
Hardware accelerated
data compression in
wireless sensor networks
Hardware beschleunigte Datenkompression in drahtlosen Sensornetzen
Bachelor-Thesis von Jaco A. Hofmann
August 2012

Fachbereich Informatik
Embedded Systems and Applications

Hardware accelerated data compression in wireless sensor networks
Hardware beschleunigte Datenkompression in drahtlosen Sensornetzen

Vorgelegte Bachelor-Thesis von Jaco A. Hofmann

1. Gutachten: Andreas Koch
2. Gutachten: Andreas Engel

Tag der Einreichung:

Erklärung

Hiermit versichere ich gemäß der Allgemeinen Prüfungsbestimmungen der Techni-
schen Universität Darmstadt (APB) §23 (7), die vorliegende Bachelorarbeit ohne Hilfe
Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu ha-
ben. Alle Stellen, die aus den Quellen entnommen wurden, sind als solche kenntlich
gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prü-
fungsbehörde vorgelegen.

Darmstadt, den 13. August 2012

Jaco A. Hofmann

1

Contents

1 Introduction 5

2 The Application 7

2.1 Application Scenario . 7
2.2 Application data . 7

3 Introduction to Data Compression 10

3.1 Overview of Compression Algorithms . 11
3.2 Source Encoding . 11

3.2.1 Run-length Encoding (RLE) A∗→ (N×A)∗ 12
3.2.2 LZ-Family . 12
3.2.3 Burrows-Wheeler Transform (BWT) A∗→ A∗ 15
3.2.4 Differential Pulse Code Modulation (DPCM) A∗→ A∗,A⊆ R . 17

3.3 Symbol Encoding . 19
3.3.1 Huffman-Coding . 19
3.3.2 Arithmetic-Coding . 22
3.3.3 Golomb-Rice-Coding . 23
3.3.4 Tunstall Codes . 24

4 Comparison 25

4.1 Algorithms . 25
4.2 Testing Environment . 25
4.3 Compression Results . 28
4.4 Evaluation of the Compression Results . 28
4.5 Testing of ADPCM encoding . 29
4.6 Evaluation of ADPCM Test Results . 30

5 Implementation 32

5.1 Algorithm Design . 32
5.1.1 Autocorrelation Calculation . 32
5.1.2 Coefficient Calculation . 33
5.1.3 Output Encoding . 35

5.2 FPGA Implementation . 35
5.3 Microcontroller Implementation . 38
5.4 Decoder . 39

6 Evaluation 41

6.1 Setup . 41

2

6.2 Results . 42

7 Conclusions and open issues 46

Bibliography 47

3

Abstract

The “Deutsches Primatenzentrum” (DPZ) in Göttingen and the institute for electrome-
chanical construction at TU Darmstadt cooperate in researching the neural activity of
apes. One of their experiments requires the apes to move freely in an area of about
300 m2 while their brain activity is being measured. Thus wireless transmission tech-
niques have to be used to collect measured sensor data for further evaluation.

This work researches compression algorithms suitable for reducing the transmission
bandwidth required for these experiments. The aim is to reduce the energy consump-
tion of the measurement platform by enabling the usage of lower power transmission
techniques. These lightweight transmission techniques are currently not usable due to
their lower bandwidth.

After evaluating various compression algorithms, Adaptive Differential Pulse Code
Modulation (ADPCM) proves the most valuable, facilitating a data reduction of up
to 36% of the original size. A version of ADPCM with a forward adaptive predictor
is implemented on both an FPGA and an MCU. In comparison, the FPGA performs
significantly better thus supporting a potentially wider range of application scenarios.

Zusammenfassung

Das “Deutsche Primatenzentrum” (DPZ) in Göttigen und das Institut für Elektrome-
chanische Konstruktion (EMK) der TU Darmstadt untersuchen im Rahmen einer Ko-
operation die neuronalen Aktivitäten von Affen. Eines dieser Experimente erfordert,
dass sich die Affen frei, auf einer Fläche von etwa 300 m2, bewegen können. Daher
wird, zur weiteren Auswertung, auf drahtlose Übertragungstechniken zur Übertra-
gung der gemessenen Sensorwerte zurückgegriffen.

Diese Arbeit untersucht Kompressionsalgorithmen auf die Eignung zur Kompression
der Daten zur Reduzierung der benötigten Bandbreite. Das Ziel dieser Kompression
ist es, den Energieverbauch der Messplatform zu reduzieren indem, durch die Kom-
pression, Übertragungstechniken mit niedrigerer Bandbreite aber auch niedrigerem
Energieverbrauch eingesetzt werden können.

Der Vergleich verschiedener Kompressionalgorithmen stellt Adaptive Differential
Pulse Code Modulation (ADPCM) als am besten geeignetes Verfahren heraus. Mit opti-
mierten Einstellungen wird dabei eine Reduzierung auf etwa 36% der Ausgangsgröße
erreicht. Zudem wird eine Version von ADPCM mit vorwärts adaptivem Prädikator
implementiert. Dabei wird eine Version für ein FPGA erstellt und eine Version für
einen Mikrokontroller. Der Vergleich der beiden Implementierungen zeigt, dass das
FPGA signifikant besser geeignet ist und dadurch einen größeren Anwendungsbereich
unterstützen kann.

4

1 Introduction

Wireless sensor networks (WSN) consist of wirelessly connected nodes. Typically,
these nodes are designed to work with as little power as possible to allow for
maintenance-free run-times of up to a year. WSN applications are widely spread.

Figure 1.1: Common wireless sensor network platform Tmote Sky. This plat-
form provides a TI MSP430F1611 microcontroller, 48 kbyte Flash and a
250 kbps wireless transceiver. Furthermore, it features various possibil-
ities to access sensors. With as little as 15.3 µW power consumption
in sleep mode this device can operate without human interaction for
long times. Source: http://www.snm.ethz.ch/snmwiki/pub/uploads/
Projects/tmote_sky_small.jpg

They range from unintrusive animal observation to forest fire detection and E-Health
patient observation. Thus, wireless sensor networks are a useful tool in many research
areas. While the first WSN were mostly used to monitor larger areas, recent WSN are
also used in smaller areas like buildings or research labs. As most of the sensor nodes
operate on batteries, energy consumption is a major restriction for the sensor networks
operation. When observing the energy consumption of wireless sensor networks, a sig-
nificant amount of energy is spent for radio transmission. Calculations on the other
hand are relatively cheap. Many different techniques evolved around the problem
of high power consumption of wireless transmissions. One of these are routing algo-
rithms that try to transmit data in the most efficient way through the network. Another
approach is the local processing of the measured data in the sensor node itself. For this
approach the sensor data has to be analysed and the crucial events have to be classi-
fied by algorithms like hidden markov models, neural networks or simple thresholds.
If the data analysis depends on combining information from multiple sensors, this
approach is not viable.

The approach that is researched in this work is more general. Compression algo-
rithms are widely used in most networks nowadays. They aim at reducing the size
of the data to be transmitted by changing its binary representation in a unique and
reversible fashion. A simple example is the so called run-length encoding used for fax

5

http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_small.jpg
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_small.jpg

transmissions. Instead of storing each pixel of the original image, a series of equally
coloured pixels is encoded as a tuple (length, colour). Many more sophisticated algo-
rithms exist. A downside of many of these approaches are their large memory and
processing power requirements. For WSN new approaches have to be investigated or
old approaches tested for viability.

The work is structured as follows: Chapter 2 introduces the application scenario
and the features of the data to be compressed. Chapter 3 provides a basic understand-
ing of various compression algorithms. Chapter 4 compares the application of these
algorithms to the data presented in Chapter 2. The hardware- and software-based im-
plementation of the most valuable compression algorithm is described in Chapter 5.
Finally, the performance of these implementations is analyzed and compared in Chap-
ter 6. The last chapter concludes this work and provides a short outlook onto future
tasks.

6

2 The Application

This chapter describes the application a suitable data compression algorithm is sought
for. The chapter begins with a description of the application scenario including rele-
vant constraints in Section 2.1. In Section 2.2 the data to be compressed is described
and relevant features are shown.

2.1 Application Scenario

This work is motivated by a cooperation between the “Deutsches Primatenzentrum”
(DPZ) in Göttingen and the institute for electromechanical construction at TU Darm-
stadt. The aim of this cooperation is to develop a mobile system for measuring the
neural activities of apes. While the apes solve different tasks, the neural activity is
measured and transmitted to a centralized processing unit for further analysis. One
session lasts for over one hour. Due to high data rates, in node logging and analysis are
not viable. Furthermore the ape should be able to move freely inside the testing area
of about 300 m2. Thus cables are impractical and wireless transmissions are needed.

The measurement of brain activities is carried out by four micro-electrodes inside
the brain. Each of these electrodes has to be adjusted to a certain depth within the
brain of the ape during a session to monitor different types of brain activities [12]. The
adjustion is performed by a remotely controlled system. For adequate electrode posi-
tioning by a human operator, the data transmission delay needs to be less than about
100 ms. At the same time, the data transmission has to be fast enough to transmit four
channels of 16 bit samples at 24 414 Hz (1.5 Mbit/s).

The area for all components is limited to 3 cm× 4 cm× 2.5 cm and the weight is
limited to 40 g.

Currently a WLAN transceiver are used for data transmissions. Its comparably high
energy consumption enlarges the batteries required to meet the run-time constraints.
This results in a higher area usage. Lightweight transmission techniques like Blue-
tooth or Zigbee are not able to provide the required bandwidth. Thus, a compression
method needs to be found that allows for a transmission bandwidth reduction and
thus lowers energy consumption and weight of the components.

The following section will describe the exact features of the transmitted data.

2.2 Application data

The data generated by the sensors consists of 16 bit signed numbers.
For testing and evaluation, data from actual experiments is used. This data consists

of about 130 million samples per channel for four channels in total. This corresponds
to about 87 hours of logging. The statistical properties of the channels vary as can be
seen in table Table 2.1. While the minima and maxima remain relative consistent over
all channels, both the variance as well as the mean varies greatly. All means lie within

7

Channel Minimum Maximum Variance Mean

1 -2799 3623 8456.494224 -277.731958
2 -2505 3882 34709.583269 17.994374
3 -1925 2026 2935.727405 88.559409
4 -2464 3426 2356.920941 -149.533500

Table 2.1: Statistical properties of the data provided by the ape experiment.

0.0085% of the maximum value for signed 16 bit block encoded numbers of 215 − 1.
Most of the samples lie within the range of [−1000,1000] as can be seen in Figure 2.1
for all channels.

