonstrator was developed in cooperation with the Smart Structures
Research Division of the Fraunhofer Institute for Structural Durability and System Re-
liability (LBF) and already described in [Engel2014c; Engel2015c]. It was presented
at the Hannover Fair in 2014 and now is a permanent exhibit at the Transfer Center
for Adaptronics at the Fraunhofer LBF, as shown in Figure 68. It was also covered by
some local media reports (e.g., [Yannick2015]).

Figure 68: SHM demonstrator exhibit located at the Transfer Center for Adaptronics
(Fraunhofer LBF)

8.1 Demonstrator Setup

A warren truss railroad bridge was modeled by connecting 54 metal rods with 24 metal
joints resulting in 51 kg overall weight and a span width of 246 cm. The test structure
can be excited by an impulse hammer or a 2.3 kg G-scale railway model crossing the
bridge.

The four outer joints (marked green in Figure 69) are connected to fixed pedestals.
They can rotate in either directions without changing their position. Thus, to assess the
dynamic movement of the structure, only the 20 inner joints (marked red and labeled
as S1 to S20 in Figure 69) have to be monitored. This is achieved by connecting a
3-axis [ADXL362] MEMS acceleration sensor to each of the inner joints. This sensor
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Figure 69: Sensor position and orientation on the truss bridge model

was chosen as a trade-off between power consumption (i.e., 6 µW at 400 Hz sampling
rate) and measurement accuracy (i.e., about 1 mg resolution).

The COTS sensor breakout boards are sealed in a housing shown in Figure 70b.
This housing was designed and additively manufactured at the Fraunhofer LBF. The
housings are screwed to the joints facing outside the structure, as shown in Figure 70c.
The resulting sensor channel orientation is shown in Figure 69 and differs for the front
(S1 to S10) and the rear side (S11 to S20) of the bridge. However, as the railway model
excites the bridge mainly in vertical direction (i.e., orthogonal to the bridge deck), only
the x-channel of each sensor is sampled for both sides of the bridge.

For the wireless DAQ system, five HaLOEWEn3 motes were mounted on the upper
rods (marked blue and labeled as N0 to N4 in Figure 69). Special carriers were designed
and additively manufactured at the Fraunhofer LBF. As shown in Figure 70a, these

BatteryC0

C1

C2

C3 Connector

Carrier

(a) Mote mounting (b) Sensor housing (c) Sensor mounting

Figure 70: Mounting of sensor mote and sensors
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carriers are clamped on the rods and comprise a battery compartment to power the
HaLOEWEn screwed on top.

Finally, a connector board was designed and manufactured as PCB to connect the
four sensors located in the same x-z-plane as the mote to its RCU. Four Hirose [ST60-
10P] connectors (labeled as C0 to C3 in Figure 70a) are used to flexibly connect the
sensors to the expansion headers.

Due to the relatively large stiffness of the small bridge model, the relevant structural
modes to be observed are located between 50 Hz and 100 Hz. Thus, to safely meet the
Shannon-Nyquist lower limit, a sampling rate of 400 Hz was chosen. A synchronization
accuracy of a few microseconds between the HaLOEWEn motes, as it can be achieved
by the approach described in Section 6.2, is sufficient for this sampling rate. The
WSN-based DAQ system does not capture the actual excitation of the structure, as this
would also not be possible for real-world SHM deployments. Thus, an OMA is required
as described in Section 7.3. A nf = 64 tap high pass filter with a cut-off frequency of
20 Hz is applied to each sensor channel. This configuration was chosen as a trade-off
between computational complexity and the filter quality. Static acceleration is damped
by 60 dB, while all frequencies above 40 Hz are damped by less than 4× 10−3 dB.
After the high-pass filtering, the RDT with up to three reference channels and runtime
configurable trigger levels is applied. A fixed window length of nw = 256 is used to
capture the free decay of the structure within the first 640 ms after each trigger event.

