
Hardware-
acceleration of

Java-implemented
experiments on an

open satellite.

November 2017

Bachelorthesis by

Jan-Peter
Ceglarek

Examiner:
Prof. Dr.-Ing. Andreas Koch
Supervisor:
Dr.-Ing. Andreas Engel

Technische Universität Darmstadt
Department of Computer Science
Embedded Systems and Applications Group (ESA)

Hardware-acceleration of Java-implemented experiments on an open satel-
lite.
Hardwarebeschleunigung von in Java implementierten Experimenten auf einem Open-
Satellite.
Bachelorthesis by Jan-Peter Ceglarek
Submitted on 01.11.2017
Examiner: Prof. Dr.-Ing. Andreas Koch
Supervisor: Dr.-Ing. Andreas Engel

Thesis Statement

I herewith formally declare that I have written the submitted thesis independently.
I did not use any outside support except for the quoted literature and other sources
mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work,
either literally or in content. This thesis has not been handed in or published before
in the same or similar form.
In the submitted thesis the written copies and the electronic version are identical in
content.

Darmstadt, 1. November 2017

(Jan-Peter Ceglarek)

Abstract

The OPS-Sat project is the first small satellite mission launched by the European
Space Agency (ESA). Its an open satellite using modern commercial hardware
and with which procedures to change the onboard software during the flight will be
tested. As its payload the satellite uses a MitySOM-5CSX - a System on Chip (SoC)
device featuring an Intel Cyclone V Field-Programmable Gate Array (FPGA) fabric
as well as an Advance RISC Machine (ARM) processor. The mission requires to run
Java and C programs on the satellite.
In order to maximize the satellite’s performance, the FPGA will work as a hardware-
accelerator for generic Java code. Therefore particularly suitable parts of the Java
code should be executed on the FPGA. Those segments could be selected by the
developer with an Integrated Development Environment (IDE) plugin. Analysis, of
which Java construct are suited to be hardware-accelerated on the FPGA, is how-
ever out of the scope of this thesis. This thesis demonstrates the necessary internal
communication between hard- and software processor. Therefore two example im-
plementation, using the Advanced eXtensible Interface lightweight bridge, based on
the AXI light standard, were implemented. The first example only uses the FPGA
to explain the basic development toolchain. The second one implements the actual
communication bridge mastered by the HPS. A C program running on the ARM
uses memory mapping to communicate with the interface.
An analysis of existing solutions shows, that there is no practicable tool to execute
Java on an FPGA, or to convert Java to either C or Hardware Description Language
code. But there are however working solutions to generate HDL code out of C code.
In order to help developers with the conversion from Java to C, an Eclipse plugin
can make annotations on selected lines in the code. These annotation can be used
by others tools to generate generic C code automatically.

v

Kurzfassung

Das OPS-Sat Projekt ist die erste Kleinstsatelliten Mission, die von der Europäischen
Weltraum Agentur (ESA) ins Leben gerufen wurde. Mit diesem Open-Satellite, der
aus moderne konventionelle Hardware besteht, sollen Verfahren getestet werden, die
Onboard Software während des Missionsbetriebes zu tauschen. Der Satellite nutzt
als Payload einen MitySOM-5CSX - ein System on Chip (SoC) bestehend aus einen
Intel Cyclone V Field-Programmable Gate Array (FPGA) und einem Advance RISC
Machine (ARM) Prozessor. Die Missionsrichtlinien setzen voraus, dass sowohl Java,
als auch C Code auf dem Satelliten ausgeführt werden kann.
Um die Leistungsfähigkeit des Satelliten zu erhöhen, soll der FPGA als Hard-
warebeschleuniger für generischen Java Code genutzt werden. Dafür sollen geeignete
Abschnitte des Java Codes auf dem FPGA ausgeführt werden. Diese Abschnit-
ten können zuvor von dem Entwickler mittels eines Integrated Development En-
vironment (IDE) plugins ausgewählt werden. Eine Analyse, welche Java Kon-
strukte besonders geeignet, sind um mit einem Hardwareprozessor beschleunigt zu
werden, ist nicht Bestandteil dieser Arbeit. Mit dieser Thesis soll demonstriert
werden, wie die benötigte interne Kommunikation zwischen dem Hardware- und
dem Softwareprozessor realisiert werden kann. Dazu wurden zwei Beispiele imple-
mentiert, welches die Lightweight HPS-2-FPGA Bridge, ein SoC internes Interface
basierend auf dem Advanced eXtensible Interface (AXI) light Standard, verwendet.
Das erste Beispiel verwendet ausschließlich den FPGA, um die Entwicklung einer
FPGA-Programmierung für die verwendete Hardware zu demonstrieren. Das zweite
implementiert die eigentliche Kommunikationsbrücke, die von dem HPS gemastert
wird. Ein auf dem ARM ausgeführtes Programm kommuniziert mit dem Interface
mittels Memory Mapping.
Eine Analyse der bereits existierenden Lösungen Java Byte-Code auf einem FPGA
auszuführen zeigt auf, dass es keinen brauchbares Verfahren gibt. Keines der vorgestell-
ten Lösungen bietet eine, den Anforderung genügende, Übersetzung von Java nach
HDL, oder kann Java direkt auf FPGA ausführen. Es gibt jedoch Programme, die
HDL Code aus C Code generieren können.

Um den Entwicklern bei der Übersetzung von Java nach C zu helfen, soll ein
IDE Plugin Annotations zu ausgewählten Zeilen im Java Code hinzufügen können.
Diese Zusätze können dann in weiteren Schritten genutzt werden, um automatisiert

vi

C Code zu generieren.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scope of the Thesis . 1
1.3 Structure . 2

2 Technical Background 5
2.1 The MitySOM-5CSX used by the OPS-Sat project and its develop-

ment tools . 5
2.1.1 Hardware Specifications . 6
2.1.2 Development Toolchain . 9
2.1.3 Boot Sequence . 12
2.1.4 Changing the Preloader and FPGA Reconfiguration 13
2.1.5 Data Communication between FPGA-Module and AXI Bridge

using mmap . 14
2.2 The Eclipse plugin . 14

2.2.1 Basic Concepts and the Eclipse IDE for Eclipse Committers . 15
2.2.2 The Manifest File and how Equinox is using it 15

3 Related Work 17
3.1 Running Java within a JVM usingJOP 17
3.2 Existing Java to C converter . 17

3.2.1 JCGO . 17
3.2.2 JC . 18
3.2.3 Toba . 18
3.2.4 Varycode . 18
3.2.5 Conversion from Java to C++ 18

3.3 High-Level Synthesis (HLS) tools . 18
3.3.1 LegUp . 19
3.3.2 SPARK . 19
3.3.3 Vivado HLS . 19
3.3.4 Intel High-Level Systhesis (HLS) Compiler 20

3.4 Analysis of existing solutions . 20

ix

Contents

4 Implementation 21
4.1 Example for Hardware-Kernel Controlled by HPS 21

4.1.1 Modifications for Light-Emitting Diode (LED)-Blinky 21
4.2 The Eclipse Plugin . 25

5 Results 27
5.1 The Configuration of the Field-Programmable Gate Array (FPGA),

Analysis of the Existing Solutions and the Plugin Examples 27
5.2 Problems . 27

5.2.1 Problems with the provided Virtual Machine (VM) 27
5.2.2 Problems with the SD image 28

6 Conclusion and Outlook 29

List of Figures I

List of Tables III

List of Acronyms V

Bibliography VII

x

1 Introduction

The following chapter provides the reader an overview of the topics covered, and
also with the motivation and definition of this current thesis. The last paragraph
gives an outline of the following chapters and summarizes their content.

1.1 Motivation
Nano satellites, weighing around 10 kg, are way lighter and much less powerful than
their bigger companions. Caused by their smaller size, their possibilities are strictly
limited. The big advantage of those small satellites is, that they are relatively cheap.
Manufactures sell custom nano satellites for a few hundred thousand Euros. The
OPS-Sat project [18] is the first small satellite mission launched by the European
Space Agency (ESA). Its main goal is to test methods to change the onboard
software and to test normal commercial, instead of special space-tested hardware.
For this reason companies or private makers are invited run experiments on this
open satellite. The submitted experiments can be either written in C or Java,
so the satellite must be able to handle both programming languages. In order to
increase the performance of the software processor, as well as the data throughput
of the whole satellite, the Field-Programmable Gate Array (FPGA) will be used as
a hardware-accelerator for executing Java byte-code. Therefore the Java code needs
to be converted to Hardware Description Language (HDL) and an analysis of the
existing tools revealed, that none of them provides satisfying results. Furthermore
it is particular new to this mission, that new software should be transferred to the
payload during flight and therefore changing the programming without physically
touching the FPGA is absolutely necessary. So the Advance RISC Machine (ARM)
has to be able to reprogram the FPGA.

1.2 Scope of the Thesis
Since it is key to the mission to run Java code on the FPGA, existing conversion
tools have to be analyzed and decided, whether they match the requirements.

1

1 Introduction

There are different High-Level Systhesis (HLS) tools available, but none of them
are working with Java code. All of them are translating C code to one of the two
HDLs. So in order to work with those tools, general Java code has to be converted
into C code. This thesis is also about getting an overview over the current situation
on how it is possible to convert Java to C code, what the existing programs are and
if there is a working solution.

In terms of performance, it is not recommended to perform Java code on an FPGA
instead of an ARM, because every Java code must be interpreted or cross compiled
before it can run on the device. Nevertheless it can be of advantage to run specific
patterns on the FPGA. Therefore an Integrated Development Environment (IDE)
plugin should help the developer to convert selected parts of the code into C code,
so that a HLS tool can compile it into HDL later on. In order to use the FPGA for
executing Java code, extraction and preparing of hardware-kernels out of general
Java code is necessary. There are different approaches to solve this problem. Since
there is no solution, which performs good enough on an FPGA or supports newer
Java versions since 1.5, a refactoring-tool for a Java IDE should help developers to
work with the hardware offered by the satellite. This tool will help the developers
to generate C code out of general Java byte-code. Eclipse was chosen as the fitting
IDE, because it is the most used IDE for Java development, it has a variety of
plugins and is known for making it user-friendly to develop new plugins.

To program the FPGA from the ARM, internal communication channels are used.
The options Cyclone V is offering the user will be discussed and how to implement
one of them. Because exchanging the programming of the FPGA has to be done
without touching the hardware, it is necessary to use the ARM processor for repro-
gramming the FPGA and not using an USB blaster or flashing the SD card manually.
This thesis will cover different approaches to change the programming of the FPGA
and how it is specifically done with the used MitySOM-5CSX. The analysis of the
existing solutions will show, that none of these tools complies with the requirements.
Hence it is also part of this thesis to start the development of an IDE/Eclipse plugin,
that will help the developer with this conversion. The plugin should annotate lines
in the code selected by the user with @FPGA. These annotations should be used
later on by conversion tool.

1.3 Structure
This thesis is structured into six chapters. Beginning with the introduction in, the
motivation as well as the purpose of this thesis is described. Chapter 2 will give
the reader more informations about what the used MitySOM-5CSX is and how
the communication between the integrated FPGA fabric and the Hard Processor
System (HPS) works, what Memory Mapping is and why it is essential for the com-

2

1.3 Structure

munication with an System on Chip (SoC). Further the Eclipse plugin is explained
in more detail. This includes an explanation on how the basic structure of an Eclipse
plugin works and what is needed to build a new one in Section 2.2. The third chapter
will give an overview about existing conversion tools. What the differences are and
why none of them are suited for the purpose of this work, is described in Section 3.4.
In Chapter 4 it is described, how the implementation of the Advanced eXtensible
Interface (AXI) communication bridge within the MitySOM-5CSX was done and
how the FPGA can be programmed with and without using the software processor.

The results of the implementation are presented in Chapter 5.

3

2 Technical Background

Starting with a visualization of the implementation, the used hardware and tools
are described in Section 2.1. Section 2.2 focusses on information about the plugin.
The actual implementation is described in Chapter 4.

FPGA

AXI Slave

avalon_mm

HPS

ARM

Linux

Qsys
Quartus

C code
using mmap()

LOANIO

rbf
Preloader

qip

Custom
component

loan

AXI bridges

TopLevel Design

Sopc-Create-
Header-Files tool

handoff
folderhps_0.h

GPIO

SD

Pin1

Pin2

Pin3

Figure 2.1: The concept of the whole tool chain

5

2 Technical Background

2.1 The MitySOM-5CSX used by the OPS-Sat
project and its development tools

The following section describes the used hardware and the essential tools to configure
the FPGA.