8

0

1

2

3

4

·107

0

1

2

3

4

·107

0

1

2

3

4

·107

Fr
eq

ue
nc

y
of

sa
m

pl
e

va
lu

es

−1,000
−800

−600
−400

−200
0 200

400
600

800
1,000

0

1

2

3

4

·107

Sample Values

Figure 2.1: Histograms of the data channels provided by the ape experiment.

9

3 Introduction to Data Compression

Data compression is the modification of the binary representation of a data sequence
aimed at lowering the resources required to store or transmit the data. Two funda-
mental approaches can be distinguished:

1. Lossless compression reduces the data representation size without losing any
of the original information. This is commonly used for textual data not tolerating
any deviations after decoding. transmissions can not be tolerated.

2. Lossy compression reduces the data representation size utilizing the limited
human perception. This is very useful for visual and audio data, as many parts of
the signals captured by cameras and microphones are not perceivable by humans
and can be removed without changing the experience for the consumer.

Typically, lossy compression is able to achieve much higher compression rates com-
pared to lossless compression. Figure 3.1 shows a picture compressed with a lossy
compression method at high (Figure 3.1a) and low (Figure 3.1b) quality levels. While
most of the information can be perceived at just 5.7 % of the size, the effects of the
compression algorithm is clearly visible in Figure 3.1b. Hard edges are blurred, and
many artifacts can be observed.

Compression algorithms can be divided in two main groups. The first group exploits
statistical properties of the source to reduce redundancy. This is done by converting
from the source alphabet into another alphabet, often referred to as symbol alpha-
bet. This group will further be referenced as source encoding. The second group of
algorithms tries to encode the symbols of an alphabet with the least possible symbols
in the target alphabet (for example bits). This group will be referenced as symbol
encoding.

Typically, a compression method uses both types of encoding. First a symbol en-
coding is used to convert from the source alphabet into a symbol alphabet with less

(a) Highest quality (Q = 100) ∼83
kB[16]

(b) Low quality (Q = 10) ∼5 kB[15]

Figure 3.1: Two JPEG compressed images with different encoding settings.

10

Notation Meaning Definition

Alphabet A set of distinguishable symbols. A
capital letter in fractal font indicates
an alphabet.

A

Letter, Symbol Smallest piece of data carrying infor-
mation. Element of an alphabet

a ∈ A

Word Limited series of letters of an alphabet
�

a1, a2, . . . , an
�

, ai ∈ A

Compression rate Size of the compressed bit string in
percent of the original bit string.

length compressed
length uncompressed

· 100

P(a) Probability for the occurrence of let-
ter a.

P : A→ [0,1]

B(a) Binary representation of letter a. B : A→ {0, 1}∗
Bl(a) Binary representation of letter a with

length l.
Bl : A→ {0, 1}l

• Concatenation of two bit strings. B(a) • B(b) = B(a)B(b)
u(n) Unary code of n (see Section 3.3.3) u : N→ {0,1}∗

Table 3.1: Table of the notations used throughout this chapter.

redundancy. Afterwards, the symbol alphabet is convierted into a (typically binary)
target alphabet.

3.1 Overview of Compression Algorithms

Over the years various compression algorithms evolved. In the following section, a
brief description of the basic ideas of the algorithms used in Chapter 4 is given. The
information theoretical background will only be scratched as this work is mainly in-
terested in the output performance of the algorithms. Thus, the description of the
algorithms itself will focus on the elementary ideas behind each approach, their re-
quirements as well as their advantages and disadvantages. For further information,
the readers may refer to [13] and [14]. Table 3.1 describes notations, functions and
fundamental terms used throughout this chapter.

3.2 Source Encoding

The algorithms described in this section exploit the statistical properties of the source
to reduce redundancy. The alphabet of the resulting symbols typically differs from the
source alphabet.

11

3.2.1 Run-length Encoding (RLE) A∗→ (N×A)∗

Run-length encoding is a very simple algorithm which works best on very repetitive
data. It represents reoccurring sequences of single letters (a a . . . a) as a tuple (n, a)
containing the sequence length n and the repeated letter a. The decoding process
reads the number n and outputs the following letter n times. To limit the amount of
output symbols, the length of the sequences must be restricted to an upper bound N:

B= {(n, a)|a ∈ A, n ∈ N, n≤ N} (3.1)

The following examples use the two letter source alphabet A=
�

a1, a2
	

. The string

a1

a1a1a1a2a2a2a2a2a2a2a2a2a2a1a1a1a1a1a1a1a1a1a1a1a1a2a2a2a2

a2a2a2a2a2a2

takes up 64 letters. For N ≥ 32, this string can be run length encoded as
32a110a212a110a2, which are only four symbols long. With N = 16 the string
will be encoded as 16a116a110a212a110a2. Run length encoding of short let-
ter sequences increase the symbol sequence length (e.g.: RLE(a1a2a1a2a1) =
(1, a1)(1, a2)(1, a1)(1, a2)(1, a1)). More sophisticated RLE approaches address issues
like the efficient representation of non repeated letters to further improve the com-
pression performance.

A big advantage in memory constrained systems is that the RLE needs little to none
additional memory during encoding and decoding.

RLE is used in various image formats and is very effective for pictures with large
homogeneous colored areas such as (black and white) fax transmissions.

This simple algorithm is very ineffective for noisy data like that received by real
world sensors, because noise will intercept most of the consecutive sequences. As
proposed in [4, p. 102], noisy sensor signals can be prepared for RLE by reducing the
quantization accuracy of the sampled data. This scheme results in loss of information
and is therefore no viable option for this work.

As this approach is very inefficient for lossless sensor data compression it will not
be used standalone in the comparison of Chapter 4 but maybe as part of a different
algorithm.

3.2.2 LZ-Family

Lempel and Ziv published the dictionary based algorithm LZ77 in May 1977 [17] and
an improved version called LZ78 one year later [18]. There are many variants of these
dictionary approaches such as LZW, LZSS and LZMA which may greatly vary in data
representation but share the same basic principles.

LZ77 is described in the following paragraphs as described in [13].

12

LZ77 Compression A∗→ (N×N×A)∗

LZ77 compression exploits the repetitive structure of textual data. To represent a
prefix of the text to be encoded, LZ77 searches the already encoded text for the longest
matching sequence. Every encoded symbol is a triple (p, l, a) indicating the position
p and the length l of the matching sequence. The position is specified relative to
the current encoding position. The letter a is the one following the actual sequence.
Its inclusion in the output symbol ensures the progression of the encoding process
whenever no matching sequence could be found (l = 0). The detailed algorithm is
presented in Algorithm 1.

Algorithm 1 LZ77 encoding steps.
Require: s is a string, searchspace is an integer, lookahead is an integer

1: function LZ77_ENCODE(s,searchspace,lookahead)
2: r ← [] . List of tuples to hold the encoded input string
3: i← 0
4: while i ≤ LEN(s) do
5: p, l ← FINDLONGESTSUBSTRING(s[i:i+lookahead],s[i-searchspace:i-1]). Find

the longest substring that matches the start of the first argument in the second
argument.

6: PUSH(r,(p, l, s[i+ l])) . Add the found reference to the output.
7: i← i+ l + 1
8: end while
9: return r

10: end function

To reduce the amount of memory and computing power used to find matching char-
acter sequences, a sliding window implementation is used. This window limits the
search space to an area around the current character instead of searching the whole
previous string.

The encoding of a single character is very wasteful (As two zeros and the character
itself have to be encoded) in the original LZ77 algorithm. The following example
describes the encoding of the string “012120122102120” over the alphabet {0, 1,2}
using LZ77 three character wide search buffer. The first element the algorithm reads
is 0. As the search buffer is empty, the it is encoded as the tuple (0, 0,0). The next
two letters are encoded the same way, as no match can be found in the search buffer.
After the third input letter, the output symbols [(0, 0,0), (0,0, 1), (0, 0,2)] have been
produced. With the fourth letter the first time a reference is saved as the sequence
12 is found at position 1 which corresponds to a relative position of 2, with length
2. Thus, (2,2, 0) is added to the list with 0 being the letter following 12. The search
position is increased by 3. The next characters are encoded as a reference to position
4 length 2. The same string 12 occurs at position 1 but it is out of the sliding-window

13

of 3. Thus letters 7, 8 and 9 are encoded as (4,2, 2). This process continues till all
chars are encoded. The final list is

[(0,0, 0), (0, 0,1), (0,0, 2), (2, 2,0), (3,2, 2), (3, 1,0), (3,2, 2), (0, 0,0)].

LZ77 Decompression

The list of tuples produced by the compression step can be decoded easily. For each
tuple (p, l, a), the sequence of length l located at position p in the already decoded
text is suffixed by a and copied to the output. This process is illustrated in Algorithm 2.

Algorithm 2 Basic LZ77 decoding steps.
Require: r is a list of tuples

1: function LZ77DECODE(r)
2: s← 0
3: p← 0
4: while !EMPTY(r) do
5: l, p, c← POP(r)
6: APPEND(s,s[p:p+s]+c) . Copy the referenced chars to the end of the string.
7: end while
8: return s
9: end function

To resume the previous example, the following tuples have to be decoded:

[(0,0, 0), (0, 0,1), (0,0, 2), (2, 2,0), (3,2, 2), (3, 1,0), (3,2, 2), (0, 0,0)].

Each tuple is processed one after the other. The first element (0,0, 0) corresponds to
a single character as well as element two and three. These are simply inserted into
an empty string yielding “012”. Element four references a two letter string starting
two positions prior to the current position which is 12. Thus 12 is suffixed by 0 and
added to the output string yielding “012120”. This procedure is repeated until the
final string is is “012120122102120”.

Improved Variants of LZ77

One of the main problems of LZ77 is the need to encode a single character as a triple
symbol. Improved versions like LZSS (A∗→ (B×A∪ B×N×N)∗) solve this problem.
LZSS does not replace a string by a dictionary reference if the reference tuple would
be longer than the string itself. Furthermore, one bit in each tuple indicates weather
the tuple carries a letter from the source alphabet or a reference to a dictionary entry.

While LZ77 checks the previous characters in the stream for reoccurring sequences,
LZW (A∗ → (N×A)∗) creates a dictionary during processing. The dictionary is al-
ready initialised with all letters of A. Instead of storing the reference as a triple, only
a dictionary index and the character following the referenced dictionary entry is in-
cluded in the output symbol. The string decoded by the new symbol is inserted into
the dictionary afterwards.

14

[’^abraca|’,

’abraca|^’,

’braca|^a’,

’raca|^ab’,

’aca|^abr’,

’ca|^abra’,

’a|^abrac’,

’|^abraca’]

(a) Step one: Create list of
all rotations of the word
to encode.