A second wire-bound DAQ system was installed in parallel to the WSN for reference
measurements, as shown in Figure 71a. It consists of 12 PCB [356A16] integrated
circuit piezoelectric (ICP) accelerometers controlled by the LMS Test.Lab 14A (LMS)
and attached to the joints of the bridge by an adhesive (wax), as shown in Figure
71b. Due to the limited number of input channels available at the [SCADAS] sensor
front-end, only the front side of the bridge (i.e., S1 to S10) can be completely observed
by the reference system. In principle, both sides of the bridge could be analyzed

(a) Cabling (b) ICP Sensor (c) Impulse hammer

Figure 71: Wire-bound reference DAQ systems (LMS Test.Lab 14A with 12 ICP accelerom-
eters)
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independently, but moving the sensors from one side to another is not practical for
long term observations as required by SHM. Instead, only two additional ICP sensors
are installed on the rear side (i.e., S13 and S18) to assess the symmetry of the observed
mode shapes. All sensors are sampled at 512 Hz with a resolution of 0.1 mg. The LMS
system also captures the excitation provided by an impulse hammer (see Figure 71c), so
an EMA can be performed thus providing more accurate results than the OMA-based
WSN. Compared to the wireless data acquisition system, the cabling required for
the LMS system becomes rather complex (Figure 71a) even though only 60 % of the
structure is covered.

8.2 Accuracy of the Wireless Data Acquisition System

Choosing S3 and S13 as reference channels provided the best results, as the center of the
structure is excited the most. The trigger level of l3 = l13 = 200 mg was determined
experimentally and corresponds to the peak excitation caused by the model train.

The manual excitation of the structure with the impact hammer for 10 s resulted in
60 trigger events registered at node 3 and 40 trigger events registered at node 13. The
40 resulting RD sequences D1,3, . . . , D20,3, D1,13, . . . , D20,13 were transmitted to a base
station for the subsequent modal analysis. As shown in Figure 72 for D3,13, these RD
sequences characterize the free decay of the structure.

For the wired LMS measurement, five strokes on S17 were injected in vertical direc-
tion with the impulse hammer at intervals of about 3 s to excite the vertical bending
modes of the bridge model. The EMA results are averaged over those five individual
measurements. The resulting frequency response function at S3 is shown in Figure
73. Below 40 Hz and above 110 Hz, the structure’s characteristics cannot be captured
properly by the WSN-based system. However, the two dominating modes are located
outside of these inaccurate frequency bands and can be captured with an accuracy of
at least 1 % as summarized in Table 16.

In addition to the eigenfrequencies, the actual mode shapes are of special interest
for an SHM system, as minor damage will be reflected in the deformation of the mode
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Figure 72: RD sequence D3,13 captured by the WSN
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Figure 73: Frequency Response Function at S3 captured with both DAQ systems

Mode shape by LMS by WSN Relative deviation

Symmetric vertical bending 47.0 Hz 46.9 Hz 0.2 %
Asymmetric vertical bending 75.7 Hz 75.0 Hz 0.9 %

Table 16: Detected dominant mode shapes

shapes before significant changes in the eigenfrequencies can be detected. Figure 74a
shows the asymmetric vertical bending mode captured by both monitoring systems.
More specifically, the unexcited bridge is shown in gray, while the vertical movement
of the horizontal bars is shown in red (for the wire-bound LMS DAQ system) and blue
(for the WSN DAQ system). As only the position of the four outer bearing joints
is fixed, the four lateral bars are also bending inwards. Remember that the wire-
bound LMS system has a limited view on the rear side of the structure due to input
channel restrictions. However, the two nodes on the rear side are sufficient to detect
the asymmetric character of the mode, i.e., the rear side is bending up while the front
side is bending down. But only the WSN system provides a detailed view on both

(a) Asymmetric vertical bending mode at
75 Hz

WSN
LMS

(b) Symmetric vertical bending mode at
45 Hz

Figure 74: Mode shapes captured with both DAQ systems
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sides of the structure, which is essential for the subsequent SHM analysis. This also
holds true for the symmetric vertical bending mode shown in Figure 74b. Although
the reduced accuracy of the WSN system is clearly visible in the mode shapes, the
principal behavior of the structure can still be observed without the need for extensive
cabling and well-known controlled excitation.