2.1.1 Hardware Specifications
This section focuses on the hardware used for this thesis.

The MitySOM-5CSX

The OPS-Sat project uses a MitySOM-5CSX System on Module (SOM) and its
development kit build by CriticalLink [17]. The MitySOM-5CSX board features
an Altera Cyclone V SoC [9], which consists of an FPGA and an ARM processor.
Each of them has its own power supply, RAM, peripherals and pins. They can work
together via their internal communication bridges or fully independent from each
other.

Figure 2.2: The SoC block diagram from the manual [5]

6

2.1 The MitySOM-5CSX used by the OPS-Sat project and its development tools

The Hard Processor System

The Hard Processor System (HPS) is one of the two elements of the Cyclone V.
Inside the HPS, the ARM is the main part. Several peripherals and controllers
are also part of the HPS. The single or dual-cored ARM Cortex, clocked with a
maximum frequency of 925 MHz, can work fully independently, and has several
connections to communicate with the FPGA as shown below. These bridges are
described more detailed in Section 2.1.2.

Figure 2.3: The HPS block diagram from the manual [5]

Some pins of the HPS, such as connections for the Light-Emitting Diodes (LEDs)
on the Development Board or General Purpose Input Outputs (GPIOs), are physi-
cally tied to the HPS. By loaning these pins to the FPGA, it is possible to forward
their functionality. By enabling this in Qsys, the concerned pin is routed through

7

2 Technical Background

the HPS to the FPGA. A new pin assignment for the FPGA is not necessary.

The Field-Programmable Gate Array

The Field-Programmable Gate Array (FPGA) is the second element in the SoC
and has a maximum global clock frequency of 460 MHz but Phase Locked Loops
(PLLs) can be used to change clock frequency for single components within the
FPGA’s logic. The FPGA is programmed using a Raw Binary File (rbf), which is
generated by Quartus. This configuration can be directly done via an USB blaster
within Quartus, or via several SoC internal solutions, which can be chosen in the
BSP-Editor.

The internal Interfaces based on AXI

The HPS and the FPGA communicate via interfaces, as seen in Figure 2.3, is based
on the AXI standard. These interfaces can be distinguished between a Master on the
one and a Slave on the other. Both sides are capable of transmitting and receiving,
but the Master has to request an answer from the slave before the slave is able to
write to the bridge in return. Always the first name in the name of the bridge is the
master, whereas the second is the slave. The HPS-To-FPGA bridge (H2F) and the
FPGA-To-HPS bridge (F2H) are capable of 32, 64 or 128 bit data width, whereas the
Lightweight HPS-To-FPGA bridge (LH2F) can only transmit 32 bit at once. Each
of these bridges can be enabled and disabled in Qsys, where the desired data width
for the H2F and F2H can be adjusted as well. Inside the FPGA the Avalon-MM
connects components inside the FPGA with the AXI bridges. Figure 2.4 visualizes
this concept.

FPGALightweight HPS-To-FPGA

HPS-To-FPGA

FPGA-To-HPS

AXI slave component

Avalon-MM

Figure 2.4: Blockdiagaram showing the concept of Avalon-MM

The Avalon-MM supports the implementation of read and write interfaces. The

8

2.1 The MitySOM-5CSX used by the OPS-Sat project and its development tools

interface has several different signals, but the signals most important for this thesis
are: read, readdata, write, writedata and address [2]. The signals read and write are
both 1 bit signals, which is be set automatically by the interface each time the master
of the interface wants to write to or read from the interface. Only if this enable bit
is set, the data stream, transmitted by readdata and writedata, can be written to the
interface. One AXI bridge can function for many The same AXI bridge can be used
for multiple purposes in the same implementation. To distinguish each individual
data set, a different address signal is used. When no address is set, the first address
block inside the address space is used by default. The address space is discussed in
Section 2.1.5.

2.1.2 Development Toolchain
This section describes all the tools used to program the FPGA. Figure 2.5 gives an
overview about how different parts interact to generate the preloader.

Figure 2.5: The SoC tool flow [19]

The integration tools Quartus and Qsys

Quartus [Quartus] is the IDE provided by Intel for programming the FPGA’s logic
in Verilog or Very High Speed Hardware Descriptive Language (VHDL). The pro-
gram was developed by Intel/Altera and the Premium Lite Edition comes with every
Intel FPGA within the time of warranty for free. Each Quartus project has a Top-
Level Design file, which describes a specific programmed behavior to be implemented
by the FPGA’s logic. This file can also integrate other HDL codes to use their im-
plemented functionalities. After compiling the whole project, Quartus can be used
to generate the rbf, a bitstream to program the FPGA. The compilation creates
also a handoff directory. The subfiles in this folder are used by the BSP-Editor
to generate the preloader. The LOANIO can be described as two 67 bit signals
loan_in, loan_out, and one 1 bit signal, loan_oe. The first two are implemented as
standard logic vectors with 67 entries, whereas the LOANIO output enabler is a 1

9

2 Technical Background

bit signal, that is only used to enable the communication. The enable bit has to be
set manually, in order for the FPGA being able to write to use the loaned pin.

Qsys, as an integration tool in/for Quartus, helps the developer to build the HDL
code. An comprehensible Graphical User Interface (GUI) makes it easy and intuitive
to connect components. Each component represents a hardware subcircuit that is
available as a library component for use in the Qsys tool [1]. Components can be
added and removed from the project and their preferences adjusted. Qsys outputs
a Quartus intellectual property (qip) file, which will be integrated into the Quartus
project and the top-level design file. This qip contains subfiles to describe the logic
of the used components and several tcl-Scripts, that are used by Quartus to solve
for example the pin assignment for the user.

To add new functionality to a Qsys project, existing ones must be adjusted, or a
new component added to the system. Qsys entails already pre-defined components
by Altera, but it is also possible to ingerate an own component, based on HDL code.
One of the most important pre-defined components is named hps_0, and it models
the connection to the HPS. As mentioned in Section 2.1.1, it is possible to allow
the FPGA to use peripheral from the HPS. In order to enable the FPGA access
to GPIO50, LOANIO50 has to be enabled within Qsys. In the settings of the HPS
component the required bridges can be enabled and adjusted as well.

Building Preloader and uBoot with the BSP-Editor and Generating the
uBoot Environment

Quartus contains also the sopc-create-header-files tool and the BSP-editor, which
can be accessed via the Altera Embedded Command Shell. Both tools use the hand-
off files Quartus creates during the compilation. The Bootloader Support Package
(BSP)-editor has been used to adjust the settings of the preloader, which is explained
in Section 2.1.3. With the BSP-editor important options like SDRAM_SCRUB-
BING and Serial Support can be en- or disabled. After adjusting the BSP-editor
generates a makefile and the user can create the preloader with make and uBoot,
explained in Section 2.1.3, with make uBoot.

10

2.1 The MitySOM-5CSX used by the OPS-Sat project and its development tools

Figure 2.6: Screenshot of the BSP-Editor [5]

To tell uBoot where to load the necessary files from, the Boot environment has
to be generated out of the software/spl_bsp directory created by the BSP-Editor,
with the uBootMMCEnv.txt and the command uboot-socfpga/tools/mkenvimage -s
4096 -o ubootenv.bin uBootMMCEnv.txt. The mentioned text file ships as a part of
a VM, which is explained in the next section, Section 2.1.2.

The CriticalLink Virtual Machine and SD image

The manufacturer of the MitySOM-5CSX board Critical Link offers on their sup-
port page [16] an image of a whole Virtual Machine, which contains a xUbuntu
14.04 system with several programs pre-installed, such as Quartus, Qsys or Eclipse.
CriticalLink provided a reference design implementation for the MitySOM-5CSX
board in the form of a Quartus Design File (.qdf) and a Qsys project (.qsys). The
pre-configured Quartus project has all the pins already assigned and it contains
a pre-build top-level VHDL code. The problems accrued using this Virtual Ma-
chine (VM) are explained in Section 5.2.

Critical Link provides a 4 GB SD image specifically adapted to this board. This
image is shipped with a Linux operating system, a complete file system and a few
programs to test the proper functioning of the board saved in the /home/root di-
rectory.

11

2 Technical Background

It is also possible to build a custom SD card image. For that purpose Crit-
ical Link offers a script (make_sd_card_shell.sh) [CLwikiSD] on their support
page. To build the image the shell needs to be in the same folder/directory with
the preloader (preloader-mkpimage.bin), uBoot (u-boot.img), the uBoot environ-
ment binary (ubootenv.bin) and a tar ball of the root file system with compiled
Device Tree Blob (dtb) and kernel in the /boot directory, called rootfs.tar.gz [16].
Preloader, uBoot and uBoot Environment can be created as shown in Section 2.1.2
The problems I had using this custom SD image are described in Section 5.2.

2.1.3 Boot Sequence
The preloader is a part of the BSP.

The booting procedure of the SoC follows a specific boot flow.

Figure 2.7: The steps of the booting process [RBEmbedded]

After an external reset or a power-cycle, the board starts with the Boot ROM,
which is hardcoded into the hardware by the manufacturer and prepares the board
for the preloader, loading the preloader from the SD card into the RAM and jumping
to the preloader. The preloader, as the last hardware setup step, sets all the pins and
clocks of the FPGA. It is also responsible to program the FPGA’s logic described in

12

2.1 The MitySOM-5CSX used by the OPS-Sat project and its development tools

the rbf. After the preloader has prepared the hardware, uBoot cares about setting
up the HPS for the Linux system by loading all the necessary files from the SD card.

The preloader does not need to be rebuild for every hardware modification. As
shown in this section, the preloader depends only on the hardware initialized by the
preloader through the rbf, or in other words on the hardware used by the FPGA
and its configuration. Since most of the FPGA’s functionality is described in Qsys,
it mostly depends on the Qsys project, whether new hardware will be used, or
it’s preferences had been adjusted so that a new preloader has to be generated
and exchanged with the old one on the SD card. Minor changes inside the logic,
describing VHDL code of a component, will not lead to a necessary exchange of
the preloader. A new component, which uses a new pin or interface, will entail to
change it. How the preloader is generated is explained in Section 2.1.2.

2.1.4 Changing the Preloader and FPGA Reconfiguration

As described in Section 2.1.3, the preloader initializes the hardware, but the actual
configuration of the FPGA is described in the rbf. To reconfigure the FPGA, the
new rbf has to be copied to the SD card. If a new preloader is needed, is described
in Section 2.1.2. To actually change the preloader, the developer has to load it
manually on the third partition of the SD card, before the SD card is ejected from
the computer. Therefore the command dd if=preloader-mkpimage.bin of=/dev/sdX3
can be used.

To re-configure the FPGA one can either change the rbf in the /home/root di-
rectory on the SD card or use a cat/dd command within the Linux system. For the
first way the user can either plug the SD card into a computer, or use the ARM to
copy the new rbf into the /home/root directory on the SD card. If the computer is
used, the preloader boots with the new configuration, but if the ARM was used to
change the configuration, the board must be restarted. In both cases the new rbf
has to replace the old one with the same name. For the second way multiple rbfs
are stored on the SD card simultaneously. After the board is fully booted, including
the Linux system, the FPGA can be re-programmed with cat dev_5csx_h6_42a.rbf
> /dev/fpga0 or dd if= dev_5csx_h6_42a.rbf of=/dev/fpga0. Exchanging the rbf
manually on the SD card is the more laborious and slower way than using the Linux
system on the ARM, if multiple rbf are to be tested. The second way requires how-
ever a Linux system running on the ARM, whereas the first way does not need the
ARM at all.

13

2 Technical Background

2.1.5 Data Communication between FPGA-Module and AXI
Bridge using mmap

Memory Mapping is a concept to access peripherals within a virtual address space,
the same way the Central Processing Unit (CPU) can access memory blocks of its
RAM. Therefore the whole memory and every additional external peripherals are
combined in one bus and the RAM and each peripheral can be accessed through its
given address space. This concept is visualized in Figure 2.8. Inside one address
space different elements can be distinguished by different offsets. This value depends
on the interfaces used by the FPGA and can be generated with a tool after Quartus
compiled its whole project. This sopc-create-header-files tool, provided by Altera,
is included into Critical Links VM and can be accessed through the Embedded
Command Shell.

CPU

Bus

PeripheralPeripheralRAM
....

Figure 2.8: The concept of memory mapping [15]

So in order to actually communicate through this bride, each side has to address
the bridge correctly. On behalf of the FPGA, an existing component has to imple-
ment the Avalon interface correctly. An example of how this could be implemented
is shown in Section 4.1.1. The HPS uses memory mapping to write to the right
address space. Therefore a C code / program running on the Linux system using
mmap() only needs the base address and offset.

2.2 The Eclipse plugin
As stated in Section ..., an IDE plugin should be developed to support the prepa-
ration of hardware accelerators from java programs. In Section ..., the Eclipse IDE
[...] is chosen for this purpose. This section outlines the generic Eclipse plugin
development process.