[’^abraca|’,

’abraca|^’,

’aca|^abr’,

’a|^abrac’,

’braca|^a’,

’ca|^abra’,

’raca|^ab’,

’|^abraca’]

(b) Step two: Sort the list al-
phabetically.

’|^rcaaba’

(c) Step three: Save the last
letter of each element of
the list as the encoded
word.

Figure 3.2: Steps of the BWT encoding of “^abraca|". This example is taken from [3].

3.2.3 Burrows-Wheeler Transform (BWT) A∗→ A∗

The Burrows-Wheeler Transform, proposed 1994 by Burrows and Wheeler in [3], itself
is not a compression algorithm, but BWT prepares the data such that the output is
easier to compress. This is achieved by transforming the input into a permutation of
itself an increased probability of character repetitions. BWT is reversible, the input
stream can easily be reconstructed from the output [1]. The stream itself has to be
divided into blocks. The size of a block can be chosen in order to trade-off between the
memory and processing power requirements and the character repetition probability.

To perform the BWT encoding, all rotations of the input string i must be computed
and sorted alphabetically. The BWT function then outputs the last letters of the re-
spective rotations. This algorithm is summarized in Algorithm 3.

Algorithm 3 Basic encoding steps for the Burrows-Wheeler Transform.
Require: s is a string

1: function BWT_ENCODE(s)
2: v ← ROTATIONS(s) . Returns all rotations of string s in a list.
3: SORT(v) . Sorts the list of strings v alphabetically.
4: return LASTLETTER(v) . Returns a string of all last letters of the strings in list

v , while keeping the order.
5: end function

To increase the decoding performance, an improved version was proposed in [3].
It sourrounds the input block by a start and ana end mark not included in the input
alphabet (for example ’^’ and ’|’). Figure 3.2a shows the permutations of the input
block abraca and Figure 3.2b the sorted ones. The resulting BWT output is presented
in Figure 3.2c. To decode this sequence, it is split into a list of characters as shown
in Figure 3.3a. This list is saved for further use and poses also the first step of the
decoding process. The list is sorted alphabetically. This sorted list is prepended by

15

[’|’,

’^’,

’r’,

’c’,

’a’,

’a’,

’b’,

’a’]

(a) Step one: Create a list of
strings containing each
letter of the encoded
string.

[’|^’,

’^a’,

’ra’,

’ca’,

’ab’,

’ac’,

’br’,

’a|’]

(b) Step two: Sort the list
alphabetically and ap-
pend the letters of the
encoded string to the
front.

[’^abraca|’,

’abraca|^’,

’aca|^abr’,

’a|^abrac’,

’braca|^a’,

’ca|^abra’,

’raca|^ab’,

’|^abraca’]

(c) Step three: All letters
have been decoded. The
result is the one string
that ends with the string
end mark ’|’.

Figure 3.3: Steps of the BWT decoding of “^abraca|".

the saved original list, see Figure 3.3b. The process of sorting and preprending is
continued till the original string length has been reached. The solution is the string
with the string end mark at the last position, see Figure 3.3c. Without the end of

Algorithm 4 Basic decoding steps for the Burrows-Wheeler Transform.
Require: e has to be a Burrows-Wheeler Transformed string

1: function BWT_DECODE(e)
2: r ← SPLIT(e) . Create a list of characters from a string
3: s← r
4: for i← l, 0 do
5: SORT(s)
6: APPENDFRONT(s,r) . Append list of characters r to front of list of strings s
7: end for
8: return Element of list s that ends with ’|’
9: end function

string mark the index of the original string has to be saved in the encoding step. The
algorithm is presented in Algorithm 4.

When looking at the result, it seems like the first letter of each word would be a
better choice for the encoded word as more letters are repeated. However, the BWT
transformation would not be reversible in this manner.

Realistic block sizes can easily reach up to 900 KByte. For large blocks a considerable
amount of processing power is needed to sort the lists. Furthermore, the memory
requirements are growing quadratically with the block size.

16

3.2.4 Differential Pulse Code Modulation (DPCM) A∗→ A∗,A⊆ R

Differential pulse code modulation is a technique to reduce the variance of the input
stream enabling subsequent symbol encoding algorithms to achieve better compres-
sion rates. The input alphabet is restricted to real numbers.

DPCM is commonly used in speech, image and similar encoding. The typically in-
cluded quantizers cause a loss of information and will not be discussed. Instead, this
work focuses on the prediction techniques of DPCM.

For typical sensor data, the sequence of inter-sample differences is zero-mean and
has a smaller variance than the sample sequence itself [13, p. 325].

This can be illustrated by the following exemplary sample sequence

s = (−309,−306,−294,−274,−266,−264) . (3.2)

The variance of the sequence is 403.9 and the mean is −285.5. For the sequence of
differences

sd = (3,12, 20,8, 2) (3.3)

the variance decreases to 54 and the mean to 9.

2 4 8 16 32 64 128 256 512 1024 2048 4096

0

500

1,000

1,500

Samples

M
ea

n/
Va

ri
an

ce

Variance Source
Variance Differences
Mean Source
Mean Differences

Figure 3.4: Comparison of the mean and the variance between a sequence and its cor-
responding sequence of differences over the course of different amounts
of samples from the primate experiments described in Chapter 2.

Figure 3.4 shows the mean and variance of sequences of different lengths and the
same statistical properties of their sequences of differences. As can be seen, the fea-
tures proposed earlier pose right for this data. The mean of the differences is close to
zero. The variance is significantly lower than the variance of the source.

When the sequence of differences and the first element of the sequence is known to
the decoder, then the original series can be recovered by simple additions, as long as
no quantizer is used.

17

The performance of this encoding step can be increased by a more sophisticated
prediction of the original sequence. The conversion can be written as

d j = x j −
n
∑

i=1

ai · x j−i, (3.4)

where ai are prediction coefficients, that determine the impact of previous samples,
and n is the prediction order. It is possible to optimise the coefficients a1, . . . , an for
best prediction results. Mathematically, the optimisation problem can be written as

RA= P (3.5)

R=















Rx x(0) Rx x(1) Rx x(2) . . . Rx x(n− 1)
Rx x(1) Rx x(0) Rx x(1) . . . Rx x(n− 2)
Rx x(2) Rx x(1) Rx x(0) . . . Rx x(n− 3)

...
...

...
...

Rx x(n− 1) Rx x(n− 2) Rx x(n− 3) . . . Rx x(0)















(3.6)

A=















a1
a2
a3
...

an















(3.7)

P =















Rx x(1)
Rx x(2)
Rx x(3)

...
Rx x(n)















(3.8)

where Rx x(k) is the autocorrelation function of x

Rx x(k) =
1

N − k

N
∑

i=k

x i x i−k (3.9)

[13, pp. 333,334]. The solution of this equation poses the optimal coefficients ai for
this sequence. The prediction order has to be selected manually and application spe-
cific.

As the prediction coefficients are calculated before they are applied to the predic-
tion process, this scheme is known as forward adaptive prediction (ADPCM-APF). It
assumes two passes through the input thus increasing the compression latency. In
contrast, the backward adaptive prediction (ADPCM-APB) adopts the coefficients af-
ter they where applied to the prediction. For this purpose the least mean square
algorithm are commonly used. It can pose quite a challenge to receive good results
because the LMS algorithm is very unstable with badly chosen initial parameters.

Apart from these two adaptive approaches many DPCM forms evolved for different
applications.

18

Letter E A R I O T N S L C

Probability 11.2 8.5 7.6 7.5 7.2 7 6.7 5.7 5.5 4.5

Table 3.2: Probabilities of the ten most common letters in words of the English lan-
guage [11] (case insensitive).

3.3 Symbol Encoding

This section describes algorithms that encode the symbols of an alphabet with a se-
quence of symbols in a target alphabet. Their aim is to achieve the smallest possible
representation of a word of source letters in a word of target letters.

3.3.1 Huffman-Coding

Huffman-Coding exploits the varying occurrence probabilities of different letters in
non-random data. For example, the letter ’e’ is more than twice as common as the
letter ’c’ in words of the English language as seen in table Table 3.2. With the com-
monly used block encoding like ASCII, every letter would take up the same amount of
bits. Huffman-Coding encodes the letters of the alphabet A, with a given probability
distribution, such that

1. A more probable letter is encoded with fewer bits than one with lower probability.

2. The two letters with the lowest probabilities are encoded with the same amount
of bits.

The generated code can be used to encode any string of A but is only optimal if the
probability distribution remains unchanged.

The code generation is recursively done starting with the two letters with the lowest
probabilities an and an−1. Thereafter, an alphabet A′ is derived from A.

A′ = A \ �an, an−1
	∪
¦

a′n
©

(3.10)

P
�

a′n
�

= P
�

an
�

+ P
�

an−1
�

(3.11)

and the binary codes of an and an−1 are chosen, as

B(an) = B(a′n) • 0 (3.12)

B(an−1) = B(a′n) • 1. (3.13)

The process proceeds with alphabet A′ in the same manner. The merging stops when
the derived alphabet was reduced to a single element.

19

Letter Probability

a1 0.6
a2 0.2
a3 0.1
a4 0.1

(a) Probabilities of letters in
alphabet A

Letter Probability

a1 0.6
a2 0.2
a′3 0.2

(b) Probabilities of letters in
alphabet A′

Letter Probability

a1 0.6
a′2 0.4

(c) Probabilities of letters in
alphabet A′′

Table 3.3: The different derived alphabets during the Huffman encoding.

Example code generation

Let A= {a1, a2, a3, a4} with the probabilities shown in table Table 3.3a.
The first step is searching for the two letters with the lowest probability which are

a3 and a4 with a probability of 0.1 each. The assigned codes are B(a3) = B(a′3) • 0
and B(a4) = B(a′3) • 1. The next alphabet processed is shown in Table 3.3b. Again
the two least common letters are substituted which are a2 and a′3 with a probability
of 0.2 each. They are coded as B(a2) = B(a′2) • 0 and B(a′3) = B(a′2) • 1. As there
are only two elements left in alphabet A′′ (Table 3.3c) these two are processed. The
codes generated are B(a1) = B(a′1) • 0 and B(a′2) = B(a′1) • 1. After the final symbol
combination, the occurrence of a′1 carries no information

�

P(a′1)
�

= 1 and is therefore
encoded with an empty string: B(a′11) = ε. Now the recursively defined codes can be
expanded to

B(a1) = B(a′1) • 0= 0 (3.14)

B(a2) = B(a′2) • 0= B(a′1) • 10= 10 (3.15)

B(a3) = B(a′3) • 0= B(a′2) • 10= B(a′1) • 110= 110 (3.16)

B(a4) = B(a′3) • 1= B(a′2) • 11= B(a′1) • 111= 111. (3.17)

As stated above, this code fulfills the constraints proposed for an optimal code. The
element with the highest probability a1 has the shortest bit representation. The two
elements with the lowest probability a3 and a4 are encoded with the same amount of
bits.