After showing that the WSN system can identify structural properties such as eigen-
frequencies and mode shapes, these properties are used to evaluate the damage de-
tection capabilities of the HaLOEWEn network. For the selected configuration of the
reference signals, each bridge crossing of the train generates 12 to 20 trigger events
at each reference signal. The reference mode shape of the bridge was derived from a
600 s measurement, which generated 1103 triggers events at S3 and 873 trigger events
at S13.

To demonstrate the reproducibility of the mode shape determined for the undam-
aged structure, measurements of reduced duration have been carried out. The resulting
mode shapes of the first symmetric vertical bending mode and the corresponding dam-
age indexes at the sensors along the horizontal axis of the structure (i.e., S1 to S5) are
calculated by Equation 82 and shown in Figure 75. The reference mode shape is shown
in red, while the actually determined mode shape is shown in blue. The number of
accumulations performed for each RD sequence decreases with the measurement dura-
tion and the remaining noise in the RD sequences results into larger DI values. The
possibility of false positive damage detection thus increases. For the experimentally
determined damage detection threshold of 0.05, a 60 s measurement interval provides
sufficiently low DI values.

To simulate a damaged structure, single screwed connections near specific sensors
were loosened. Figure 76 shows the mode shapes and the damage indexes determined
from the damaged structure for 3 different damage locations. In all three cases, the
damage has been detected, i.e., the damage detection threshold of 0.05, determined
during the reference measurements, is exceeded. The damage location, however, is not
reflected by the DI diagram.

Figure 75: Mode-shapes and DI s of undamaged structure obtained from 300 s (left), 60 s
(center), and 30 s (right) measurements
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Figure 76: Mode-shapes and DI s of damaged structure obtained from a 300 s measurement
after loosening a screw at S1 (left), S3 (center) or S5 (right) by a 5/6 rotation

8.3 Performance and Energy Evaluation

Finally, the runtime and energy required by the hardware accelerator of the HaLoMote
architecture for the RDT computation is compared against software processors
typically used in mobile and WSN applications. Namely, the TI [CC2530] and
the Atmel [ATmega256RFR2] were chosen as representative 8 bit MCUs, as these
RF-System-on-Chips (SoCs) have also been integrated into the HaLoMote. Fur-
thermore, the TI [CC430] RF-SoCs was chosen as representative 16 bit MCU, as the
MSP430 architecture is widely used in many WSN motes. Most recent software pro-
cessors for mobile applications are based on the ARM Cortex-M architecture, so the
[STM32F407] and the TI [CC2650] were chosen as particularly powerful and energy-
efficient state-of-the-art references.

For a fair comparison, all systems were configured with the same RDT settings as
described in Section 8.2, i.e., 400 Hz sampling frequency, four sensor channels, two
reference channels, 64-tap FIR filter and 256 samples per RD sequence. As the actual
workload heavily depends on the number of detected trigger events, all systems were
fed with the same pre-recorded sensor samples stored in the processors code memories
and the trigger levels were chosen such that the actual number of triggered events is
60 and 40, respectively, as observed in Section 8.2. The firmware for all systems was
built with the most recent compilers, configured to optimize for execution speed. The
average runtime per sampling cycle measured with peripheral timers was combined
with data-sheet information about the power consumption and the wake-up time from
sleep mode as shown in Table 17. The deepest sleep mode with memory retention
and enabled real-time clock was chosen for each system respectively. To derive the
overall energy spent per sampling cycle (Eoverall), a power-consumption of Pactive was
assumed during wake-up, as the capacitors of the internal switching regulators have
to be charged during the ramp-up. To better illustrate the consumed energy per
sample by the different processor architectures, the corresponding system endurance
(talive) achievable when supplied by a 1 W h energy buffer (e.g., a typical NiMH AAA
cell) was derived. Note that this estimation takes only the processor into account,
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Table 17: Resources required for executing the RDT on various processing units
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disregarding the sensors and the radio transceiver (which are assumed to be identical
across the platforms examined).