14

2.2 The Eclipse plugin

2.2.1 Basic Concepts and the Eclipse IDE for Eclipse
Committers

Eclipse is based on the Equinox framework, which is responsible for the plugin
management and execution [8]. Since a plugin can not initiate anything by itself
it needs always the Equinox framework to start the Plugin or its functionality [8].
Every eclipse functionality, such as code editors with syntax highlighting and auto-
completion, is realized by a plugin. Plugins can interact with the user through
very different elements such as context menus or tabs inside the Eclipse GUI and
are offering it’s functionalities to the framework - or to other plugins - through it’s
Extensions, as explained in detail in the next section.

To support the development of an Eclipse plugin, the Eclipse Foundation has
created a package called „Eclipse IDE for Eclipse Committers“ [6]. This package
basically is focused on Java development, but it includes also several functionalities
such as presets and tutorials to develop an Eclipse Plugin, a Git integration or the
Eclipse Extensible Markup Language (XML) editor. The Eclipse PlugIn Develop-
ment Environment (PDE) is a Plugin which basically provides similar functionality
but the last version is from 2013 and it is missing the tutorials.

2.2.2 The Manifest File and how Equinox is using it
The main file of every Eclipse Plugin is the Manifest File manifest.mf. This file is
used to specify, how this plugin is handled by the Equinox framework. During the
installation of the plugin this file will be parsed and the plugins structure will be
embedded into the framework. This helps the Eclipse instance to decide when to
launch and kill a plugin. This is related to the plugins lifecycle [7], a topic that is
out of the scope of this thesis.

The manifest.mf file (see Listing 2.1) has nine subsections: Overview, Dependen-
cies, Runtime, Extensions, Extension Points, BUILD, MANIFEST.MF, plugin.xml,
and build.properties.

Extensions and Extension Points are used to extend existing plugins. The Ex-
tension Point provides conditions to offer its functionality and only a plugin with a
fitting Extension can use it [3]. After adjusting the MANIFEST.MF the Extension
and Extension Point appear as XML elements in the plugin.xml.

Listing 2.1: Utilized manifest.mf file

1 Manifest−Version : 1 . 0
2 Bundle−ManifestVersion : 2
3 Bundle−Name : JavaFPGAEditor

15

2 Technical Background

4 Bundle−SymbolicName : de . c e g l a r e k . p lug in . javaFPGAEditor ; s i n g l e t o n
:= true

5 Bundle−Version : 1 . 0 . 0 . q u a l i f i e r
6 Bundle−RequiredExecutionEnvironment : JavaSE−1 . 8
7 Require−Bundle : org . e c l i p s e . j d t . core ; bundle−vers ion =”3.13 .0” ,
8 org . e c l i p s e . core . runtime ; bundle−vers ion =”3.13 .0” ,
9 org . e c l i p s e . core . r e s o u r c e s ; bundle−vers ion =”3.12 .0” ,

10 org . e c l i p s e . core . e x p r e s s i o n s ; bundle−vers ion =”3 .6 .0” ,
11 org . e c l i p s e . e4 . core . d i ; bundle−vers ion =”1.6 .100” ,
12 org . e c l i p s e . e4 . u i . s e r v i c e s ; bundle−vers ion =”1 .3 .0” ,
13 org . e c l i p s e . u i
14 Import−Package : org . e c l i p s e . j f a c e . d i a l og s ,
15 org . e c l i p s e . j f a c e . v iewers ,
16 org . e c l i p s e . swt . widgets

The plugin.xml (see 4.1) is actually the code version of what has been defined in
the tabs ”Extensions” and ”Extension Points”. This file is used for wrapping the
whole Plugin into a Java Archive (JAR) Packaging.

16

3 Related Work

This section will give an overview about already existing conversion tools, what their
key features are. Further I will do the same for HLS tools.

A final comparison and evaluation of these tools has been done in Chapter 5.

3.1 Running Java within a JVM usingJOP
Java byte-code can be run directly on an FPGA using a Java Virtual Machine
(JVM) implemented in hardware. This method is not very performant, because the
hardware has to emulate the VM, as well. Using a JVM does however not require
to use a HLS tool.

The Java Optimized Processor (JOP) [20] is an implementation of the JVM
in hardware. The main implementation platform is an FPGA. JOP is a time-
predictable processor for hard real-time systems implemented in Java. It was pub-
lished in 2009 and supports Java version 1.4. JOP is open-source under the GNU’s
Not Unix! (GNU) GNU General Public License (GPL) version 3 and has a growing
user base.

3.2 Existing Java to C converter
There are already a few solutions for converting Java to C code. This C code is meant
to be converted again by existing HLS tools, which are represented in Section 3.3.

3.2.1 JCGO
JCGO [14] is a software application which translates programs written in Java into
platform-independent C code. JCGO translator uses some optimization algorithms
that allow, together with optimizations performed by a C compiler, the resulting
executable code to reach better performance if compared with the traditional Java
implementations (based on the Just-In-Time technology). JCGO was last updated
2014 and supports Java v1.4.

17

3 Related Work

3.2.2 JC
JC [4] offers a conversion of Java byte-code into C. It includes a Java byte-code
interpreter with support for compiled, interpreted, and mixed mode execution

Its was last updated 2005 und supports Java version 1.2 and is covered by GNU
GPL version 2.

3.2.3 Toba
Toba [27] is a system for generating efficient standalone Java applications. Toba
includes a Java-bytecode-to-C compiler, a garbage collector, a threads package, and
Java API support. Toba-compiled Java applications execute according to its doc-
umentation [26] 1.5–10 times faster than interpreted and Just-In-Time compiled
applications. Its current version 1.1c was released 1999. It development stopped
with Java Development Kit (JDK) 1.1. Although it is also a stand alone Java to
C compiler, it is primarily built to increase the performance of Java written code
by pre-compiling Java class files into C code and this C code directly into machine
code.

3.2.4 Varycode
Varycode [23] is an online code converter which provides several convert options.
Among others the user can convert Java to C#, Visual Basic .Net, Ruby, Iron
Python or Boo. It supports enums, classes, interfaces, generic methods and classes,
collections, exception handling, annotations, native API functions declaration, try
constructions, loops, switches, String, char and many JRE library classes. Varycode
is royalty free for up to 2048 input chars. It is not obvious which Java version the
tool supports.

3.2.5 Conversion from Java to C++
Although it is not directly linked to the scope of this thesis, because it converts Java
to C++, the J2C project [21] should also be mentioned. J2C is an open source code
converter, that expresses its functionality as an Eclipse plugin. It works with every
Java version 1.6 and was last updated 07.07.2015.

3.3 High-Level Synthesis (HLS) tools
HLS tools are used to translate functionalities from one programming language
into another. The aim is to interpret the behavior of a code and implement this

18

3.3 High-Level Synthesis (HLS) tools

functionality in hardware. Because of its natural close relation to hardware C is the
most commonly used input language for a HLS tool.

HLS tools are used to

3.3.1 LegUp
The University of Toronto developed the open-source HLS tool LegUp [13]. It is
specialized to synthesis C to Verilog and was developed with the aim to make FPGA
programming easier. LegUps last update was on 24 August 2015 with version 4.0
[11]. It is for non-profitable usage free but they also launched a compony called
LegUp Technologies Inc. [12].

3.3.2 SPARK
The [22] HLS tool was developed by the Microelectronic Embedded Systems Labo-
ratory University of California San Diego. It uses ANSI C as an input and converts
it to VHDL.

3.3.3 Vivado HLS
Vivado [24] is a HLS tool developed by the FPGA manufacturer Xilinx. It ships
with their product for every in-warranty user. Vivado can handle both C and C++
files as an input and outputs either VHDL or Verilog.

Figure 3.1 [25] shows the concept of the conversion.

Figure 3.1: Block Diagram of the Vivaldo Design Flow

19

3 Related Work

3.3.4 Intel HLS Compiler
The Intel HLS Compiler [10], developed by Intel, is only available as beta access by
the time of this thesis. It handles untimed ANSI C++ files and is meant to work
directly as an input for the Qsys integration tool.

3.4 Analysis of existing solutions
Although there are different approaches to run Java code on an FPGA, none of
them fits the needs of the OPS-Sat project. Running Java code natively on the
FPGA using a JVM results not only in poor performance, since the FPGA has also
to implement the VM in hardware, but additionally misses the requirements of this
thesis. The FPGA should act as a hardware accelerator and the SoC must also be
able to execute C code. Furthermore non of these tools works with Java code based
on versions more recent than 1.5. So there is no solution for recent code. However
parts of existing tools can be used by this plugin in further projects. The HLS tools
are useful, when Java code has already be converted to C. Since however none of
them can handle Java files, they do not directly fulfill the requirements, but can be
used to generate HDL code, when the Java code has been converted to C.

20

4 Implementation

Because there is no fitting solution to hardware-accelerate Java code on the OPS-
Sat’s MitySOM-5CSX FPGA, this thesis is about to implement the necessary fea-
tures in hardware and to start developing the inherent IDE plugin, that helps the
developer to prepare their Java code to be hardware-accelerated by the FPGA.

4.1 Example for Hardware-Kernel Controlled by HPS
As described in Section 2.1.2, Critical Link provides its customers with an image
of a highly equipped VM, which also includes an example implementation for the
MitySOM-5CSX. Based on this Quartus and Qsys project, a simple example for an
FPGA hardware accelerator has been implemented in two steps. The first example
uses only the FPGA to demonstrate the basic functionality of the FPGA and the
used development chain. The second example uses the HPS and additionally one
AXI bridge, to setup a fully functioning interface for the communication between
HPS and FPGA. To make the result visual, these examples control an LED on the
MitySOM-5CSX development board.

4.1.1 Modifications for LED-Blinky

Example One: Standalone LED blinker driver

The Qsys modules provided by the Critical Link example project, described in Sec-
tion 2.1.2, are pre-defined, so that their logic can be changed. A custom component
has been written in VHDL to implement the requested logic. This new LED com-
ponent uses the 100 MHz signal from a clock component in Qsys and outputs a
1 Hz signal with the help of a 27 bit counter. So the most significant bit toggles at
227/100 MHz = 1.34 s It has a reset and clock signal as input signals and LED as an
output signal. Finally, in the port mapping section of the code, the highest bit of
this vector gets linked to the one bit LED output signal. In Qsys the component has
to be connected to a clock and a reset signal and the LED signal has to be exported,
so that the signal appears as an output signal after the project has been compiled.

21

4 Implementation

1

1

2

2

3

3

4

4

5

5

6

6

D D

C C

B B

A A

4

Critical Link, LLC

6712 Brooklawn Parkway

Syracuse, NY 13211

315.425.4045

www.criticallink.com113/3/2015 3:36:01 PM

SoM.SchDoc

Title:

Size: Number:

Date:

File:

Sheet ofTime:

C

MitySOM-5CSX SoM

SVN: 2329

80-000578RC-9 BRevision:

nCS
7

DATA1
8

VCC
2

GND
10

DATA0
15

DCLK
16

DATA3
1

DATA2
9

NC
3

NC
4

NC
5

NC
6

NC
13

NC
14

NC
11

NC
12

U100

EPCQ64SI16N

RGMII1_RX_CLK6[4B]

RGMII1_TX_CTL6[4B]

RGMII1_RX_CTL6[4B]

RGMII1_MDC6[4B]

RGMII1_MDIO6[4B]

RGMII1_RXD06[4B]

RGMII1_RX_CLK

RGMII1_TX_CTL

RGMII1_RX_CTL

RGMII1_MDC

RGMII1_MDIO

RGMII1_RXD0

RGMII1_RXD16[4B]

RGMII1_RXD26[4B]

RGMII1_RXD36[4B]

RGMII1_RXD1

RGMII1_RXD2

RGMII1_RXD3

GXB_REFCLK1_P

GXB_REFCLK1_N

USB1_D_P

USB1_D_N

USB1_ID
USB1_ID 6[4B]

USB1_D_N 6[4B]

USB1_D_P 6[4B]

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

RGMII1_TXD0

RGMII1_TXD1

RGMII1_TXD2

RGMII1_TXD3

RGMII1_TXD06[4B]

RGMII1_TXD16[4B]

RGMII1_TXD26[4B]

RGMII1_TXD36[4B]

RGMII1_TX_CLK
RGMII1_TX_CLK6[4B]

MITYSOM-5CSX

PCIE1_RX_1_P 6[4B]

PCIE1_RX_1_N 6[4B]

PCIE1_RX_2_P 6[4B]

PCIE1_RX_2_N 6[4B]

PCIE1_RX_3_P 6[4B]

PCIE1_RX_3_N 6[4B]

PCIE1_RX_0_P 6[4B]

PCIE1_RX_0_N 6[4B]

PCIE1_TX_0_P6[4B]

PCIE1_TX_0_N6[4B]