Encoding samples

For comparison, the string a3a1a2a1a1a1a2a4a1a1, which matches the probability dis-
tribution in table Table 3.3a, is encoded once with a static encoding B2 and once
with the Huffman-Code created in the preceding section (Table 3.4). Both strings are
presented in Table 3.5. The compression ratio

size compressed

size uncompressed
=

16

20
= 0.8

20

Letter a1 a2 a3 a4

B2 00 01 10 11
Huffman 0 10 110 111

Table 3.4: Letters of A encoded with B2 and the Huffman code generated in Sec-
tion 3.3.1.

Name Code Size in bit

Static 11 00 01 00 00 00 01 10 00 00 20
Huffman 110 0 10 0 0 0 10 111 0 0 16

Table 3.5: The string a3a1a2a1a1a1a2a4a1a1 encoded with a static B2 and a optimal
Huffman encoding.

indicates a size reduction of 20 %.
If the encoded string does not follow the probability distribution used to create the

Huffman code, the Huffman-Coding may be more inefficient than block encoding.
The String a1a2a3a4 has a distribution of P(a1) = P(a2) = P(a3) = P(a4) =

1
4

is now
encoded with the same codes as above in Table 3.6.
This is a size increase by 12.5 %.

The Huffman code is a prefix free code. That means that no code is a prefix of
another code. Thus, the generated code table can be represented as a binary tree
whose leaves are the symbols of the input alphabet A (see Figure 3.5). The decoder
starts at the root of this tree and steps down to the left or the right subtree depending
on the next bit read from the input stream. When reaching a leave, the corresponding
symbol is written to the decoder output and the tree walk restarts from the root. This
is repeated till the whole input stream is decoded.

A major disadvantage of Huffman codes becomes visible here. Every single bit error
may corrupt the whole decoding process.

Adaptive Huffman-Coding

Another major problem of Huffman-Coding is the necessity to know the probability
distribution of the data source to achieve the optimal compression ratio. Thus, a two

Name Code Size in bit

Static 00 01 11 10 8
Huffman 0 10 110 111 9

Table 3.6: The string a1a2a3a4 is encoded with a suboptimal Huffman and a static B2
encoding.

21

1

a1

0.6
0.4

a2

0.2
0.2

a3

0.1

a4

0.1

Figure 3.5: Huffman code represented as Tree

pass approach is required where the distribution and the code tree is calculated in the
first pass and the second pass encodes the source. This two pass approach requires
memory to store the input till the encoding is done. Furthermore, it adds a delay as
the input has to be buffered completely before the first output can be generated. To
fix this problem, one-pass adaptive algorithms to construct the Huffman code were
developed by Gallager [7] and Faller[6] independently [13, p. 58]. These algorithms
create the Huffman tree while processing the input data stream. Each letter not yet in-
cluded in the tree is added at an algorithm-specific position. Furthermore, the letter is
transmitted to the decoder. If an input symbol is already in the tree, the corresponding
code is transmitted instead.

3.3.2 Arithmetic-Coding

Arithmetic-Coding is a symbol coding well suited for situations where the size of the
input alphabet and the probabilities for a single letters are far apart [13, p. 81]. This
would result in inefficient encoding using Huffman.

Arithmetic-Coding maps every sequence of letters over an alphabet to an interval
in [0,1). Every letter of the source alphabet gets a tag attached corresponding to a
specific interval. The tag T (ai) for letter ai is generated by the formula

T (ai) =
i−1
∑

k=1

P(ak) +
1

2
P(ai) (3.18)

[13, p. 86]. To map the tag to a binary code, the binary representation of T (ai) is
truncated to a length of

�

log2
1

P(ai)

�

+ 1 (3.19)

bits. Table 3.7 shows the bit representations for the alphabet A =
�

a1, a2, a3
	

using
arithmetic encoding. The decoding process consists of looking up the code in a look-
up-table. Arithmetic coding can be quite inefficient when encoding just one letter at a
time but gets more and more efficient when encoding multiple symbols at once.

22

Letter T Binary Truncated size Truncated

a1 .4 .01100 2 01
a2 .85 .110110011 5 11011
a3 .95 .11110011 5 11110

Table 3.7: An example code for the three letter alphabet A=
�

a1, a2, a3
	

with P(a1) =
0.8, P(a2) = 0.1, P(a3) = 0.1 encoded with arithmetic coding

3.3.3 Golomb-Rice-Coding

The Golomb-Rice-Coding is used to encode natural numbers when the probability for
higher numbers is lower than the probability for lower numbers. This is often the case
for the output of predictive compressions like ADPCM.

Unary code

The unary code is optimal for encoding natural numbers with the probability distribu-
tion

P(k) =
1

2k

It equals the Huffman code for this probability model and the semi-infinite alphabet
{1,2, 3, . . .} [13, p. 66]. The unary code encodes a natural number n as n ones followed
by one zero.

u(1)010 (3.20)

u(3) = 1110 (3.21)

u(11) = 111111111110 (3.22)

Golomb code

The Golomb code described in [8] by Golomb is parametrized by a natural number m.
It encodes a natural number n as a concatenation of u(n

m
) and B(n%M).

Rice code denotes a subset of the Golomb codes where m is a power of two. Only this
subset will be presented here. Formally a Rice code is encoded as follows

q(n, m) =
� n

m

�

(3.23)

r(n, m) = n− q(n, m)m (3.24)

g(n) = u(q) • Bk(r), (3.25)

for m= 2k.
Example encoding for m= 4 are displayed in Table 3.8.
For Rice-coding shifts and masks can be used instead of divisions and modulo oper-

ations. The algorithm greatly simplifies to

g(n) = u(n� k) • (n&(m− 1)). (3.26)

23

n q r g(n)

1 0 1 0 01
3 0 3 0 11
5 1 1 10 01
10 2 2 110 10

Table 3.8: Examples of a Golomb code with m= 4

3.3.4 Tunstall Codes

The other codes described so far like Golomb-Rice-Coding or Arithmetic-Coding map
one letter or a sequence of letters of the source alphabet to a minimal amount of letters
in the destination alphabet (here {0,1}). Letters with low probability result in longer
bit strings and vice versa. Unlike that, Tunstall Codes encode a variable number of
letters of the source alphabet into a fixed amount of bits. The main advantage of this
scheme is the better handling of errors as they do not propagate through the rest of
the decoding [13].

The algorithm itself is easy to implement and use. Before the algorithm starts, a list
of tuples {(a, P(a))|a ∈ A} is propagated. This list of tuples can be extended to the
desired length by a simple algorithm. As long as the list is shorter than desired, the
element with the highest probability is removed. Each letter a ∈ A gets appended to
this element while updating the probabilities. This increases the code list by |A| − 1
each time. After reaching the desired length each element in the code list gets a simple
binary code. The whole algorithm is presented in Algorithm 5. To encode a message,
a simple search for the longest match in the table is sufficient. For decoding, a table
lookup is sufficient.

Algorithm 5 Tunstall table generation.
Require: s is a list of elements of an alphabet, b is the desired bit width, a is the

alphabet with probabilities, l is the length of the alphabet

1: function GENERATETUNSTALLCODE(s,b,a,l)
2: r ← a . List consists of all letter/probability pairs of alphabet a.
3: k← 0
4: while k ≤ 2b−l

(l−1)
do . Is the desired bitwidth reached? (See [13, p. 70]))

5: t ← POPHIGHESTPROBABILITY(r) . Pop the string with the highest
probability

6: APPENDWITHPROBABILITY(r,t,a) . Appends a to t while updating
probabilities. Then inserts this list into r.

7: k← k+ 1
8: end while
9: return r

10: end function

24

4 Comparison

This chapter describes the steps taken to chose the best fitting algorithm to com-
press the data described in section Section 2.2 for use in the application described in
Section 2.1.

The algorithm has to fit different constraints.

1. The experiment depends on energy-efficient usage of the computational hard-
ware. This helps reducing the size and the weight of the required power supply
system.

2. To maintain accurate control, the compression latency must be limited to 100
ms. This ensures the controllability of the sensor positioning through the human
operator.

3. The memory required by the compression algorithm must not exceed a few kilo-
bytes, depending on the capabilities of the computational hardware.

4. The algorithm should be able to adapt to varying statistical characteristics of the
data to be compressed.

4.1 Algorithms

The selection of algorithms has taken place after an intense study of overall perfor-
mance estimations. The algorithms are selected to give an overview over high perfor-
mance algorithms that need high processing power like PAQ as well as more modest
algorithms like 7z. The selection is motivated by compression algorithms benchmarks
[5, 10]. The selected algorithms are described in Table 4.1. As far as possible stan-
dardized implementations are used. Most of these add some additional information
to the compressed data, such as package format and other meta information. If one
of these algorithms proves viable, further evaluation has to be done without the ad-
ditional overhead. All algorithms are configured to achieve their highest compression
rates.

This section described how, why and which algorithms have been chosen for com-
parison. The following section will describe how the testing process was automated.

4.2 Testing Environment

This section describes the testing environment used to determine the compression ra-
tios of the selected algorithms in various settings. The test suit is realized by a python
program. It first creates the data to compress and then applies the chosen compression
to this data. The first step operates on a 1.048.576 bytes large file containing inter-
leaved sensor channels as described in Section 2.2. For each channel as many files
as possible of the desired block length are created. These block lengths are chosen

25

Name Description Implementation

7z LZMA (improved LZ77) 7-Zip [64] 9.22 beta
Bz2 BWT Python Bz2
Huffman Two pass Huffman with encoded

tree (about 68 byte)
shcodec 1.0.1

LZW and Huff-
man

LZW followed by Huffman encod-
ing

shcodec 1.0.1 and lzw
python

LPAQ Light implementation of PAQ, neu-
ral network prediction followed by
arithmetic coding

lpaq8

LZW Improved LZ78 algorithm Python LZW
PAQ Prediction of next symbol with var-

ious approaches and combination
with an artificial neural network
followed by arithmetic coding

paq8o

ZPAQ Prediction of next symbol by vari-
ous context predictors followed by
arithmetic coding

ZPAQ v1.02

Differential
Encoding

Encoding the differences with RICE
encoding

Manual python imple-
mentation

Table 4.1: The algorithms used for comparison of compression performances.