As shown in Table 17, the 8 bit MCUs do not achieve the required sampling period
of 2500 µs. The [CC430] requires about 50 % of the sampling period for the RDT
computations while consuming 15.4 µJ per sampling cycle. The powerful Cortex-M4
device is nearly 30 times faster than the [CC430], but its comparatively large power
draw in idle mode still results in 11.4 µJ consumed per sampling cycle. The TI [CC2650]
proves to be the most energy-efficient software-processor under consideration as it
requires only 1.6 µJ per sampling cycle. However, the FPGA on the HaLOEWEn4
requires only 28 % of the energy of the most efficient software processor. Note that the
HaLOEWEn4 MCU causes an additional overhead, mainly due to its energy required
during wake-up (228 nJ) and idle (6 nJ) periods. The combination of the hardware
accelerator and the Atmel MCU, as used by the HaLOEWEn4 implementation, thus
consumes only 44 % of the energy of the most efficient software processor.

The energy efficiency of the HaLoMote easily exceeds that of the other platforms
when actively performing computations, but it suffers when the node has to remain
powered, but stays idle. In that case, its idle power consumption is 53 µW, which is
nearly 30× the power drawn by the CC2650 MCU in idle mode. As sensor motes spend
most of their lifetime in idle mode, special care must be taken on the HaLoMote to
address this issue. In the SHM application, this can be achieved by having a supervisory
power manager suspend the sensor sampling when no traffic is present on the structure.
For the specific use case of railway bridges, these times may be more than 95 % of the
overall operating time. For these quiet periods, the non-volatile FRAM (see Section
4.4.2) can be employed to store the internal state of the hardware kernels, which has
to be preserved once the supervisory manager completely powers down the hardware
accelerator. Note that the FPGA configuration data is not affected by such a shutdown,
as it is held on-chip in non-volatile Flash memory.

For the concrete SHM configuration discussed in this section, about 48 kbit of runtime
state has to be preserved across shutdowns (i.e., 41 kbit for the RD sequences, 3 kbit for
the FIR taps, 3 kbit for the delay FIFO, and 1 kbit for the trigger events). According
to Equation 2 and 4, live variable swapping to the external SRAM pays off after
approximately 2 s shutdown, while swapping to FRAM becomes attractive only after
about 16 s. Beyond the railway bridge use case, such short idle-times occur even in
many less frequently traveled automotive bridges. Thus, the capability of quickly
and power-efficiently preserving the system state, while completely shutting down the
accelerator, is attractive for a variety of applications.

8.4 Discussion of Results

In this section, the obtained results for the HaLOEWEn-based SHM system are com-
pared with the related work described in Section 3.3.2.

The achieved measurement accuracy, i.e., the relative error of the detected eigenfre-
quencies compared to ground truth measurements of the wire-bound system (≤ 0.9 %)
is comparable with the outcome of [Bocca2011] (≤ 1.035 %). All other wireless SHM
systems missed the exact eigenfrequencies by up to 18 %. One possible cause of this ob-
servation might be that [Bocca2011] is the only of the considered reference projects also
relying on a laboratory scaled testbed with well-controlled boundary conditions, such
as the artificial excitation of the structure. However, while [Bocca2011] used a white-
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noise generating shaker, the model train set used in this thesis might be considered
more realistic.

Another comparison worth looking at is the achievable data-aggregation factor.
[Kim2007] reported a 20× down-sampling, but this can not be understood as data
aggregation, as the authors just increased the sampling rate to obtain a better signal
quality (i.e., reduced noise floor). [Battista2013] reported a 96 % data aggregation (i.e.,
25×) for 10 min measurements every 30 min. As stated in Section 7.3.2, the distributed
RDT used by the HaLOEWEn system reduces the raw data stream by 469× for the
same measurement duration.