PCIE1_TX_1_P6[4B]

PCIE1_TX_1_N6[4B]

PCIE1_TX_2_P6[4B]

PCIE1_TX_2_N6[4B]

PCIE1_TX_3_P6[4B]

PCIE1_TX_3_N6[4B]

PCIE1_TX_0_P

PCIE1_TX_0_N

PCIE1_TX_1_P

PCIE1_TX_1_N

PCIE1_TX_2_P

PCIE1_TX_2_N

PCIE1_TX_3_P

PCIE1_TX_3_N

SATA_RX_N

SATA_RX_P

SATA_TX_P

SATA_TX_N

SATA_RX_P 6[4B]

SATA_RX_N 6[4B]

SATA_TX_N6[4B]

SATA_TX_P6[4B]

PCIE1_RX_0_P

PCIE1_RX_3_N

PCIE1_RX_1_N

PCIE1_RX_1_P

PCIE1_RX_2_P

PCIE1_RX_3_P

PCIE1_RX_2_N

MMC0_CMD 6[4B]

MMC0_CLK 6[4B]

M
M
C
0
_
D
A
T
[
0
..
3
]

6
[
4
B
]

MMC0_SDCD 6[4B]

MMC0_SDWP 6[4B]

MMC0_CLK

MMC0_DAT2

MMC0_DAT0

MMC0_DAT1

M
M
C
0
_
D
A
T
[
0
..3
]

MMC0_DAT3

MMC0_CMD

MMC0_SDWP

MMC0_SDCD

E1

E2

E3

E4

MH
0

J100A

MM70-314-310B1-1-R300

VIN_5V
1

B7A_UART0_RX/CAN0_RX/SPIM1_MISO/HPS_GPIO65
2

VIN_5V
3

B7A_UART0_TX/CLKSEL0/CAN0_TX/SPIM1_SS0/HPS_GPIO66
4

VIN_5V
5

B7A_UART0_RTS/SPIM0_MOSI/I2C1_SCL/HPS_GPIO58
6

VIN_5V
7

B7A_UART0_CTS/SPIM0_CLK/I2C1_SDA/HPS_GPIO57
8

VIN_5V
9

B7A_CAN0_TX/CLKSEL1/UART0_TX/HPS_GPIO62
10

GND
11

B7A_CAN0_RX/UART0_RX/SPIM0_SS1/HPS_GPIO61
12

GND
13

B7A_CAN1_TX/BOOTSEL0/SPIM0_SS0/HPS_GPIO60
14

GND
15

B7A_CAN1_RX/SPIM0_MISO/HPS_GPIO59
16

GND
17

+3VBAT
18

B7A_HPS_CLK2
19

B7A_TRACE_D7/SPIS1_MISO/HPS_GPIO56
20

B5A_RX_B6_N/PERSTL1/DQSn1R
21

B7A_TRACE_D6/SPIS1_SS0/HPS_GPIO55
22

B7A_HPS_RST_N
23

B7A_TRACE_D5/SPIS1_MOSI/CAN1_TX/HPS_GPIO54
24

B7A_HPS_POR_N
25

B7A_TRACE_D4/SPIS1_CLK/CAN1_RX/HPS_GPIO53
26

PGM_FPGA_DCLK
27

B7A_TRACE_D3/SPIS0_SS0/I2C1_SCL/HPS_GPIO52
28

B9A_MSEL0
29

B7A_TRACE_D2/SPIS0_MISO/I2C1_SDA/HPS_GPIO51
30

PGM_FPGA_D3
31

B7A_TRACE_D1/SPIS0_MOSI/UART0_TX/HPS_GPIO50
32

PGM_FPGA_D2
33

B7A_TRACE_D0/SPIS0_CLK/UART0_RX/HPS_GPIO49
34

PGM_FPGA_D1
35

B9A_MSEL4
36

PGM_FPGA_D0/ASDO
37

B7A_TRACE_CLK/HPS_GPIO48
38

B9A_nCONFIG
39

GND
40

B9A_nSTATUS
41

B5A_TX_R5_P/NC
42

PGM_FPGA_CSO_N
43

B5A_TX_R5_N/NC
44

B9A_MSEL1
45

VIO_2V5_ENABLE
46

B5A_TX_R1_P/NC
47

VIO_4A
48

B5A_TX_R1_N/NC
49

GND
50

B9A_MSEL2
51

B4A_TX_B80_P/DQ8B/DQ2B/B_DM_4
52

B5A_TX_R3_P/NC
53

B4A_TX_B80_N/DQ8B/DQ2B/B_DQ_39
54

B5A_TX_R3_N/NC
55

B4A_TX_B77_P/DQ8B/DQ2B/B_DQ_38
56

B9A_MSEL3
57

B4A_TX_B77_N/DQ8B/DQ2B/GND
58

GND
59

B4A_TX_B76_N/DQ8B/DQ2B/B_DQ_35
60

B4A_RX_B78_P/DQ8B/DQ2B/B_DQ_37
61

B4A_TX_B73_P/DQ8B/DQ2B/B_DQ_34
62

B4A_RX_B78_N/DQ8B/DQ2B/B_DQ_36
63

B4A_TX_B72_P/DQ7B/DQ2B/B_DM_3
64

B4A_RX_B75_P/DQS8B/DQS2B/B_DQS_4
65

B4A_TX_B72_N/DQ7B/DQ2B/B_DQ_31
66

B4A_RX_B75_N/DQSn8B/DQSn2B/B_DQS#_4
67

B4A_TX_B69_P/DQ7B/DQ2B/B_DQ_30
68

B4A_RX_B74_P/DQ8B/DQ2B/B_DQ_33
69

B4A_TX_B69_N/DQ7B/DQ2B/GND
70

B4A_RX_B74_N/DQ8B/DQ2B/B_DQ_32
71

GND
72

B4A_RX_B70_P/DQ7B/DQ2B/B_DQ_29
73

B4A_TX_B68_N/DQ7B/DQ2B/B_DQ_27
74

B4A_RX_B70_N/DQ7B/DQ2B/B_DQ_28
75

B4A_TX_B65_P/DQ7B/DQ2B/B_DQ_26
76

B4A_RX_B67_P/DQS7B/DQ2B/B_DQS_3
77

B4A_TX_B64_P/DQ6B/DQ1B/B_DM_2
78

B4A_RX_B67_N/DQSn7B/DQ2B/B_DQS#_3
79

B4A_TX_B64_N/DQ6B/DQ1B/B_DQ_23
80

GND
81

B4A_TX_B61_P/DQ6B/DQ1B/B_DQ_22
82

B4A_RX_B66_P/DQ7B/DQ2B/B_DQ_25
83

B4A_TX_B61_N/DQ6B/DQ1B/GND
84

B4A_RX_B66_N/DQ7B/DQ2B/B_DQ_24
85

B4A_TX_B60_P/B_RESET#
86

B4A_RX_B62_P/DQ6B/DQ1B/B_DQ_21
87

B4A_TX_B60_N/DQ6B/DQ1B/B_DQ_19
88

B4A_RX_B62_N/DQ6B/DQ1B/B_DQ_20
89

B4A_TX_B57_P//DQ6B/DQ1B/B_DQ_18
90

B4A_RX_B59_P/DQS6B/DQS1B/B_DQS_2
91

GND
92

B4A_RX_B59_N/DQSn6B/DQSn1B/B_DQS#_2
93

B4A_TX_B56_P/DQ5B/DQ1B/B_DM_1
94

B4A_RX_B58_P/DQ6B/DQ1B/B_DQ_17
95

B4A_TX_B56_N/DQ5B/DQ1B/B_DQ_15
96

B4A_RX_B58_N/DQ6B/DQ1B/B_DQ_16
97

B4A_TX_B53_P/DQ5B/DQ1B/B_DQ_14
98

B4A_RX_B55_P/CLK3p
99

B4A_TX_B53_N/DQ5B/DQ1B/B_CKE_0
100

B4A_RX_B55_N/CLK3n
101

B4A_TX_B52_P/B_CKE_1
102

GND
103

B4A_TX_B52_N/DQ5B/DQ1B/B_DQ_11
104

B4A_RX_B54_P/DQ5B/DQ1B/B_DQ_13
105

B4A_TX_B49_P/DQ5B/DQ1B/B_DQ_10
106

B4A_RX_B54_N/DQ5B/DQ1B/B_DQ_12
107

GND
108

B4A_RX_B51_P/DQS5B/DQ1B/B_DQS_1
109

B4A_TX_B48_P/DQ4B/B_DM_0
110

B4A_RX_B51_N/DQSn5B/DQ1B/B_DQS#_1
111

B4A_TX_B48_N/DQ4B/B_DQ_7
112

B4A_RX_B50_P/DQ5B/DQ1B/B_DQ_9
113

B4A_TX_B45_P/DQ4B/B_DQ_6
114

B4A_RX_B50_N/DQ5B/DQ1B/B_DQ_8
115

B4A_TX_B45_N/DQ4B/B_ODT_1
116

B4A_RX_B47_P/CLK2p_DDR3
117

B4A_TX_B44_P/B_ODT_0
118

B4A_RX_B47_N/CLK2n_DDR3
119

B4A_TX_B44_N/DQ4B/B_DQ_3
120

B4A_RX_B46_P/DQ4B/B_DQ_5
121

B4A_TX_B41_P/DQ4B/B_DQ_2
122

B4A_RX_B46_N/DQ4B/B_DQ_4
123

B4A_TX_B41_N/RZQ_0
124

GND
125

KEY

Bank 7A (3.3V I/O)

J100B

MM70-314-310B1-1-R300

GND

GND

GND

GND

GND

+5V_SOM

MSEL0

MSEL1

MSEL2

MSEL3

HPS_CLK2

HPS_COLD_RSTN

HPS_WARM_RSTN

HPS_COLD_RSTN7[4C]

HPS_WARM_RSTN7[4C]

FPGA_DCLK

CSON

FPGA_D0

NCONFIG

NSTATUS

FPGA_D1

FPGA_D2

FPGA_D3

CLK2DDR_P

CLK2DDR_N

GND

GND

GND

GND

MSEL4

+2.5V_VIO

CAN0_TXD

CAN0_RXD

CAN1_TXD

CAN1_RXD

UART0_RTSN

UART0_CTSN

I2C1_SCL

I2C1_SDA

UART0_RX

UART0_TX
UART0_RX 6[4B]

I2C1_SDA 6[4B]

I2C1_SCL 6[4B]

UART0_CTSN 6[4B]

UART0_RTSN 6[4B]

UART0_TX 6[4B]