26

to be {2x samples} , x ∈ [1,2, .., 12], which corresponds to a latency of 168 ms for
the longest blocks. The files created in the first step are automatically encoded with
the different compression programs/algorithms. For each block size, the compression
ratio is averaged over all compressed files. All compression ratios are written to a file
in an easy to parse format for further processing. This format is a semicolon separated
text file. Each line represents one block size and is organised as follows

block size;size uncompressed;size compressed;compression ratio

The name of the text file indicates the applied algorithm.
The testing process is illustrated in Figure 4.1. Furthermore the data flow is illus-

trated in Figure 4.2.
After describing how the results have been determined the following section dis-

cusses these results.

Generate
test files

Start

Run
algorithm

Save com-
pression

ratio

Algorithm
left?

Block size
left?

Select next
algorithm

Select next
block size

done

yes

no

yes

no

Figure 4.1: This flow chart shows the operations done for testing the various compres-
sion algorithms. These operations are implemented as python scripts.

27

Samples
Python
Script

Block length

Input 1

Input n

Compression

Compression

Output 1

Output n

Averaged
compression

ratios

Figure 4.2: Flow of data through the testing process for compression algorithms. The
process starts with a file containing measured samples. These samples are
split into files of different length corresponding to the block size. Multiple
files for each block size get compressed and an average of the compression
ratios is saved to file.

4.3 Compression Results

The benchmark results for the compression algorithms are shown in Figure 4.3. All
compression algorithms except LZW and Differential result in larger output data than
input data for small block lengths and thus achieve a compression ratio greater than
one. 7z and ZPAQ require the longest block lengths of at least 256 and 512 samples
before actually compressing the data. LZW reduces the data size for blocks with more
than 16 samples but does not increase the length for smaller blocks. All compression
algorithms achieve a compression of at least 61 % at 4096 samples per block. Fur-
thermore, the compression ratio improves with increasing block sizes for all tested
algorithms. The best compression ratio is achieved by PAQ with 38.9 %, LPAQ with
39.8 % and the differential encoding with 39.2 %.

4.4 Evaluation of the Compression Results

After presenting the results, they are discussed in this section and the algorithm to
implement on the target hardware is selected. The tested algorithms were able to
achieve 38.9% as best result. For this result nearly 2 GiB of memory has been used
which makes PAQ, ZPAQ and LPAQ unusable for the implementation on small mem-
ory constrained embedded systems. LZW combined with Huffman places fourth with
standalone LZW close after. The difference between the version with and without
Huffman is so small that standalone LZW would be the way to go without subsequent
Huffman. Still LZW requires memory to create the dictionary. As these benchmarks
ignore memory constraints, LZW would most likely perform worse on the real hard-
ware.

28

2 4 8 16 32 64 128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

Sample per Block

C
om

pr
es

si
on

R
at

io

7z Bz2 Huffman LPAQ LZW
LZW + Huffman PAQ ZPAQ Diff

Figure 4.3: Comparison of compression ratios of different compression algorithms on
data from sensors used in ape experiments. (See Section 2.2)

Differential encoding on the other hand is resource friendly as only the last sample
has to be buffered. Besides the subtraction operation, the involved rice encoder is
also not compute intense (See Sections 3.2.4 and 3.3.3). Nevertheless, differential
encoding is able to achieve the second highest compression of all algorithms tested
here. This differential encoding is an ADPCM encoder with one fixed coefficient (a1 =
1). Due to the superior performance and low operation costs of this algorithm the
next section takes a deeper look into ADPCM encoding.

4.5 Testing of ADPCM encoding

Figure 4.4 shows the results of the ADPCM encoding tests. For small block sizes the
compression ratio is above one. This behaviour originates from the size of the coef-
ficients that need to be transmitted for each block. For small block sizes below 64
samples one coefficient is the best way to go. Above 64 samples two coefficients per-
form equally and get even better than one coefficient for larger blocks. Above two
coefficients a strange behaviour can be observed. For three coefficients the best block
length is 64 samples per block. For higher blocks the compression ratio gets worse.
With four coefficients a compression ratio above one and up to 6 can be observed for
all tested block length.

In figure Figure 4.5 the variation of the compression ratio can be observed over
different block lengths. While working with less than 256 samples per block the size of
the different encoded blocks varies greatly. The more samples are taken into account
the more predictable the compression rate gets. This trend holds till 1024 samples per
block. For larger blocks the compression ratio variance is slightly higher. Thus, 1024

29

2 4 8 16 32 64 128 256 512 1024 2048 4096
0

1

2

3

4

Sample per Block

C
om

pr
es

si
on

R
at

io
1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 4.4: Comparison of compression ratios of an ADPCM coding followed by rice
code with M = 16 with different amounts of coefficients on data from
sensors used in ape experiments. (See Section 2.2) Each coefficient takes
up 8 bits.

samples per block pose optimal this configuration yields the lowest minimum as well
as the lowest variance over all block lengths.

Figure 4.6 shows a comparison of ADPCM encoding with two samples and different
golomb parameters. For larger blocks M = 2 performs worst by far. M = {8,16, 32}
are close together with M = 16 being slightly ahead for block sizes above 128.

4.6 Evaluation of ADPCM Test Results

The results from the ADPCM testing presented in the last section will be evaluated
here. ADPCM does not require much memory as only the current block has to be
kept. The calculation of the autocorrelation coefficients can be done as the samples
are received. Fortunately, the best compression can already be achieved with only two
prediction coefficients. Thus the coefficient calculations can be limited to two divi-
sions and four multiplications (see Equation (3.8)). The calculation of the prediction
value requires two multiplications per sample. The use of rice code allows hardware
efficient encoding of each block using only one ’shift’ and one ’and’ operation. Apart
from hardware advantages this algorithm achieves the best compression of all tested
algorithms with a compression ratio of 37.7%.

30

2 4 8 16 32 64 128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

Sample per Block

C
om

pr
es

si
on

R
at

io

Average
Minimum
Maximum

Figure 4.5: Variability of the compression ratios for with two coefficient ADPCM and
rice code with M = 16. Data samples stem from ape neural experiments
(See Section 2.2).

2 4 8 16 32 64 128 256 512 1024 2048 4096
0

1

2

3

4

Sample per Block

C
om

pr
es

si
on

R
at

io

2
4
8
16
32
64

Figure 4.6: Compression ratios for two coefficient ADPCM and different Rice parame-
ters. Data samples stem from ape neural experiments (See Section 2.2).

31

5 Implementation

After choosing ADPCM with a second order predictor and a subsequent rice-encoder
as best suited for the application presented in Chapter 2, this chapter deals with the
implementation. Apart from a comparative implementation on a 32 bit Atmel mi-
crocontroller, the algorithm is implemented on an Actel IGLOO low power FPGA for
improved performance.

5.1 Algorithm Design

The ADPCM algorithm can be divided into three parts.

1. Calculate the autocorrelation coefficients Rx x(0), Rx x(1) and Rx x(2) of the cur-
rent block of samples.

2. Calculate ADPCM coefficients a1 and a2.

3. Apply the ADPCM and the rice encoder to the current block of samples.

5.1.1 Autocorrelation Calculation

The discrete autocorrelation for lag j is defined as

Rx x(j) =
N
∑

n= j

xnxn− j, (5.1)

with N being the block size [13, p. 545]. For the calculation of the two prediction
coefficients Rx x(0), Rx x(1), Rx x(2) are needed. These can be iteratively calculated
during sample reception. Therefore, after initializing ri(0) = 0∀i ∈ {0, 1,2}, with
each new sample xn the three calculations

r0(n) = r0(n− 1) + xn · xn (5.2)

r1(n) = r1(n− 1) + xn · xn−1 (5.3)

r2(n) = r2(n− 1) + xn · xn−2 (5.4)

have to be executed, where ri accumulates the value for the corresponding Rx x(i).
Therefore, the last two samples have to be buffered.

With 1024 samples per block and 16 bit per sample the autocorrelation values pos-
sible are limited to 42 bits. This bit width can be reduced by observing that dividing
by the block length does not change the compression result. Thus, 32 bit wide auto-
correlation coefficients are used.

After the autocorrelation coefficients have been determined, the ADPCM coefficients
can be calculated.

32

5.1.2 Coefficient Calculation

To calculate the two coefficients a1 and a2, the equation

�

Rx x(0) Rx x(1)
Rx x(1) Rx x(0)

��

a1
a2

�

=
�

Rx x(1)
Rx x(2)

�

(5.5)

has to be solved [13, p. 334]. As shown in [2], it is possible to calculate a2 without a
significant performance loss as

a2 = 1− a1 (5.6)

while determining a1 with a simplified form of the exact solution

a1 =
Rx x(0)− Rx x(2)
Rx x(0)− Rx x(1)

. (5.7)

Figure 5.1 compares the performance of the estimated coefficients and the exact
coefficients for different block sizes. Till about 32 samples per block both methods
perform equally well. For larger blocks the exact values perform better with up to
6.4% difference at 4096 samples per block.

2 4 8 16 32 64 128 256 512 1024 2048 4096
0

0.5

1

1.5

2

Sample per Block

C
om

pr
es

si
on

R
at

io

Exact
Estimated

Figure 5.1: Comparison between exact ADPCM coefficents calculated using Equa-
tion (5.5) and their estimates calculated with Equations (5.6) and (5.7).

This approach has been discarded because another scheme termed Levinson-Durbin
algorithm proves advantageous for transmitting the coefficients. As a byproduct this
algorithm computes so called PARCOR coefficients which can be represented with a

33

smaller number of bits then the predictor coefficients itself. As a1 and a2 can be re-
trieved from p0 and p1 at the receiver, only the PARCOR coefficients will be transmitted
with each encoded block. Thus,

p0 =
Rx x(1)
Rx x(0)

(5.8)

p1 =
Rx x(0) · Rx x(2)− Rx x(1) · Rx x(1)
Rx x(0) · Rx x(0)− Rx x(1) · Rx x(1)

(5.9)

a1 = p0− p1 · p0 (5.10)

a2 = p1 (5.11)

has to be performed [9]. These formulas can be derived from Equation (5.5) by in-
serting Equations (5.10) and (5.11).