Finally, the overall energy efficiency of the data acquisition systems must be com-
pared against each other. It is hard to directly compare the energy or the power
consumed by different systems against one another, without taking the quality and
the information content of the gathered data into account (e.g., higher sampling rates
result in higher power draw, but also in more accurate results). However, all systems
considered in Section 3.3.2 were used to identify the modal properties of the observed
structures. The smallest average power draw reported by the reference systems was
53 mW for a 60 s active measurement period [Bocca2011]. As analyzed in the previous
section, the computational units of the HaLOEWEn4 consume 666 nJ per sample. At
400 Hz sampling rate, this equates to an average power draw of 266 µW just for pro-
cessing. After the measurement period, 4 · |R| =8 RD sequences per sensor node have
to be transmitted to the base station, each consisting of nw · 4 = 1024 Byte. Even
when assuming that only 10 % of the available IEEE [802.15.4] data rate is available
for actual payload transfer (e.g., due to packet loss and addressing overhead), and the
maximum transmission power of the HaLOEWEn4 RF-SoC is required for a specific
transmission range (i.e., 36 mW power consumption during transmission), the overall
average power of the HaLOEWEn4 is increased by

8 · 1024 · 8 bit
250 kbit/s · 10 % ·

36 mW
60 sec = 1.57 mW (83)

The resulting average power drawn by the HaLOEWEn4 during a 60 s measurement
is thus smaller than 2 mW or 29× times less the power required by [Bocca2011]. Note
that in practice, the measurement duration will be much longer, thus even increasing
the HaLOEWEn energy efficiency.

Finally, while all reference systems considered in Section 3.3.2 focus on system identi-
fication, the HaLOEWEn system also provides basic damage detection capabilities.
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CHAPTER 9
Summary and Future Work

In this thesis, the Hardware-Accelerated Low Power Mote (HaLoMote) was proposed as
a heterogeneous Wireless Sensor Network (WSN) architecture for hardware-accelerated
energy-efficient distributed data aggregation. The Hardware-Accelerated Low Energy
Wireless Embedded Sensor Node (HaLOEWEn) implementation of this architecture
was detailed in conjunction with the platforms inter-processor communication and
power management strategies. In addition to application-independent hardware ac-
celerators for digital filters, lossless data compression, and linear regression, network
communication primitives for flooding and time synchronization have been developed.
These building blocks were evaluated in the context for three monitoring applications.
One of these applications, i.e., a distributed Structural Health Monitoring (SHM) was
analyzed more in detail, as an application-specific feature-extraction algorithm, namely
the Random Decrement Technique (RDT), was hardware accelerated. A laboratory-
scale SHM testbed was conducted for the system-level evaluation of the HaLoMote
architecture. It could be shown that a HaLOEWEn-based wireless Data Acquisi-
tion (DAQ) system can identify the the dynamic characteristics relevant for the SHM
application with an acceptable deterioration of the measurement accuracy compared to
a wire-bound laboratory measurement system. At the same time, the energy efficiency
of the HaLoMote platform was shown to outperform the energy efficiency of recent
low-power microcontrollers by more than 2×.

9.1 Lessons Learned

Most of the research problems addressed in this thesis (see Section 1.2) can be answered
clearly.

Which specific RCU is suited best to be integrated into a WSN mote?
FPGAs with a truly non-volatile configuration storage provide a low static power
consumption with fast transitions between active and idle states. Even nowadays,
the Microsemi [IGLOO] family provides the best trade-off between available logic
resources and static power consumption.

How to integrate the RCU into the architecture of a WSN mote? To be more specific,
how should the sensors, memories, processing and communication modules be arranged,
and how should they communicate?

Using the FPGA as hardware accelerator next to a small RF-SoC is required,
as a standalone FPGA cannot properly apply DPM-mechanisms during periods
with reduced compute demands. However, two fundamental approaches for in-
terconnecting the devices with each other and with the sensors were identified.
The HaLoMote architecture connects all sensors to the FPGA and provides only
a narrow communication link between the FPGA and the RF-SoC. The FPGA
thus has to be woken up in every sampling cycle to query the next sensor sam-
ples. Although the DPM mechanism of the HaLoMote were designed to support
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this fast state transitions, an alternative approach can be imagined. When con-
necting all sensors to the RF-SoC and interconnecting FPGA and RF-SoC with a
shared memory, the hardware accelerator can be kept low until a sufficient amount
of data is captured for processing. As this second approach was not evaluated
throughout this thesis, this research question can not be clearly answered.