GND

B4A_RX_B43_P/DQS4B/B_DQS_0
133

VIO_3B
134

B4A_RX_B43_N/DQSn4B/B_DQS#_0
135

GND
136

B4A_RX_B42_P/DQ4B/B_DQ_1
137

B3B_TX_B29_P/DQ2B/B_A_10
138

B4A_RX_B42_N/DQ4B/B_DQ_0
139

B3B_TX_B29_N/DQ2B/B_A_11
140

B3B_RX_B38_P/DQ3B/B_A_4
141

B3B_TX_B28_P/B_A_12
142

B3B_RX_B38_N/DQ3B/B_A_5
143

B3B_TX_B28_N/DQ2B/B_A_13
144

B3B_RX_B30_P/DQ2B/B_A_8
145

B3B_TX_B32_P/DQ2B/B_CAS#
146

B3B_RX_B30_N/DQ2B/B_A_9
147

B3B_TX_B32_N/DQ2B/B_RAS#
148

B3B_RX_B34_P/DQ3B/B_BA_1
149

B3B_TX_B33_P/DQ3B/B_BA_0
150

B3B_RX_B34_N/DQ3B/B_BA_2
151

B3B_TX_B33_N/GND
152

GND
153

B3B_TX_B40_P/DQ3B/B_A_0
154

B3B_RX_B35_P/DQS3B/B_CK
155

B3B_TX_B40_N/DQ3B/B_A_1
156

B3B_RX_B35_N/DQSn3B/B_CK#
157

GND
158

B3B_RX_B27_P/DQS2B/B_CS#_0
159

B3B_TX_B37_P/FPLL_BL_CLKOUT0/FPLL_BL_CLKOUTp/FPLL_BL_FB/DQ3B/B_A_2
160

B3B_RX_B27_N/DQSn2B/B_CS#_1
161

B3B_TX_B37_N/FPLL_BL_CLKOUT1/FPLL_BL_CLKOUTn/DQ3B/B_A_3/
162

B3B_RX_B39_P/CLK1p
163

B3B_TX_B25_P/DQ2B/B_WE#
164

B3B_RX_B39_N/CLK1n
165

B3B_TX_B25_N/GND/
166

B3B_RX_B31_P/CLK0p/FPLL_BL_FBp
167

B3B_TX_B36_P/B_A_6/
168

B3B_RX_B31_N/CLK0n/FPLL_BL_FBn
169

B3B_TX_B36_N/DQ3B/B_A_7
170

B3B_RX_B26_P/DQ2B/B_A_14
171

B8A_RX_T9_P/CLK6p/FPLL_TL_FBp
172

B3B_RX_B26_N/DQ2B/B_A_15
173

B8A_RX_T9_N/CLK6n/FPLL_TL_FBn
174

GND
175

VIO_8A
176

B8A_RX_T1_P/CLK7p
177

B8A_TX_T4_P/FPLL_TL_CLKOUT0/FPLL_TL_CLKOUTp/FPLL_TL_FB
178

B8A_RX_T1_N/CLK7n
179

B8A_TX_T4_N/FPLL_TL_CLKOUT1/FPLL_TL_CLKOUTn
180

VIO_3A5A5B/NC
181

GND
182

B5A_RX_R2_P/NC
183

B3A_TX_B8_P/NC
184

B5A_RX_R2_N/NC
185

B3A_TX_B8_N/NC
186

B5A_RX_R4_P/NC
187

B3A_TX_B6_P/NC
188

B5A_RX_R4_N/NC
189

B3A_TX_B6_N/NC
190

B3A_RX_B7_P/NC
191

B3A_TX_B4_P/NC
192

B3A_RX_B7_N/NC
193

B3A_TX_B4_N/NC
194

B3A_RX_B5_P/NC
195

B3A_TX_B2_P/NC
196

B3A_RX_B5_N/NC
197

B3A_TX_B2_N/NC
198

B3A_RX_B3_P/NC
199

GND
200

B3A_RX_B3_N/NC
201

GXB_RX_0_P
202

B3A_RX_B1_P/NC
203

GXB_RX_0_N
204

B3A_RX_B1_N/NC
205

GND
206

GND
207

GXB_RX_1_P
208

GXB_TX_0_P
209

GXB_RX_1_N
210

GXB_TX_0_N
211

GND
212

GND
213

GXB_RX_2_P
214

GXB_TX_1_P
215

GXB_RX_2_N
216

GXB_TX_1_N
217

GND
218

GND
219

GXB_REFCLK0_P
220

GXB_TX_2_P
221

GXB_REFCLK0_N
222

GXB_TX_2_N
223

GND
224

GND
225

GXB_RX_3_P
226

GXB_REFCLK1_P
227

GXB_RX_3_N
228

GXB_REFCLK1_N
229

GND
230

GND
231

GXB_RX_4_P
232

GXB_TX_3_P
233

GXB_RX_4_N
234

GXB_TX_3_N
235

GND
236

GND
237

GXB_RX_5_P
238

GXB_TX_4_P
239

GXB_RX_5_N
240

GXB_TX_4_N
241

USB1_FAULT_N
242

GND
243

B7C_SDMMC_CLK_IN/USB0_CLK/HPS_GPIO44
244

GXB_TX_5_P
245

USB1_PS_ON
246

GXB_TX_5_N
247

B7C_SDMMC_D1/USB0_D3/HPS_GPIO39
248

B7B_BOOTSEL1
249

B7C_SDMMC_D0/USB0_D2/HPS_GPIO38
250

B7B_NAND_DQ5/RGMII1_RX_CLK/HPS_GPIO24
251

B7C_SDMMC_PWREN/USB0_D1/HPS_GPIO37
252

B7B_BOOTSEL2/NAND_WE/HPS_GPIO28/
253

B7C_SDMMC_CLK/USB0_STP/HPS_GPIO45
254

B7B_NAND_DQ3/RGMII1_RX_CTL/HPS_GPIO22
255

RTC_PSW/IRQ2_N
256

B7B_NAND_DQ0/RGMII1_RXD0/HPS_GPIO19
257

B7C_SDMMC_CMD/USB0_D0/HPS_GPIO36
258

B7B_NAND_DQ6/RGMII1_RXD1/HPS_GPIO25
259

B7C_SDMMC_D3/USB0_NXT/HPS_GPIO47
260

B7B_NAND_DQ7/RGMII1_RXD2/HPS_GPIO26
261

B7C_SDMMC_D2/USB0_DIR/HPS_GPIO46
262

B7B_NAND_WP/RGMII1_RXD3/HPS_GPIO27
263

B7C_SDMMC_D4/USB0_D4/HPS_GPIO40
264

B7B_NAND_DQ2/RGMII1_MDC/I2C3_SCL/HPS_GPIO21
265

B7C_SDMMC_D5/USB0_D5/HPS_GPIO41
266

B7B_NAND_DQ1/RGMII1_MDIO/I2C3_SDA/HPS_GPIO20
267

B7C_SDMMC_D6/USB0_D6/HPS_GPIO42
268

B7B_NAND_DQ4/RGMII1_TX_CTL/HPS_GPIO23
269

B7C_SDMMC_D7/USB0_D7/HPS_GPIO43
270

B7B_NAND_ALE/RGMII1_TX_CLK/HPS_GPIO14
271

USB1_ID
272

+1.8VOUT
273

USB1_D_N
274

B7B_NAND_RB/RGMII1_TXD3/HPS_GPIO18
275

USB1_D_P
276

B7B_NAND_RE/RGMII1_TXD2/HPS_GPIO17
277

USB1_VBUS
278

B7B_NAND_CLE/RGMII1_TXD1/HPS_GPIO16
279

GND
280

B7B_NAND_CE/RGMII1_TXD0/HPS_GPIO15
281

KEY

Bank 7B (1.8V I/O)

Bank 7C (3.3V I/O)

J100C

MM70-314-310B1-1-R300

GND

GND

GND

+2.5V_VIO

MSEL0

MSEL1

MSEL2

MSEL3

MSEL4

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

S100

218-10LPST

USB1_FAULTN 6[4B]
USB1_FAULTN

USB1_PS_ON 6[4B]
USB1_PS_ON

UART0_TX

CAN0_TXD

CAN1_TXD

CAN0_TXD 7[4C]

CAN0_RXD 7[4C]

CAN1_TXD 7[4C]

CAN1_RXD 7[4C]
+3V_VBAT

+1.8V_VIO

GND

BOOTSEL0

CLKSEL0

CLKSEL1

BOOTSEL1

BOOTSEL1

+1.8V_VIO+3.3V

GND

Configuration

PCIE1_PERSTN
PCIE1_PERSTN6[4B]

GND

FPGA_DCLK

FPGA_D0

FPGA_D1

FPGA_D2

FPGA_D3

CSON

GND

NCONFIG

+2.5V_VIO

GND

GND

GND

NSTATUS

HSMC1_TX1_P

HSMC1_TX2_P

HSMC1_TX3_P

HSMC1_TX4_P

HSMC1_TX5_P

HSMC1_TX6_P

HSMC1_TX7_P

HSMC1_TX8_P

HSMC1_TX9_P

HSMC1_TX10_P

HSMC1_TX11_P

HSMC1_TX12_P

HSMC1_TX13_P

HSMC1_TX14_P

HSMC1_TX15_P

HSMC1_TX16_P

HSMC1_TX1_N

HSMC1_TX2_N

HSMC1_TX3_N

HSMC1_TX4_N

HSMC1_TX5_N

HSMC1_TX6_N

HSMC1_TX7_N

HSMC1_TX8_N

HSMC1_TX9_N

HSMC1_TX10_N

HSMC1_TX11_N

HSMC1_TX12_N

HSMC1_TX13_N

HSMC1_TX14_N

HSMC1_TX15_N

HSMC1_TX16_N

HSMC1_TX1_P 6[1B]

HSMC1_TX1_N 6[1B]

HSMC1_TX2_P 6[1B]

HSMC1_TX2_N 6[1B]

HSMC1_TX3_P 6[1B]

HSMC1_TX3_N 6[1B]

HSMC1_TX4_P 6[1B]

HSMC1_TX4_N 6[1B]

HSMC1_TX5_P 6[1B]

HSMC1_TX5_N 6[1B]

HSMC1_TX6_P 6[1B]

HSMC1_TX6_N 6[1B]

HSMC1_TX7_P 6[1C]

HSMC1_TX7_N 6[1C]

HSMC1_TX8_P 6[1C]

HSMC1_TX8_N 6[1C]

HSMC1_TX9_P 6[1C]

HSMC1_TX9_N 6[1C]

HSMC1_TX10_P 6[1C]

HSMC1_TX10_N 6[1C]

HSMC1_TX11_P 6[1C]

HSMC1_TX11_N 6[1C]

HSMC1_TX12_P 6[1C]

HSMC1_TX12_N 6[1C]

HSMC1_TX13_P 6[1C]

HSMC1_TX13_N 6[1C]

HSMC1_TX14_P 6[1C]

HSMC1_TX14_N 6[1C]

HSMC1_TX15_P 6[1C]

HSMC1_TX15_N 6[1C]

HSMC1_TX16_P 6[1C]

HSMC1_TX16_N 6[1C]

HSMC1_RX0_P

HSMC1_RX1_P

HSMC1_RX2_P

HSMC1_RX3_P

HSMC1_RX4_P

HSMC1_RX5_P

HSMC1_RX6_P

HSMC1_RX7_P

HSMC1_RX8_P

HSMC1_RX9_P

HSMC1_RX10_P

HSMC1_RX11_P

HSMC1_RX12_P

HSMC1_RX13_P

HSMC1_RX14_P

HSMC1_RX15_P

HSMC1_RX16_P

HSMC1_CLKIN1_P

HSMC1_RX0_N

HSMC1_RX1_N

HSMC1_RX2_N

HSMC1_RX3_N

HSMC1_RX4_N

HSMC1_RX5_N

HSMC1_RX6_N

HSMC1_RX7_N

HSMC1_RX8_N

HSMC1_RX9_N

HSMC1_RX10_N

HSMC1_RX11_N

HSMC1_RX12_N

HSMC1_RX13_N

HSMC1_RX14_N

HSMC1_RX15_N

HSMC1_RX16_N

HSMC1_CLKIN1_N

HSMC1_RX0_P6[3B]

HSMC1_RX0_N6[3B]

HSMC1_RX1_P6[3B]

HSMC1_RX1_N6[3B]

HSMC1_RX2_P6[3B]

HSMC1_RX2_N6[3B]

HSMC1_RX3_P6[3B]

HSMC1_RX3_N6[3B]

HSMC1_RX4_P6[3B]

HSMC1_RX4_N6[3B]

HSMC1_RX5_P6[3B]

HSMC1_RX5_N6[3B]

HSMC1_RX6_P6[3B]

HSMC1_RX6_N6[3B]

HSMC1_RX7_P6[3C]

HSMC1_RX7_N6[3C]

HSMC1_CLKIN1_P6[3C]

HSMC1_CLKIN1_N6[3C]

HSMC1_RX8_P6[3C]

HSMC1_RX8_N6[3C]

HSMC1_RX9_P6[3C]

HSMC1_RX9_N6[3C]

HSMC1_RX10_P6[3C]

HSMC1_RX10_N6[3C]

HSMC1_RX11_P6[3C]

HSMC1_RX11_N6[3C]

HSMC1_RX12_P6[3C]

HSMC1_RX12_N6[3C]

HSMC1_RX13_P6[3C]

HSMC1_RX13_N6[3C]

HSMC1_RX14_P6[3C]

HSMC1_RX14_N6[3C]

HSMC1_RX15_P6[3C]

HSMC1_RX15_N6[3C]

HSMC1_RX16_P6[3C]

HSMC1_RX16_N6[3C]

HSMC1_D3 6[3B]

HSMC1_D1 6[3B]
HSMC1_D1

HSMC1_D3

HSMC1_SMSDA 6[1B]

HSMC1_SMSCL 6[3B]
HSMC1_SMSDA

HSMC1_SMSCL

HSMC1_CLKIN2_N
HSMC1_CLKIN2_P 6[3C]

HSMC1_CLKIN2_N 6[3C]

HSMC1_CLKIN2_P

HSMC1_CLKOUT2_P

HSMC1_CLKOUT2_N
HSMC1_CLKOUT2_P 6[1C]

HSMC1_CLKOUT2_N 6[1C]

HSMC1_CLKOUT1_P

HSMC1_CLKOUT1_N
HSMC1_CLKOUT1_P 6[1C]

HSMC1_CLKOUT1_N 6[1C]

HSMC1_PRSNTN
HSMC1_PRSNTN6[3C]

PCIE1_WAKEN

PCIE1_X1_PRSNT2N

PCIE1_WAKEN6[4B]

PCIE1_X4_PRSNT2N

PCIE1_X1_PRSNT2N6[4B]

PCIE1_X4_PRSNT2N 6[4B]

HSMC2_SMSDA 6[4B]