�

Rx x(1)
Rx x(2)

�

=
�

Rx x(0) Rx x(1)
Rx x(1) Rx x(0)

��

p0− p1 · p0
p1

�

(5.12)

=
�

Rx x(0)p0(1− p1) + Rx x(1)p1
Rx x(1)p0(1− p1) + Rx x(0)p1

�

(5.13)

=
�

Rx x(1)(1− p1) + Rx x(1)p1
l2

�

(5.14)

=
�

Rx x(1)
l2

�

, (5.15)

(5.16)

where l2 is

l2 =
Rx x(1)2

Rx x(0)
(5.17)

− Rx x(0)3Rx x(2)− Rx x(0)2Rx x(1)2+ Rx x(0)Rx x(1)2Rx x(2)− Rx x(1)4

Rx x(0)(Rx x(0)2− Rx x(1)2)

=
Rx x(0)2Rx x(2)

Rx x(0)2− Rx x(1)2
− Rx x(1)2Rx x(2)

Rx x(0)2− Rx x(1)2
− Rx x(0)Rx x(1)2

Rx x(0)2− Rx x(1)2
(5.18)

+
Rx x(1)4

Rx x(0)(Rx x(0)2− Rx x(1)2)
+

Rx x(1)2

Rx x(0)

=
(Rx x(0)2− Rx x(1)2)Rx x(2)

Rx x(0)2− Rx x(1)2
− Rx x(0)2Rx x(1)2+ Rx x(1)4

Rx x(0)(Rx x(0)2Rx x(1)2)
+

Rx x(1)2

Rx x(0)
(5.19)

= Rx x(2)−
Rx x(1)2(Rx x(0)2+ Rx x(1)2

Rx x(0)(Rx x(0)2− Rx x(1)2)
+

Rx x(1)2

Rx x(0)
(5.20)

= Rx x(2). (5.21)

34

5.1.3 Output Encoding

After the coefficients are available, the actual encoding step is performed. First, the
first two samples of each block, that are not going to be encoded, are sent followed by
the two PARCOR coefficients. For each subsequent sample the predicted value

xp = a1 · xn−1+ a2 · xn−2 (5.22)

has to be calculated. The value to be transmitted is calculated by

x t = xn− xp. (5.23)

Before transmission this value is rice encoded. The calculations required are

r = x t&15 (5.24)

q = x t >> 4. (5.25)

The quotient q and the reminder r can be calculated efficiently in hardware using
’right shift’ and ’and’ operations. The rice code is retrieved by concatenating q ones
((1<< q)− 1), a zero and the bit representation of r.

As these calculations can be done much faster than the serial output transmits them,
a queue buffers the output bitstream.

5.2 FPGA Implementation

The FPGA implementation is designed to be deployed on an Actel IGLOO ultra-low-
power FPGA. This FPGA offers 144 kbit of RAM divided in 32 4608 bit blocks. The first
iteration of the design consisted of a single unit capable of doing all required calcula-
tions for a single channel. This solution proved inefficient as it was not possible to fit
more than one channel onto the FPGA. Simulations proved the output generation to
be the timing bottleneck while the calculation of the autocorrelation and the predictor
coefficients required only a small fraction of the computational time.

The second iteration is designed to address this fact by performing the calculations
sequentially for each channel. The whole calculation is controlled by a central unit.
This unit has different tasks. First of all, each channel has a module for saving the
channels samples in BRAM. Each channel must buffer its samples until it accessed the
sequentially shared calculation resources. New incoming samples would overwrite
the block currently in processing. Thus each sample buffer is dimensioned to hold
two subsequent blocks at ones (double buffering). Secondly, the central unit assigns
control over the other calculation units to the channels. These comprise one unit
for calculating the autocorrelation coefficient, one unit for calculating the ADPCM
coefficients and one unit to output the data to the serial output buffer. These resources
are assigned to the next channel as soon as the channel currently owning the resource
has finished operation. Furthermore, one module is instantiated that encodes the

35

difference between predicted and original value with a RICE code and organises the
output in the right order.

The design operates on three clock signals. The first clock is the main operation
clock and is used for all calculations. The second clock is used for signal sampling.
The last clock is used for the output. FIFOs are used to cross the clock boundaries.

An example operation with four channels is illustrated in Figure 5.2.

Figure 5.2: Waveforms from a simulation of the FPGA’s operation with four channels.
Control signals are shown. The yellow bar marks reception of the last sam-
ple of a block. active_autocorr denotes the channel that currently controls
the autocorrelation module. active_coefficients denotes the channel that
currently uses the coefficient calculation module. active_output denotes
the channel that currently outputs data to the serial connection.

The following module

1 module compression
2 #(parameter BIT_PER_SAMPLE = 16, ///< sample bit width [<= 16]

3 parameter CHANNELS = 3, ///< number of channels [<= 4]

4 parameter SAMPLE_PER_BLOCK = 1024, ///< sample per block, power of two

5 parameter AUTOCORR_LENGTH = 32, ///< bit width of the autocorrelation busses

6 parameter ACCURACY = 7) ///< digits after the point for fixed point numbers

7 (input clk, ///< computation clock

8 input rstN, ///< computation reset (synchronous, low active)

9 input [BIT_PER_SAMPLE*CHANNELS-1:0] samples, ///< uncompressed input stream

10 input next_samples, ///< input valid pulse

11 output [7:0] byte, ///< compressed output stream

12 output next_byte); ///< output valid pulse

provides the interface to the data compression. It takes the clock and distributes
it to all other modules. Furthermore, the samples for all channels arrive here.
This module contains one compress_single_channel module per channel and one
of the calc_adpcm_coefficients and autocorrelation modules. Internally the
resources are distributed to the compress_single_channel modules by a resource
specific counter. This counter counts up each time the attached resource finishes op-
eration. This results in a round-robin resource scheduling.

The following module

1 module compress_single_channel
2 (input clk, ///< computation clock

3 input rstN, ///< computation reset (synchronous, low active)

36

4 input [BIT_PER_SAMPLE-1:0] samples, ///< uncompressed input stream

5 input next_samples, ///< input valid pulse

6 // Coeffs

7 input calculate_coeffs, ///< this module may calculate coefficients

8 input coeffs_valid, ///< coefficients are calculated and lay at

9 ///< the appropriate ports

10 input signed[2:-ACCURACY] i_a0, ///< filter coefficient 0

11 input signed[2:-ACCURACY] i_a1, ///< filter coefficient 1

12 input signed[0:-ACCURACY] i_p0, ///< PARCOR coefficient 0

13 input signed[0:-ACCURACY] i_p1, ///< PARCOR coefficient 1

14 output coeffs_start, ///< coefficient module may start calculation

15 output signed[(2*BIT_PER_SAMPLE)-1:0] r0_o, ///< R_xx(0) for coeffs

16 output signed[(2*BIT_PER_SAMPLE)-1:0] r1_o, ///< R_xx(1) for coeffs

17 output signed[(2*BIT_PER_SAMPLE)-1:0] r2_o, ///< R_xx(2) for coeffs

18 // Autocorrelation

19 input calculate_rss, ///< this module may calculate autocorrelation

20 input rss_valid, ///< inputs r0,r1,r2 are valid

21 input signed[(2*BIT_PER_SAMPLE)-1:0] r0, ///< R_xx(0) from autocorr

22 input signed[(2*BIT_PER_SAMPLE)-1:0] r1, ///< R_xx(1) from autocorr

23 input signed[(2*BIT_PER_SAMPLE)-1:0] r2, ///< R_xx(2) from autocorr

24 output sample_valid, ///< sample_o is valid

25 output signed[BIT_PER_SAMPLE-1:0] sample_o, ///< current sample for autocorrelation module

26 // Output

27 input allow_output, ///< this module may output to uart

28 input increase_read_address, ///< output encoding module needs next address

29 input done_with_output, ///< the output module has finished operation

30 output start_output, ///< if set the output module starts operation

31 output signed [BIT_PER_SAMPLE-1:0] sample_output, ///< current read memory sample

32 output signed [2:-ACCURACY] o_a0, ///< ADPC coefficient 0

33 output signed [2:-ACCURACY] o_a1, ///< ADPC coefficient 1

34 output signed [0:-ACCURACY] o_p0, ///< PARCOR coefficient 0

35 output signed [0:-ACCURACY] o_p1 ///< PARCOR coefficient 1

36);

is instantiated once for each channel. It administrates all data belonging to a channel.
This includes buffering the block of samples as well as the corresponding autocorre-
lation values predictor coefficients. Furthermore, it manages which calculations have
to be done for this channel and executes them as soon as it gets the corresponding
resource.

The following module

1 module organiseoutput
2 (

3 input clk, ///< computation clock

4 input rstN, ///< computation reset (synchronous, low active)

5 input start, ///< all inputs are valid, start the output

6 input allow_output, ///< channel may output

7 input signed [BIT_PER_SAMPLE-1:0] sample, ///< sample to encode

8 input signed [2:-ACCURACY] a0, ///< ADPCM coefficient 1

9 input signed [2:-ACCURACY] a1, ///< ADPCM coefficient 2

10 input signed [0:-ACCURACY] p0, ///< PARCOR coefficient 1

11 input signed [0:-ACCURACY] p1, ///< PARCOR coefficient 2

12 output reg increase_read_address, ///< next sample at input sample

13 output reg [7:0] byte, ///< output byte

14 output reg next_byte, ///< output byte valid

15 output reg done_with_output ///< outputted all data

16);

handles the output for each module. This includes outputting the data in the right
order and applies the rice encoder to the prediction deviations.

The following module

37

1 module calc_adpcm_coefficients
2 (input clk, ///< computation clock

3 input rstN, ///< computation reset (synchronous, low active)

4 input start, ///< start calculation

5 input signed[AUTOCORR_LENGTH-1:0] r0, ///< r_xx(0)

6 input signed[AUTOCORR_LENGTH-1:0] r1, ///< r_xx(1)

7 input signed[AUTOCORR_LENGTH-1:0] r2, ///< r_xx(2)

8 output reg done, /// done with calculation

9 output signed[2:-ACCURACY] a0, /// filter coefficient 0

10 output signed[2:-ACCURACY] a1, /// filter coefficient 1

11 output signed[0:-ACCURACY] p0, /// PARCOR coefficient 0

12 output signed[0:-ACCURACY] p1); /// PARCOR coefficient 1

calculates the predictor and PARCOR coefficients. This module contains one divider
and one multiplier that are used serialised.

The following module

1 module autocorrelation
2 (input clk, ///< computation clock

3 input rstN, ///< computation reset (synchronous, low active)

4 input signed [BIT_PER_SAMPLE-1:0] sample, ///< input sample

5 input next_samples, ///< input sample valid

6 output signed [AUTOCORR_LENGTH-1:0] r0, ///< R_xx(0) accumulated

7 output signed [AUTOCORR_LENGTH-1:0] r1, ///< R_xx(1) accumulated

8 output signed [AUTOCORR_LENGTH-1:0] r2, ///< R_xx(2) accumulated

9 output reg ready); ///< r0, r1 and r2 valid

calculates the autocorrelation coefficients. Each time next_sample is valid, the current
data attached to sample is multiplied by the corresponding delayed sample and added
to accumulator registers. This requires this module to save the last two samples used.
Furthermore, the current position in the block is observed.