How does the RCU affect the DPM strategy of the WSN mote?
The clock supply and the external shutdown request required by the FPGA were
identified as a major difficulty for the DPM of the entire platform. To decouple
the sleep scheduling or FPGA and RF-SoC, two mechanisms were proposed,
namely a hybrid clock supply and the self-controlled shutdown of the FPGA. To
even save the power drawn by the FPGA in Flash*Freeze mode, the feasibility of
live variable swapping to an external SRAM of FRAM was analyzed. For typical
monitoring applications, this mechanism is, however, only useful as long as no
active measurement is carried out.

How does the RCU affect the trade-off between in-sensor preprocessing and wireless
data transmission? For which kinds of application do the improved data aggregation
capabilities pay off in terms of overall energy consumption?

Due to the energy efficiency of the hardware accelerator, data aggregation pays
off even if only a few percentage of the wireless communication bandwidth can
be saved. The more relevant question thus is, which computational load justifies
the usage of a hardware accelerator instead of a low-power MCU. For the SHM
target application sampling four channels in parallel at 400 Hz, a recent ARM-
based MCU was outperformed by the HaLOEWEn, however.

Once the RCU is integrated as application-specific accelerator, which generic WSN
services can also benefit from the improved processing capabilities?

In this thesis, the hardware acceleration of a generic lossless data compression
module and a linear regression solver used for improved time synchronization
was proposed. Although not analyzed in this thesis, many other services like
encryption or forward error correction are known to also benefit from hardware
acceleration.

9.2 Remaining Research and Engineering Challenges

Although many algorithms and methods have been analyzed, implemented and tested
for the HaLoMote platform, a lot of additional and complementary research and engi-
neering challenges can be identified.

First of all, the following improvements can be achieved without major modifica-
tions of the HaLoMote design: Over-the-Air-Programming of the FPGA is useful
to simplify in-field reconfiguration or the entire mote. For larger deployments and
testbeds, this feature is almost mandatory. The HaLOEWEn4 MCU already has ac-
cess to the JTAG port of the FPGA and Microsemi provides platform-independent
firmware for the MCU-based JTAG-programming of their devices (namely DirectC
and the Stable-Player). However, some additional effort should be spent on the bit-
stream transport throughout the network to efficiently support incremental updates or
the delivery of only slightly differing bitstreams to different, but nearby network nodes.
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Furthermore, the support for higher-order predictive compression can be imple-
mented by just integrating higher-order linear equation solvers to the ADPCM kernel
described in Section 5.2.2. The multi-channel conditional monitoring application (Sec-
tion 7.2) was shown to benefits from a fourth order predictor in terms of compression
ratio, but the energy required for this more complex encoder could not be analyzed in
this thesis.

Two improvements for the multi-source flooding mechanism can be envisioned. In-
stead of assuming the knowledge of the entire topology (i.e., the connectivity and in-
terference graph), some sophisticated protocols should be developed for an automated
topology discovery. While the connectivity graph can be easily generated by well known
neighbor-discovery algorithms [Dheap2003], capturing the interference graph is rather
difficult. In addition, the flooding scheduler could exploit channel switching for con-
gestion resolution and integrate energy-balancing to equally distribute the transceiver
activities to all network notes, instead to building hot spots.

Only minor changes to the HaLOEWEn design, are required to support the live
variable swapping described in Section 4.4.2. So far the core voltage supply of the
FPGA can not be turned of completely, so an additional power FET controlled by the
MCU is required.

If a major redesign of the HaLOEWEn is envisioned, than a new Flash-based FPGA
device family is hopefully available. The [IGLOO] family is build with a quite outdated
130 nm CMOS process. The advantage of the hardware accelerator against the most
recent MCUs has been reduced down to a factor of two. A break-even between the old
FPGA device and new software processors can thus be expected in the near future.

Furthermore, the alternative hardware accelerator architecture based on shared
memory between RCU and RF-SoC (Figure 13b) must be evaluated. It can be ex-
pected that this architecture is better suited for the higher sampling rates required by
most condition monitoring applications, as the FPGA does not have to be power-cycled
in every sampling cycle with this approach.

Most important, however, the HaLOEWEn network must be deployed in a real
world scenario (e.g., bridge monitoring) to evaluate its long term robustness and energy
efficiency under realistic conditions such as increased packet error rates caused by foggy
weather.
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