HSMC2_SMSCL 6[6B]
HSMC2_SMSDA

HSMC2_SMSCL

HSMC2_D2_P

HSMC2_D2_N
HSMC2_D2_N6[6B]

HSMC2_D2_P6[6B]

HSMC2_D1_N

HSMC2_D1_P

HSMC2_D1_N6[4B]

HSMC2_D1_P6[4B]

HSMC2_PRSNTN
HSMC2_PRSNTN 6[6D]

HSMC2_RX0_P

HSMC2_RX1_P

HSMC2_RX0_N

HSMC2_RX1_N

HSMC2_RX0_P6[6B]

HSMC2_RX0_N6[6B]

HSMC2_RX1_P6[6B]

HSMC2_RX1_N6[6B]

HSMC2_TX0_P

HSMC2_TX

HSMC2_TX0_N
HSMC2_TX0_P 6[4B]

HSMC2_TX0_N 6[4B]

HSMC2_TX 6[4B]

HSMC2_GTX0_P

HSMC2_GTX0_N

HSMC2_GRX0_N

HSMC2_GRX0_P

HSMC2_GTX0_P6[4B]

HSMC2_GTX0_N6[4B]

HSMC2_GRX0_P 6[6B]

HSMC2_GRX0_N 6[6B]

PCIE_CLK1_R_P 6[4B]

PCIE_CLK1_R_N 6[4B]

PCIE_CLK1_R_P

PCIE_CLK1_R_N

GND

GND

SW1 6[4B]

SW2 6[4B]

SW3 6[4B]

Return Current

MSEL0

MSEL1

MSEL2

MSEL3

BOOTSEL1

GNDGNDGNDGNDGND

USB1_FAULTN

RTC_PSW

RTC_PSW

GNDGND

LED1
LED1 6[4B]

LED2
LED2 6[4B]

EPCQ Configuration PROM

+3.3V

GND

GND

25V

1.0uF

C104

1.10KR110

1.10KR111

1.10KR112

1.10KR113

1.10KR114

2.20K

R115

TP10

25V

0.01uF

C102

25V

0.01uF

C103

25V

0.01uF

C100

TP11

1
.1
0
K

R
1
0
4

1
.1
0
K

R
1
0
3

1
.1
0
K

R
1
0
2

1
.1
0
K

R
1
0
1

1
.1
0
K

R
1
0
0

25V

0.01uF

C101
1
0
0
0
p
F

C
1
0
5

1
0
0
0
p
F

C
1
0
6

1
0
0
0
p
F

C
1
0
7

1
0
0
0
p
F

C
1
0
8

1
0
0
0
p
F

C
1
0
9

1
0
0
0
p
F

C
1
1
0

1
0
0
0
p
F

C
1
1
1

25V

0.1uF

C113

SW1

SW2

SW3

SPIS1_MISO

SPIS1_SS0

SPIS1_MOSI

SPIS1_CLK

1 2

3 4

5 6

7 8

J101

67997-108HLF

+3.3V

DDR3 Clock Source

CLK2DDR_P

CLK2DDR_N

+3.3V

Ferrite Bead

L100

25V

0.01uF

C112

GND

GND

+3.3V

10.0K

R116

+1.8V_VIO

BOOTSEL2

PCPSU_PG
PCPSU_PG 6[4B]

PCIE1_RX_0_N

PCIE1_SMCLK

PCIE1_SMDAT
PCIE1_SMCLK6[4B]

PCIE1_SMDAT6[4B]

25V

0.1uF

C114

GND

NC
1

NC
2

NC
3

NC
4

NC
5

OE
6

VSS
7

NC
8

NC
9

CLK1+
10

CLK1-
11

NC
12

NC
13

CLK0-
14

CLK0+
15

VDD
16

Frequency: 100 MHz

U102

AB-557-03-HCHC-S-L-C-T

+3.3V_EXT

GND

GND GND GND GND

Transceiver Clock for Partial HSMC

GND

HSMC2_CLK_P 6[4C]

+3.3V_EXT

Place 49.9 ohm resistors near U102.

25V

0.01uF

C115

49.9

R120

49.9

R121

49.9

R118

49.9

R119

2.20K

R117
GXB_REFCLK1_P

GXB_REFCLK1_N

HSMC2_CLK_N 6[4C]
HSMC2_CLK_P

HSMC2_CLK_N

TP12

VIO_2V5_ENABLE 6[4B]
VIO_2V5_ENABLE

D100

RED

+3.3V

267

R122

HPS_CLK2

+3.3V

25V

0.01uF

C116

GND

25.000Mhz

VDD
4

OE
1

GND
2

OUT
3

X100

CB3LV-3I-25M0000

2.20K

R123

GND

HPS_CLK2

HSMC1_CLKIN0
HSMC1_CLKIN06[3B]

HSMC1_CLKOUT0
HSMC1_CLKOUT0 6[1B]

USB1_VBUS

i

PCB Rule 0.5A

i

Net Class

ClassName: DDR3_CLK

i

Net Class

ClassName: HSMC2_CLK

GXB_REFCLK1_P

GXB_REFCLK1_N

HSMC2_CLK_P

HSMC2_CLK_N

i

PCB Rule

Matched Net Lengths [Tolerance = 5mil]

i

PCB Rule

Matched Net Lengths [Tolerance = 5mil]

HSMC1_TX0_P

HSMC1_TX0_N
HSMC1_TX0_P 6[1B]

HSMC1_TX0_N 6[1B]

HSMC1_D0

HSMC1_D2
HSMC1_D0 6[1B]

HSMC1_D2 6[1B]

LED3
LED3 6[4B]

RGMII1__RESETN6[4B]
RGMII1__RESETN

RGMII1__RESETN

GND

GND

+VIO_3A5A5B

GND

25V

0.01uF

C117

B5A_RX_R2_P
B5A_RX_R2_P7[4C]

B5A_RX_R2_N
B5A_RX_R2_N7[4C]

B5A_RX_R4_P
B5A_RX_R4_P7[4C]

B5A_RX_R4_N
B5A_RX_R4_N7[4C]

B3A_RX_B7_P
B3A_RX_B7_P7[4C]

B3A_RX_B7_N
B3A_RX_B7_N7[4C]

B3A_RX_B5_P
B3A_RX_B5_P7[4C]

B3A_RX_B5_N
B3A_RX_B5_N7[4C]

B3A_RX_B3_P
B3A_RX_B3_P7[4C]

B3A_RX_B3_N
B3A_RX_B3_N7[4C]

B3A_RX_B1_P
B3A_RX_B1_P7[4C]

B3A_RX_B1_N
B3A_RX_B1_N7[4C]

B3A_TX_B2_P

B3A_TX_B2_N
B3A_TX_B2_P 7[4C]

B3A_TX_B2_N 7[4C]

B3A_TX_B4_P

B3A_TX_B4_N
B3A_TX_B4_P 7[4C]

B3A_TX_B4_N 7[4C]

B3A_TX_B6_P

B3A_TX_B6_N
B3A_TX_B6_P 7[4B]

B3A_TX_B6_N 7[4B]

B3A_TX_B8_P

B3A_TX_B8_N
B3A_TX_B8_P 7[4B]

B3A_TX_B8_N 7[4B]

B5A_TX_R5_P

B5A_TX_R5_N
B5A_TX_R5_P 7[4C]

B5A_TX_R5_N 7[4C]

B5A_TX_R1_P

B5A_TX_R1_N
B5A_TX_R1_N7[4C]

B5A_TX_R1_P7[4C]

B5A_TX_R3_P

B5A_TX_R3_N
B5A_TX_R3_N7[4C]

B5A_TX_R3_P7[4C]

NC
2

OE/ST
1

VDD
6

OUT+
4

GND
3

OUT-
5

X101

SiT9120AI-2C3-33E100.000000

J100pins[202,204]

Polarity backwards

267

R124

94-900288-1

HS1

Heat Spreader

Heat Spreader Standoffs:

Metric Male-Female Threaded Hex Standoff

18-8 Stainless Steel, 4.5mm Hex, 6mm Length

McMaster: 93655A804

HS1 is included for footprint on PCB.

It is not part os this ASY.