The following module

1 module rice_encode
2 (input clk, ///< computation clock

3 input rstN, ///< computation reset (synchronous, low active)

4 input enabled, ///< Rice module is enabled and used

5 input in_v, ///< Input in valid

6 input[BIT_PER_SAMPLE-1:0]in, ///< current sample
7 input clear, ///< Don’t wait for next sample but fill output with zeros

8 output reg[7:0] out, ///< Sample to send via UART

9 output reg out_v, ///< Output out valid

10 output next); ///< this module is able to process the next sample

calculates the rice code of the data attached to the input in_v. If the size of the output
is smaller than 8 bit, the module waits till the next sample arrives and concatenates
both encoded samples. To remove this behavior and clear the output register after a
sample, clear can be set to one. This module can be disabled by setting enabled to
zero.

5.3 Microcontroller Implementation

Contrary to the FPGA implementation the microcontroller implementation is strictly
sequential.

This implementation is written in C for the Atmel AT32UC3A Microcontroller. No
library functions are needed. This design is build around a C structure that holds all
data needed per channel.

38

1 typedef struct {
2 short sample_buffer[2*SAMPLE_IN_BLOCK];
3 int readPosition;
4 int writePosition;
5 long autocorr_accu[3];
6 long autocorr[3];
7 short delay1;
8 short delay2;
9 char p0;

10 char p1;
11 short a0;
12 short a1;
13 } s_encoder;

The sample buffer is again twice as big as the block size as new incoming samples
would overwrite samples currently processed. This structure can be manipulated by
three functions.

1 void encoder_init(s_encoder *e);

This function initialises a s_encoder structure with meaningful values and processed
called for all newly generated s_encoder structures.

1 char encoder_addSample(s_encoder *e, short sample);

The samples generated per channel can be fed into the structure by the encoder_addSample
function. This function calculates the autocorrelation coefficients on-the-fly. After a
full block has been received, the ADPCM coefficients are calculated automatically.

1 int encoder_sendSamples(s_encoder *e,
2 uint8_t* fifo,
3 uint32_t fifo_head,
4 uint16_t fifo_length);

The last function outputs the data of structure e into the fifo and returns the new fifo
head.

5.4 Decoder

To decode the encoded bit stream, a python script is used. This script can operate on
arbitrary inputs like files or stdio. It takes the input stream and decodes it into the
original sequence. First the two unencoded samples are retrieved by simply getting
16 bit from the sample.

1 t = 0

2 for i in range(16):
3 t <<= 1

4 t |= b.getBit() # Retrieve the next bit from the bit stream

5 if t & (1<<15): # Negative Integer?

6 t = signed(t)

39

The sample is returned to its original sign in lines 5 and 6.
The next 16 bit contain the PARCOR coefficients. These are retrieved in the same

way as the first two samples. With these two samples the ADPCM coefficients are
calculated.

1 a = []

2 a.append(p0-adpcm.fixedPointMultiply(p1,p0,7))

3 a.append(p1)

For the rest of the samples in the block the prediction value is calculated and the
difference between the predicted and the original value is retrieved by decoding the
rice encoded bit stream.

1 nr, b = adpcmbenchmark.golombDecodeNext(b, 16)

2 pred = ((last * a[0] + next_to_last * a[1]) >> 7)

where last contains the value of the last sample and next_to_last contains the value
of the sample before. The original value is determined by addition of nr and pred.

After all samples have been read the current byte is discarded as the output gener-
ated by the implementations is aligned to byte boundaries.

The samples are saved to an array that can be used in the desired way.

40

6 Evaluation

After selecting and implementing the most suitable algorithm, namely ADPCM and
Rice, in the last chapters this chapter deals with the evaluation of the implementa-
tion. Section 6.1 describes the testing environment. Section 6.2 finally presents and
discusses the results.

6.1 Setup

This section describes the test setup for both the FPGA as well as the MCU implemen-
tation. Instead of using a real ADC with a sensor to generate samples, a test file is
read from an internal memory of the devices. The test file from Chapter 4 was reused
for this purpose. This way, the experiments are repeatable. The FPGA implementa-
tion is entirely evaluated in ModelSim. The MCU implementation is connected to an
oscilloscope for accurate timing measurement.

The most important aspect to be evaluated is the time needed after a full block of
1024 samples has arrived till all channels have written their output into the output
FIFO. Based on this time the maximum possible amount of channels the device can
handle is calculated.

The FPGA implementation is evaluated by measuring the time needed for the first
channel from the time the block has been received completely till the whole block has
been encoded and outputted into the FIFO. Because the autocorrelation of the first
channel is calculated while the samples come in, it needs less time after the block has
been completed. Thus a second channel is measured, too.

The time needed for all channels to complete must be smaller than the time needed
to sample the complete next block. The amount of channels n that can be encoded
with the FPGA must fulfill

t1+ (n− 1) · tn ≤ 1024
24414

s (6.1)

where t1 is the time the first channel needs for coefficient calculation and output to
FIFO and tn is the time needed for the output of the following channels as autocor-
relation and the coefficients are already calculated after the first channel has freed
these resources. To find the maximal number of channels, the greatest n fulfilling the
inequality has to be determined. Hence, the amount of channels that can be encoded
with the FPGA is given by solving Equation (6.1) for n.

n≤
1024

24414
s− t1

tn
+ 1, (6.2)

The MCU implementation has two points of interest. First of all, the time between
two samples has to be large enough to calculate the next iteration of the autocorrela-
tion coefficients for all channels (Equations (5.2) to (5.4)). Secondly, the time after

41

the block has been completed has to be large enough for all channels to output their
data into the FIFO. Furthermore, the time needed for calculating the autocorrelation
of the following block during the calculation of the predictor coefficients and encoding
of the last block needs observation.

The inequality

nc · ta ≤ 1
24414

s (6.3)

nc ≤
1

24414
s

ta
, (6.4)

where ta is the time needed to calculate the autocorrelation coefficients of a single
channel, poses an upper limit for the number of channels the MCU is able to pro-
cess. The highest number of channels possible for the pure coefficient calculation and
output generation is given by

ns · (tn+ 1024 · ta)≤ 1024
24414

s (6.5)

ns ≤
1024
24414

s

(tn+ 1024 · ta)
(6.6)

due to the sequential MCU processing the time available for the coefficient calculation
has to be reduced by the time needed for all autocorrelation calculations in the block.
The MCU implementation will work correctly if the amount of channels is chosen to
fulfill both Equations (6.4) and (6.6). Thus it holds

n≤min
��

nc
�

,
�

ns
��

. (6.7)

For a real application only a small fraction of the theoretically possible amount of
channels can be used for the MCU implementation. Other calculations already take
place in the microcontroller and the theoretical maximum would occupy 100% of the
calculation capacities.

6.2 Results

For the FPGA the following times have been measured:

t1 = 234.668 µs (6.8)

tn = 224.424 µs (6.9)

ta = 82.912 ns (6.10)

These times have been determined by post layout simulation in ModelSim ACTEL 6.6d
Revision: 2010.11. The synthesis is done by Synplify Pro E-2010.09A−1 and Designer
9.1.5.1 Release v9.1 SP5. The times are averages over ten blocks/samples. The main
clock has been set to the largest possible value of 45.1 MHz limited by the design.

42

For the MCU the following times have been measured:

ta = 4.23 µs (6.11)

tn = 7.90 ms. (6.12)

These times have been determined by using an oscilloscope. The code was compiled
with O2 and the MCU runs at 66MHz.

An interesting aspect is the time used for calculation relative to the time required
to sample a whole block as the time not spend on calculations can be used to save
energy. This relation is calculated as

tcalc FPGA = 1024 · ta + t1+ (n− 1) · tn (6.13)

rcalc FPGA = tcalc FPGA ·
24414

1024
s, (6.14)

with n being the number of channels. The same formula for the MCU is given by

tcalc MCU = n · (1024 · ta + tn) (6.15)

rcalc MCU = tcalc MCU ·
24414

1024
s. (6.16)

Figure 6.1 shows this relation. As can be seen the FPGA is significantly faster in cal-
culating the output. The FPGA uses at most 2.9 % of the time for calculating four
channels. The MCU implementation on the other hand uses already 29.16 % of the
time for calculating one channel. The percentage increases to 116.69 % at four chan-
nels.

Unfortunately the FPGA implementation is limited to three channels due to a lack
of memory. With one channel already 16 of 32 available block RAMs are used. Each
channel requires eight more BRAMs. The implementation requires 40 BRAMs at four
channels. Thus a four channel implementation is not supported by the current design.
The BRAM utilisation is displayed in Figure 6.2.

For all other resources the FPGA stays below the limit. 91 % of the 24576 available
core cells are used at four channels. Figure 6.3 presents the core cell utilisation.

The theoretical maximum of channels for the FPGA can be calculated by Equa-
tion (6.2),

n≤
1024

24414
s− 2.34668× 10−4 s

2.244 24× 10−4 s
+ 1 (6.17)

n≤ 186.846787. (6.18)

Therefore the FPGA is able to handle 186 channels. Even 187 channels are possible
because no required data is overwritten.

Inserting Equations (6.11) and (6.12) in Equation (6.4) yields

nc ≤
1

24414
s

4.23× 10−6 s
(6.19)

nc ≤ 9.688324, (6.20)

43

1 2 3 4

0

20

40

60

80

100

1.3% 1.83% 2.37% 2.9%

29.16%

58.32%

87.49%

116.69%

Channels

Ti
m

e
ca

lc
ul

at
in

g
Ti

m
e

to
ta

l

FPGA MCU

Figure 6.1: Runtime comparison of the FPGA and MCU implementations. For each
amount of channels the time needed to complete all calculations for one
block is plotted in relation to the total time available for one block. A lower
percentage can be advantageous for the power consumption of the device.

1 2 3 4

20

30

40

Available

16

24

32

40

Channels

#
B

R
A

M
m

od
ul

es
us

ed

Figure 6.2: Block RAM usage of the FPGA implementation for different amounts of
channels. The red line indicates the available BRAM modules. As can be
seen at four channels the FPGA can not provide enough BRAM modules to
fulfill the requirements.

44

1 2 3 4

2

2.2

2.4

2.6

·104

Available

19,448

20,704
21,559

22,616

Channels

#
co

re
ce

lls
us

ed

Figure 6.3: Core Cell utilisation of the FPGA implementation for different channel con-
figurations. Mapping done by Synplify Pro E-2010.09A−1.

thus the MCU can calculate the autocorrelation coefficients for a maximum of nine
channels. Furthermore, inserting Equations (6.8) and (6.9) in Equation (6.2) yields

ns ≤
1024

24414
s

0.0079 s+ 1024 · 4.23× 10−6 s
(6.21)

ns ≤ 3.429. (6.22)

Hence the maximum number of channels for which the coefficients can be calculated
and the output can be generated is three.