10.0K

R125

+3.3V

1
0
.0
K

R
1
0
5

1
0
.0
K

R
1
0
6

1
0
.0
K

R
1
0
7

1
0
.0
K

R
1
0
8

1
0
.0
K

R
1
0
9

Gray = Expanded IO Signals: No Connects for MitySOM modules with FPGA DDR

Blue = High Speed Transceivers: Not available on 5CSE modules

PIC10001
PIC10002

COC100
PIC10101
PIC10102

COC101

PIC10201
PIC10202

COC102

PIC10301

PIC10302
COC103

PIC10401
PIC10402

COC104

PIC10501
PIC10502

COC105 PIC10601
PIC10602

COC106 PIC10701
PIC10702

COC107 PIC10801
PIC10802

COC108 PIC10901
PIC10902

COC109 PIC11001
PIC11002

COC110 PIC11101
PIC11102

COC111

PIC11201
PIC11202

COC112

PIC11301
PIC11302

COC113

PIC11401

PIC11402
COC114

PIC11501
PIC11502

COC115

PIC11601

PIC11602
COC116

PIC11701
PIC11702

COC117

PID10001
PID10002

COD100

COHS1

PIJ10000

PIJ1000E1
PIJ1000E2

PIJ1000E3

PIJ1000E4

COJ100A

PIJ10001 PIJ10002

PIJ10003 PIJ10004

PIJ10005 PIJ10006

PIJ10007 PIJ10008

PIJ10009 PIJ100010

PIJ100011 PIJ100012

PIJ100013 PIJ100014
PIJ100015 PIJ100016

PIJ100017 PIJ100018

PIJ100019 PIJ100020

PIJ100021 PIJ100022

PIJ100023 PIJ100024

PIJ100025 PIJ100026

PIJ100027 PIJ100028

PIJ100029 PIJ100030

PIJ100031 PIJ100032

PIJ100033 PIJ100034
PIJ100035 PIJ100036

PIJ100037 PIJ100038

PIJ100039 PIJ100040

PIJ100041 PIJ100042

PIJ100043 PIJ100044

PIJ100045 PIJ100046

PIJ100047 PIJ100048

PIJ100049 PIJ100050

PIJ100051 PIJ100052

PIJ100053 PIJ100054

PIJ100055 PIJ100056

PIJ100057 PIJ100058

PIJ100059 PIJ100060

PIJ100061 PIJ100062

PIJ100063 PIJ100064
PIJ100065 PIJ100066

PIJ100067 PIJ100068

PIJ100069 PIJ100070

PIJ100071 PIJ100072

PIJ100073 PIJ100074

PIJ100075 PIJ100076

PIJ100077 PIJ100078

PIJ100079 PIJ100080

PIJ100081 PIJ100082

PIJ100083 PIJ100084
PIJ100085 PIJ100086
PIJ100087 PIJ100088

PIJ100089 PIJ100090

PIJ100091 PIJ100092

PIJ100093 PIJ100094

PIJ100095 PIJ100096

PIJ100097 PIJ100098

PIJ100099 PIJ1000100

PIJ1000101 PIJ1000102

PIJ1000103 PIJ1000104

PIJ1000105 PIJ1000106

PIJ1000107 PIJ1000108

PIJ1000109 PIJ1000110

PIJ1000111 PIJ1000112

PIJ1000113 PIJ1000114
PIJ1000115 PIJ1000116
PIJ1000117 PIJ1000118

PIJ1000119 PIJ1000120

PIJ1000121 PIJ1000122

PIJ1000123 PIJ1000124

PIJ1000125

COJ100B

PIJ1000133 PIJ1000134

PIJ1000135 PIJ1000136

PIJ1000137 PIJ1000138

PIJ1000139 PIJ1000140

PIJ1000141 PIJ1000142

PIJ1000143 PIJ1000144

PIJ1000145 PIJ1000146
PIJ1000147 PIJ1000148
PIJ1000149 PIJ1000150

PIJ1000151 PIJ1000152

PIJ1000153 PIJ1000154

PIJ1000155 PIJ1000156

PIJ1000157 PIJ1000158

PIJ1000159 PIJ1000160

PIJ1000161 PIJ1000162

PIJ1000163 PIJ1000164

PIJ1000165 PIJ1000166

PIJ1000167 PIJ1000168
PIJ1000169 PIJ1000170

PIJ1000171 PIJ1000172

PIJ1000173 PIJ1000174

PIJ1000175 PIJ1000176

PIJ1000177 PIJ1000178

PIJ1000179 PIJ1000180

PIJ1000181 PIJ1000182

PIJ1000183 PIJ1000184

PIJ1000185 PIJ1000186

PIJ1000187 PIJ1000188
PIJ1000189 PIJ1000190

PIJ1000191 PIJ1000192

PIJ1000193 PIJ1000194

PIJ1000195 PIJ1000196

PIJ1000197 PIJ1000198
PIJ1000199 PIJ1000200

PIJ1000201 PIJ1000202

PIJ1000203 PIJ1000204

PIJ1000205 PIJ1000206

PIJ1000207 PIJ1000208

PIJ1000209 PIJ1000210

PIJ1000211 PIJ1000212

PIJ1000213 PIJ1000214

PIJ1000215 PIJ1000216

PIJ1000217 PIJ1000218
PIJ1000219 PIJ1000220
PIJ1000221 PIJ1000222

PIJ1000223 PIJ1000224

PIJ1000225 PIJ1000226

PIJ1000227 PIJ1000228

PIJ1000229 PIJ1000230

PIJ1000231 PIJ1000232

PIJ1000233 PIJ1000234

PIJ1000235 PIJ1000236

PIJ1000237 PIJ1000238
PIJ1000239 PIJ1000240

PIJ1000241 PIJ1000242

PIJ1000243 PIJ1000244

PIJ1000245 PIJ1000246

PIJ1000247 PIJ1000248

PIJ1000249 PIJ1000250

PIJ1000251 PIJ1000252

PIJ1000253 PIJ1000254

PIJ1000255 PIJ1000256

PIJ1000257 PIJ1000258

PIJ1000259 PIJ1000260

PIJ1000261 PIJ1000262

PIJ1000263 PIJ1000264

PIJ1000265 PIJ1000266

PIJ1000267 PIJ1000268
PIJ1000269 PIJ1000270
PIJ1000271 PIJ1000272

PIJ1000273 PIJ1000274

PIJ1000275 PIJ1000276

PIJ1000277 PIJ1000278

PIJ1000279 PIJ1000280

PIJ1000281

COJ100C

PIJ10101 PIJ10102

PIJ10103 PIJ10104

PIJ10105 PIJ10106

PIJ10107 PIJ10108

COJ101

PIL10001 PIL10002

COL100

PIR10001

PIR10002

COR100
PIR10101

PIR10102

COR101
PIR10201

PIR10202

COR102
PIR10301

PIR10302

COR103
PIR10401

PIR10402

COR104
PIR10501

PIR10502

COR105
PIR10601

PIR10602

COR106
PIR10701

PIR10702

COR107
PIR10801

PIR10802

COR108
PIR10901

PIR10902

COR109

PIR11001 PIR11002
COR110

PIR11101 PIR11102
COR111

PIR11201 PIR11202
COR112

PIR11301 PIR11302COR113
PIR11401 PIR11402COR114

PIR11501

PIR11502
COR115

PIR11601

PIR11602

COR116

PIR11701

PIR11702
COR117

PIR11801

PIR11802
COR118

PIR11901

PIR11902
COR119

PIR12001

PIR12002
COR120

PIR12101

PIR12102
COR121

PIR12201

PIR12202

COR122

PIR12301

PIR12302

COR123

PIR12401 PIR12402COR124

PIR12501

PIR12502

COR125

PIS10001
PIS10002

PIS10003

PIS10004

PIS10005

PIS10006

PIS10007

PIS10008

PIS10009

PIS100010 PIS100011
PIS100012

PIS100013

PIS100014

PIS100015

PIS100016

PIS100017

PIS100018

PIS100019

PIS100020

COS100

PITP1001 COTP10
PITP1101 COTP11

PITP1201 COTP12

PIU10001

PIU10002

PIU10003

PIU10004
PIU10005

PIU10006

PIU10007

PIU10008

PIU10009

PIU100010

PIU100011

PIU100012

PIU100013

PIU100014

PIU100015

PIU100016

COU100

PIU10201

PIU10202

PIU10203

PIU10204

PIU10205

PIU10206

PIU10207

PIU10208 PIU10209

PIU102010

PIU102011

PIU102012

PIU102013

PIU102014

PIU102015

PIU102016

COU102

PIX10001

PIX10002

PIX10003

PIX10004

COX100

PIX10101

PIX10102

PIX10103 PIX10104

PIX10105

PIX10106

COX101

POB3A0RX0B10N
POB3A0RX0B10P
POB3A0RX0B30N
POB3A0RX0B30P
POB3A0RX0B50N
POB3A0RX0B50P
POB3A0RX0B70N
POB3A0RX0B70P

POB3A0TX0B20N
POB3A0TX0B20P
POB3A0TX0B40N
POB3A0TX0B40P
POB3A0TX0B60N
POB3A0TX0B60P
POB3A0TX0B80N
POB3A0TX0B80P

POB5A0RX0R20N
POB5A0RX0R20P

POB5A0RX0R40N
POB5A0RX0R40P

POB5A0TX0R10N
POB5A0TX0R10P

POB5A0TX0R30N
POB5A0TX0R30P

POB5A0TX0R50N
POB5A0TX0R50P

POCAN00RXD
POCAN00TXD

POCAN10RXD
POCAN10TXD

POHPS0COLD0RSTN
POHPS0WARM0RSTN

POHSMC10CLKIN0

POHSMC10CLKIN10N
POHSMC10CLKIN10P

POHSMC10CLKIN20N
POHSMC10CLKIN20P

POHSMC10CLKOUT0

POHSMC10CLKOUT10N
POHSMC10CLKOUT10P

POHSMC10CLKOUT20N
POHSMC10CLKOUT20P

POHSMC10D0

POHSMC10D1

POHSMC10D2

POHSMC10D3

POHSMC10PRSNTN

POHSMC10RX00N
POHSMC10RX00P

POHSMC10RX10N
POHSMC10RX10P

POHSMC10RX20N
POHSMC10RX20P

POHSMC10RX30N
POHSMC10RX30P

POHSMC10RX40N
POHSMC10RX40P

POHSMC10RX50N
POHSMC10RX50P

POHSMC10RX60N
POHSMC10RX60P

POHSMC10RX70N
POHSMC10RX70P

POHSMC10RX80N
POHSMC10RX80P

POHSMC10RX90N
POHSMC10RX90P

POHSMC10RX100N
POHSMC10RX100P

POHSMC10RX110N
POHSMC10RX110P

POHSMC10RX120N
POHSMC10RX120P

POHSMC10RX130N
POHSMC10RX130P

POHSMC10RX140N
POHSMC10RX140P

POHSMC10RX150N
POHSMC10RX150P

POHSMC10RX160N
POHSMC10RX160P

POHSMC10SMSCL
POHSMC10SMSDA

POHSMC10TX00N
POHSMC10TX00P

POHSMC10TX10N
POHSMC10TX10P

POHSMC10TX20N
POHSMC10TX20P

POHSMC10TX30N
POHSMC10TX30P

POHSMC10TX40N
POHSMC10TX40P

POHSMC10TX50N
POHSMC10TX50P

POHSMC10TX60N
POHSMC10TX60P

POHSMC10TX70N
POHSMC10TX70P

POHSMC10TX80N
POHSMC10TX80P

POHSMC10TX90N
POHSMC10TX90P

POHSMC10TX100N
POHSMC10TX100P

POHSMC10TX110N
POHSMC10TX110P

POHSMC10TX120N
POHSMC10TX120P

POHSMC10TX130N
POHSMC10TX130P

POHSMC10TX140N
POHSMC10TX140P

POHSMC10TX150N
POHSMC10TX150P

POHSMC10TX160N
POHSMC10TX160P

POHSMC20CLK0N
POHSMC20CLK0P

POHSMC20D10N
POHSMC20D10P
POHSMC20D20N
POHSMC20D20P

POHSMC20GRX00N
POHSMC20GRX00P

POHSMC20GTX00N
POHSMC20GTX00P

POHSMC20PRSNTN

POHSMC20RX00N
POHSMC20RX00P
POHSMC20RX10N
POHSMC20RX10P

POHSMC20SMSCL
POHSMC20SMSDA

POHSMC20TX

POHSMC20TX00N
POHSMC20TX00P

POI2C10SCL
POI2C10SDA
POLED1
POLED2

POLED3

POMMC00CLK

POMMC00CMD

POMMC00DAT0POMMC00DAT1POMMC00DAT2POMMC00DAT3POMMC00DAT000030
POMMC00SDCD
POMMC00SDWP

POPCIE10PERSTN

POPCIE10RX000N
POPCIE10RX000P

POPCIE10RX010N
POPCIE10RX010P

POPCIE10RX020N
POPCIE10RX020P

POPCIE10RX030N
POPCIE10RX030P

POPCIE10SMCLK
POPCIE10SMDAT

POPCIE10TX000N
POPCIE10TX000P

POPCIE10TX010N
POPCIE10TX010P

POPCIE10TX020N
POPCIE10TX020P

POPCIE10TX030N
POPCIE10TX030P

POPCIE10WAKEN

POPCIE10X10PRSNT2N

POPCIE10X40PRSNT2N

POPCIE0CLK10R0N
POPCIE0CLK10R0P

POPCPSU0PG

PORGMII100RESETN

PORGMII10MDC
PORGMII10MDIO

PORGMII10RX0CLK

PORGMII10RX0CTL
PORGMII10RXD0
PORGMII10RXD1
PORGMII10RXD2
PORGMII10RXD3

PORGMII10TX0CLK
PORGMII10TX0CTL

PORGMII10TXD0
PORGMII10TXD1
PORGMII10TXD2
PORGMII10TXD3

POSATA0RX0N
POSATA0RX0P

POSATA0TX0N
POSATA0TX0P

POSW1

POSW2
POSW3

POUART00CTSN
POUART00RTSN

POUART00RX
POUART00TX

POUSB10D0N
POUSB10D0P

POUSB10FAULTN

POUSB10ID

POUSB10PS0ON

POVIO02V50ENABLE

Figure 4.1: The schematics of the used development board

The schematics of the development board, as shown in Figure 4.1, shows, that
GPIO50 is the pin for LED1. The LED is physically wired to the HPS. So in order
to enable the FPGA access to this pin, the corresponding GPIO50 must been loaned
to the FPGA, as described in Section 2.1.2.

In order to communicate with the HPS or its pins, the FPGA can use one of AXI
bridges described in Section 2.1.1. Each of the three bridges has its own use case and
according to the manual [5] the lightweight interface is most useful for accessing the
control and status registers of soft peripherals and useful to low-bandwidth traffic,
because it has a fixed bandwidth and a small address space [c5manLWB]. So the
Lightweight HPS-To-FPGA bridge is best suited for this implementation, since the
transmitted information is very small and the communication will be mastered by
the HPS.

Modification of the Top-Level Design File To integrate the new components
correctly into the project, several changes in the top-level design file are necessary.
The following paragraph explains how the different VHDL codes interact with each
other, visualized by Figure 4.2, and what changes has been made to the provided
Quartus project.

22

4.1 Example for Hardware-Kernel Controlled by HPS

qip

Top-Level VHDL
 (Qsys) Top-Level VHDL

 (Quartus)

VHDL (LED component)

VHDL (Counter)

Qsys project

Qsys
generates

gets
implemented in

Quartus

Quartus
generates

rbf

Figure 4.2: How the different VHDL codes interact with each other

After Qsys compiled the project into a qip file, this file has to be integrated into
the Quartus project. Within the qip is a VHDL, describing the implemented logic.
This code needs to be implemented into the predefined top-level design VHDL code.
The Qsys VHDL file has the led signal as an output, which has to be added to the
Quartus VHDL code. Additionally all the GPIO entries, which were adjusted as
LOANIOs in Qsys, have to be renamed to “LOANIO“ manually. Because it is not
possible to modify imported signals, a signal has to be created and mapped to the
exported LED signal. Conclusively the LED signal has been routed through the
HPS to physical LED, using LOANIO50. Finally the loan enable signal has to set
to ‚1‘, as described in Section 2.1.2.

After compiling the Quartus project into a rbf, the BSP-Editor is used to generate
the preloader. The FPGA has to boot from the SD card, so this has to be enabled.

Finally the rbf has to be copied on an existing SD card or a new SD card image
has to be created, like explained in Section 2.1.2.

23

4 Implementation

Example Two: HPS and FPGA using LED blinker driver

The second examples adds the HPS and presupposes, that the Linux system provided
by Critical Link runs on the ARM, which is explained in Section 2.1.2. The aim is
to control the same LED used in the first implementation with inputs to a program
running on the HPS given by the user. The C program on the ARM uses mmap to
address the communication bridge to the FPGA, as shown in Figure 2.1.

Modifications made in Qsys Based on the project of the first implementation,
the logic to the LED component needs to be extended. The extended component
includes an Avalon-MM interface and the logic to react to data transferred via this
interface.