Following Equation (6.7), it results

n≤min (b9.688324c , b3.429c) (6.23)

n≤min (9, 3) . (6.24)

Therefore the MCU is able to process a maximum of three channels at the same time.
These results indicate that the MCU is too weak to handle four channels. Further-

more, the MCU needs to handle other tasks in the real application as well leaving only
a fraction of processing power to the output encoding. The FPGA solution on the other
hand can handle all realistic scenarios. Both implementations are further limited by
memory requirements that has not been considered yet. Taking memory into account,
the FPGA is able to handle three channels at 1024 samples per block. The MCU is
still able to handle three channels. The memory problem can be relieved by using less
samples per block at the cost of worse compression performance. This tradeoff has to
be evaluated for each application.

45

7 Conclusions and open issues

This work proposes the use of an ADPCM code with two coefficients followed by a
rice encoding step to encode sensor data representing neuronal activities of apes.
This application requires the encoding algorithm to meet various restrictions. The
proposed algorithm is able to achieve a compression ratio of up to 37.1 % with low
computational complexity. While the algorithm can be implemented on the already
used MCU, the use of an additional FPGA proves advantageous in terms of calculation
speed. This additional computing power could be used for more channels in later
applications. Furthermore this enables the device to save power.

The compression could be further improved by encoding the resulting already en-
coded bit stream with a source encoding step like LZW to get rid of repetitions. This
requires further research regarding block length, optimal prediction order and rice
parameters as well as a further look into suitable (fast) source encoding algorithms.

The implementations have to be tested for the real application. Especially the power
consumption of the MCU compared to a combined MCU and FPGA solution has to be
evaluated.

The FPGA implementation needs some improvements to be able to handle four chan-
nels. Currently the implementation needs too many block RAM module, as each chan-
nels needs twice the block size to buffer the input. This buffer is needed to store the
incoming samples while the output for the last block is calculated. A possible solution
is to handle incoming samples during calculation in a central buffer and forward these
samples as soon as the calculation is complete. Another solution is the reduction of
the block length which results in a worse compression ratio.

46

Bibliography

[1] S. Arming, Data compression in hardware — The Burrows-Wheeler approach.

[2] C. Boonyakitmaitree, K. Nandhasri, and J. Ngarmnil, “A low computational pre-
dictor coefficient algorithm for adpcm implementation of portable recording
devices”, in Circuits and Systems, 2004. MWSCAS ’04. The 2004 47th Midwest
Symposium on, vol. 3, 2004, iii –18790 vol.3–.

[3] M. Burrows and D. J. Wheeler, “A Block-Sorting Lossless Data Compression
Algorithm”, Digital Equipment Corporation, Tech. Rep., 1994, pp. 12–4.

[4] M. E. P. Capo-Chichi, J.-M. Friedt, and H. Guyennet, “Using data compression
for delay constrained applications in wireless sensor networks”, in Proceedings
of the 2010 Fourth International Conference on Sensor Technologies and Applica-
tions, ser. SENSORCOMM ’10, Washington, DC, USA: IEEE Computer Society,
2010, pp. 101–107, ISBN: 978-0-7695-4096-2.

[5] CompressionRatings.com. (). Audio1, [Online]. Available: http://compressionratings.
com/aud1.html (visited on 06/15/2012).

[6] N. Faller, “An Adaptive System for Data Compression”, Record of the 7th Osilo-
mar Conf. on Circuits, Systems and Computers, pp. 593–597, Nov. 1973.

[7] R. Gallager, “Variations on a theme by Huffman”, IEEE Transactions on Infor-
mation Theory, vol. 24(6), pp. 668–674, 1978. [Online]. Available: http://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01055959.

[8] S. W. Golomb, “Run-length encodings”, IEEE Transactions on Information The-
ory, vol. 12, pp. 399–401, 1966. [Online]. Available: http://urchin.earth.
li/~twic/Golombs_Original_Paper/.

[9] ivanov, arokem, agramfort, and miketrumpis. (), [Online]. Available: https:
/ / github . com / nipy / nitime / blob / master / nitime / algorithms /

autoregressive.py (visited on 07/26/2012).

[10] M. Mahoney. (). Large text compression benchmark, [Online]. Available: http:
//mattmahoney.net/dc/text.html (visited on 06/15/2012).

[11] oxforddictionaries.com. (). What is the frequency of the letters of the alphabet
in english?, [Online]. Available: http://oxforddictionaries.com/words/
what-is-the-frequency-of-the-letters-of-the-alphabet-in-english

(visited on 05/05/2012).

[12] L. Rafflenbeul, T. Schönbach, and R. Werthschützky, Drahtloses sensor-aktor-
system zur erfassung neuronaler aktivität. [Online]. Available: http://www.
embedded-world.eu/fileadmin/user_upload/pdf/egm2011/Session_1/05_

Rafflenbeul_TU_Darmstadt.pdf.

47

http://compressionratings.com/aud1.html
http://compressionratings.com/aud1.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01055959
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01055959
http://urchin.earth.li/~twic/Golombs_Original_Paper/
http://urchin.earth.li/~twic/Golombs_Original_Paper/
https://github.com/nipy/nitime/blob/master/nitime/algorithms/autoregressive.py
https://github.com/nipy/nitime/blob/master/nitime/algorithms/autoregressive.py
https://github.com/nipy/nitime/blob/master/nitime/algorithms/autoregressive.py
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html
http://oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-the-alphabet-in-english
http://oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-the-alphabet-in-english
http://www.embedded-world.eu/fileadmin/user_upload/pdf/egm2011/Session_1/05_Rafflenbeul_TU_Darmstadt.pdf
http://www.embedded-world.eu/fileadmin/user_upload/pdf/egm2011/Session_1/05_Rafflenbeul_TU_Darmstadt.pdf
http://www.embedded-world.eu/fileadmin/user_upload/pdf/egm2011/Session_1/05_Rafflenbeul_TU_Darmstadt.pdf

[13] K. Sayood, Introduction to Data Compression, Third Edition (Morgan Kaufmann
Series in Multimedia Information and Systems), 3rd ed. Morgan Kaufmann, Dec.
2005, ISBN: 012620862X. [Online]. Available: http://www.amazon.com/exec/
obidos/redirect?tag=citeulike07-20\&path=ASIN/012620862X.

[14] C. E. Shannon, “A mathematical theory of communication”, Bell system technical
journal, vol. 27, 1948.

[15] Toytoy. (2006). Jpeg example jpg rip 010.jpg, [Online]. Available: http://en.
wikipedia.org/wiki/File:JPEG_example_JPG_RIP_010.jpg (visited on
03/23/2012).

[16] —, (2006). Jpeg example jpg rip 100.jpg, [Online]. Available: http://en.
wikipedia.org/wiki/File:JPEG_example_JPG_RIP_100.jpg (visited on
03/23/2012).

[17] J. Ziv and A. Lempel, “A universal algorithm for sequential data compres-
sion”, Information Theory, IEEE Transactions on, vol. 23, no. 3, pp. 337–343,
May 1977, ISSN: 0018-9448.

[18] —, “Compression of individual sequences via variable-rate coding”, Information
Theory, IEEE Transactions on, vol. 24, no. 5, pp. 530–536, Sep. 1978, ISSN: 0018-
9448.

48

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/012620862X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/012620862X
http://en.wikipedia.org/wiki/File:JPEG_example_JPG_RIP_010.jpg
http://en.wikipedia.org/wiki/File:JPEG_example_JPG_RIP_010.jpg
http://en.wikipedia.org/wiki/File:JPEG_example_JPG_RIP_100.jpg
http://en.wikipedia.org/wiki/File:JPEG_example_JPG_RIP_100.jpg

List of Figures

1.1 Tmote sky . 5

2.1 Histogram of the data channels. 9

3.1 Two JPEG compressed images with different encoding settings. 10
3.2 Steps of the BWT encoding of “^abraca|". This example is taken from

[3]. 15
3.3 Steps of the BWT decoding of “^abraca|". 16
3.4 Comparison of mean and variance of a sequence and its differences. . . 17
3.5 Huffman code represented as Tree . 22

4.1 Flow chart of the testing process. 27
4.2 Overview of the data flow of the testing process. 28
4.3 Comparison compression algorithms. 29
4.4 Comparison ADPCM filter order . 30
4.5 Block length comparison ADPCM . 31
4.6 Rice parameter comparison . 31

5.1 Comparison exact to estimated ADPCM coefficients 33
5.2 FPGA operation example with four channels. 36

6.1 Runtime comparison for FPGA and MCU implementation 44
6.2 BRAM usage of the FPGA implementation 44
6.3 Core Cell utilisation of the FPGA implementation 45

49

List of Tables

2.1 Statistical properties of the data. 8

3.1 Notations used . 11
3.2 Probabilities of the ten most common letters in words of the English

language [11] (case insensitive). 19
3.3 The different derived alphabets during the Huffman encoding. 20
3.4 Letters of A encoded with B2 and the Huffman code generated in Sec-

tion 3.3.1. 21
3.5 The string a3a1a2a1a1a1a2a4a1a1 encoded with a static B2 and a opti-

mal Huffman encoding. 21
3.6 The string a1a2a3a4 is encoded with a suboptimal Huffman and a static

B2 encoding. 21
3.7 Arithmetic coding example . 23
3.8 Examples of a Golomb code with m= 4 . 24

4.1 The algorithms used for comparison of compression performances. . . . 26

50

List of Algorithms

1 LZ77 encoding steps. 13
2 Basic LZ77 decoding steps. 14
3 Basic encoding steps for the Burrows-Wheeler Transform. 15
4 Basic decoding steps for the Burrows-Wheeler Transform. 16
5 Tunstall table generation. 24

51

	Introduction
	The Application
	Application Scenario
	Application data

	Introduction to Data Compression
	Overview of Compression Algorithms
	Source Encoding
	Run-length Encoding (RLE)A(NA)
	LZ-Family
	Burrows-Wheeler Transform (BWT)AA
	Differential Pulse Code Modulation (DPCM)AA,AR

	Symbol Encoding
	Huffman-Coding
	Arithmetic-Coding
	Golomb-Rice-Coding
	Tunstall Codes

	Comparison
	Algorithms
	Testing Environment
	Compression Results
	Evaluation of the Compression Results
	Testing of ADPCM encoding
	Evaluation of ADPCM Test Results

	Implementation
	Algorithm Design
	Autocorrelation Calculation
	Coefficient Calculation
	Output Encoding

	FPGA Implementation
	Microcontroller Implementation
	Decoder

	Evaluation
	Setup
	Results

	Conclusions and open issues
	Bibliography