The led_blinker VHDL code obtains the necessary signals write, writedata, read
and readdata to implement the Avalon-MM interface, as described in Section 2.1.1.
The bitstream in writedata gets linked to a step register, which changes the counting
speed. The write signal is set, when the master writes to AXI bridge/interface, as
shown in Section 2.1.1. The FPGA component perceives when the signal is set and
then reads out the value in writedata. This value changes the speed of the counter
from the first example.

To connect the added interfaces in the VHDL code to the Qsys project, the
Avalon-MM interface has to the added and adjusted in the editing tool of the Qsys
component. Qsys detects the right interface automatically based on the names of
the signals.

The C program running in the ARM using mmap On the other of the bridge,
the ARM uses mmap to address the AXI interface. The principle is, that the user
starts the C program, which transmits a certain value through the selected AXI
bridges to the FPGA, where it changes the counter frequency.

For this thesis a cross compiled C program running on the HPS sends 0x00000000
or 0xFFFFFFFF to the FPGA and the FPGA toggled the LED on the development
board. 0x00000000 causes the LED to hold its current status, either being on or off,
and 0xFFFFFFFF sets the LED to a 2 Hz blinking frequency. mmap needs the base
address and the offset, to address the selected bridge. They were generated out of
the compiled Quartus project, as described in Section 2.1.2.

For the lightweight bridge a base address of 0xFF200000 with a span of 0x00200000
can be found in the manual of the FPGA. The offset inside the address space can
be generated out of the Quartus compiled project as described in Section 2.1.5.
The generated header file contains the name, the start address inside the relevant
address space, the span and end address of every component connected to the AXI
bridges. mmap uses pointer and since the lightweight bridge has a 32 bit data width,

24

4.2 The Eclipse Plugin

a 32 bit pointer was used. To run the C program on the ARM processor it was cross
compiled with the GNU cross compiler.

In addition to the existing functionalities a bit inverter has been developed, to
demonstrate a usecase of the address signal and that the FPGA can truly change
transmitted data and send it back to the master. The FPGA bitwise inverts the
transmitted values and uses a second address of the lightweight bridge and so it
writes to the next 32 bit of address space as described in Section 2.1.1.

4.2 The Eclipse Plugin
Although the development of the plugin could not be finished, because of problems
mentioned in Section 5.2, a simpe example plugin had been realized. The Eclipse
IDE for Eclipse Committers package [6] has been used. How an Eclipse plugin works
and what the plugin.xml file is, is explained in Section 2.2.

This example plugin uses two official Eclipse extension points to access it via the
GUI and open an editor (see 4.1).

Listing 4.1: Utilized plugin.xml file

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <? e c l i p s e version=” 3 .4 ”?>
3 <plug in>
4 <extens i on
5 po int =” org . e c l i p s e . u i . menus”>
6 <menuContribution locat ionURI=” popup:org . e c l i p s e

. j d t . u i . PackageExlorer ”>
7 <command
8 commandId=”de . c e g l a r e k . p lug in . htmlconverter . convert ”
9 l a b e l=” Create ␣@FPGA␣ Annotation ”

10 s t y l e=”push”>
11 </command>
12 </menuContribution>
13 </ extens i on>
14
15
16 <extens i on
17 po int=” org . e c l i p s e . u i . commands”>
18 <command de fau l tHand le r=”de . c e g l a r e k . p lug in .

25

4 Implementation

javaFPGAEditor . e d i t o r s . Ed i to rClas s ”
19 id=”de . c e g l a r e k . p lug in . javaFPGAEditor . FPGAAnnotation

” name=” Convert ”>
20 </command>
21 </ extens i on>
22
23 <extens i on po int =” org . e c l i p s e . u i . e d i t o r s ”>
24 <e d i t o r
25 name=” Prope r t i e s ␣ Editor ”
26 ex t en s i on s=”mpe”
27 con t r i bu to rC la s s= ”de . c e g l a r e k . p lug in .

javaFPGAEditor . e d i t o r s . Ed i to rClas s ”
28 c l a s s=”de . c e g l a r e k . p lug in . javaFPGAEditor

. e d i t o r s . Ed i to rClas s ”
29 id=”de . c e g l a r e k . p lug in . javaFPGAEditor .

Ed i torClas s ”>
30 </ e d i t o r>
31 </ extens i on>
32 </ plug in>

The first extension point (org.eclipse.ui.commands) creates a new menu entry in
the context menu in the workspace. The handler referes to the Java class, where
the actual functionality of the plugin is described. The second extension point
(org.eclipse.ui.editors) opens an editor to manipulate the code.

26

5 Results

5.1 The Configuration of the FPGA, Analysis of the
Existing Solutions and the Plugin Examples

The two example implementations show in detail how a complete hardware-accelerator
would be implemented into the hardware. The FPGA can be re-configured only us-
ing the ARM. The reconfiguration however does require to power-cycle the board.

The analysis of existing solutions to execute Java code on the FPGA fabric
showed, that none of them fulfilled the requirements defined by the project.

For the development of new Eclipse plugins, a complete package (Eclipse IDE for
Eclipse Committers) is provided by the Eclipse Foundation. This package makes
it easy to develop new plugins and it includes several examples and tutorials. The
created example demonstrates how a new context menu entry can be integrated to
the GUI to launch the plugin.

5.2 Problems
While working on this thesis technical problems accrued, most of them caused by
the provided VM.

5.2.1 Problems with the provided VM
The VM provided by CriticalLink runs, although it was tested on various computers,
unstable. Often the whole OS stopped operating or the GUI were so slow, that it
was impossible to work with. Sometimes only a complete restart of the VM, without
saving the current status, solved the problem.

Besides the Qsys conversion time with approximated 20 minutes and the Quartus
compilation time with over 35 minutes the permanent hang-ups of the Quartus
software caused tremendous time problems. Often the software did not responed for
a few minutes or other bugs were causing problems. And there were other problems
with Quartus, as well. In order to compile the Quartus project, the right HDL

27

5 Results

file had to be set as the top-level design file. Quartus switched sometimes this
setting without any influence on behalf of the user. Also adding the compiled qip
file often crashed Quartus. The converted qip file should be added automatically to
the Quartus project, but every ones in a while it switches to manually without any
obvious reason.

ESA required to use this VM, so that every developer uses the same tool set. This
simplifies the support.

5.2.2 Problems with the SD image
In order to fully understand the operating system running on the ARM, I wanted
to build a custom Linux SD card image based on the instructions from the Critical
Link support page [16] and the rocket board tutorials [RBEmbedded].

The custom SD card image however wasn’t that easy to generate even with a lot
of help from the university’s tutor. Some problems remain unsolved, like a problem
with re-programming the FPGA with the new rbf using the Linux on the SD card
only. While with the provided system one can use the cat command, using this on
the custom one results in a crash of the board, which requires a hardware reset. An
ethernet driver error also displayed during booting the board.

28

6 Conclusion and Outlook

Despite all the problems described in Section 5.2, a communication between the
FPGA and the ARM could be implemented and both examples achieved the re-
quired results. The second, more sophisticated example implemented a communi-
cation interface like it will be used in the fully automated hardware-accelerator.
The implementation of the Eclipse plugin however could not be finished because of
reasons described in Section 5.2. Nevertheless a simple example plugin had been
developed, which uses official Eclipse extension points to add a menu entry. Future
projects can build on this implementation.

The concept to use an IDE plugin to convert selected segments of Java code to
VHDL leads to a very flexible solution. The plugin helps the developers to prepare
their code for a conversion directly in the IDE, which is very convenient. Future
work will build on the FPGA implementation and the research made in this thesis
regarding the existing solutions. The example plugin shows how an Eclipse plugin
basicially works.

29

List of Figures

2.1 Concept . 5
2.2 SoC block diagram . 6
2.3 HPS block diagram . 7
2.4 Avalon-MM . 8
2.5 toolchain . 9
2.6 BSP-Editor . 11
2.7 boot flow . 12
2.8 Memory Mapping . 14

3.1 Vivaldo . 19

4.1 Schematics . 22
4.2 VHDL file interaction . 23

I

List of Tables

III

List of Acronyms

ARM Advance RISC Machine

ANSI American National Standards Institute

AXI Advanced eXtensible Interface

BSP Bootloader Support Package

CPU Central Processing Unit

dtb Device Tree Blob

ESA European Space Agency

FPGA Field-Programmable Gate Array

GNU GNU’s Not Unix!

GPIO General Purpose Input Output

GPL GNU General Public License

GUI Graphical User Interface

HDL Hardware Description Language

HLS High-Level Systhesis

HPS Hard Processor System

IDE Integrated Development Environment

LED Light-Emitting Diode

JAR Java Archive

JDK Java Development Kit

V

LIST OF TABLES

JOP Java Optimized Processor

JVM Java Virtual Machine

PDE PlugIn Development Environment

PLL Phase Locked Loop

rbf Raw Binary File

qip Quartus intellectual property

SoC System on Chip

SOM System on Module

VHDL Very High Speed Hardware Descriptive Language

VM Virtual Machine

XML Extensible Markup Language

VI

Bibliography

[1] Altera. Making Qsys Components. English. Altera Corporation - University
Program. Aug. 2012. url: http : / / scale . engin . brown . edu / classes /
EN2911XF14/QSYS_COMP.pdf (visited on 05/10/2017).

[2] Avalon Interface Specifications. English. Intel Corporation. May 2017. url:
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/
literature/manual/mnl_avalon_spec.pdf (visited on 05/10/2017).

[3] N. V. Chris Laffra. FAQ What are extensions and extension points? English.
The Eclipse Foundation. June 2006. url: https://wiki.eclipse.org/FAQ_
What_are_extensions_and_extension_points%3F (visited on 05/10/2017).

[4] A. L. Cobbs. JC Virtual Machine - Welcome to JVC. English. 2004. url:
http://jcvm.sourceforge.net (visited on 05/10/2017).

[5] Cyclone V Hard Processor System Technical Reference Manual. English. Altera
Corporation. Oct. 2016. url: https://www.altera.com/documentation/
sfo1410143707420.html (visited on 09/07/2017).

[6] Eclipse. Eclipse IDE for Eclipse Committers. English. The Eclipse Foundation.
url: http : / / www . eclipse . org / downloads / packages / eclipse - ide -
eclipse-committers/oxygenr (visited on 05/10/2017).

[7] Eclipse. Plugin Lifecycle. English. The Eclipse Foundation. url: https://
www.eclipse.org/che/docs/assemblies/plugin-lifecycle/ (visited on
05/10/2017).

[8] A. T. Gabriel Wetzler. Eclipse Plugins. Deutsch. Fern-Universität Hagen. 2010.
url: https://wiki.fernuni-hagen.de/eclipse/index.php/Plugins
(visited on 05/10/2017).

VII

http://scale.engin.brown.edu/classes/EN2911XF14/QSYS_COMP.pdf
http://scale.engin.brown.edu/classes/EN2911XF14/QSYS_COMP.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F
https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F
http://jcvm.sourceforge.net
https://www.altera.com/documentation/sfo1410143707420.html
https://www.altera.com/documentation/sfo1410143707420.html
http://www.eclipse.org/downloads/packages/eclipse-ide-eclipse-committers/oxygenr
http://www.eclipse.org/downloads/packages/eclipse-ide-eclipse-committers/oxygenr
https://www.eclipse.org/che/docs/assemblies/plugin-lifecycle/
https://www.eclipse.org/che/docs/assemblies/plugin-lifecycle/
https://wiki.fernuni-hagen.de/eclipse/index.php/Plugins

Bibliography

[9] Intel Cyclone V. English. Intel Corporation. url: https://www.altera.com/
products/fpga/cyclone-series/cyclone-v/overview.html (visited on
09/07/2017).

[10] Intel HLS Compiler. English. Intel Corporation. 2017. url: https://www.
altera.com/products/design-software/high-level-design/intel-hls-
compiler/overview.html (visited on 09/07/2017).

[11] LegUp 4.0 Documentation. English. University of Toronto. 2015. url: http://
legup.eecg.utoronto.ca/docs/4.0/index.html (visited on 05/10/2017).

[12] LegUp Computing. LegUp Computing Inc. url: http://www.legupcomputing.
com (visited on 05/10/2017).

[13] LegUp High-Level Synthesis. English. University of Toronto. url: http://
legup.eecg.utoronto.ca (visited on 05/10/2017).

[14] I. Maidanski. JCGO: Java and C/C++ web developer resources. English. Iv-
MaiSoftLLC. Dec. 2015. url: http://www.ivmaisoft.com/jcgo/links.htm
(visited on 05/10/2017).

[15] H. Mao. Exploring the Arrow SoCKit Part III - Controlling FPGA from Soft-
ware. English. url: http://zhehaomao.com/blog/fpga/2013/12/27/
sockit-3.html.

[16] MitySOM-5CSx Altera Cyclone V SOC Wiki Page. English. Critical Link LLC.
url: https://support.criticallink.com/redmine/projects/mityarm-
5cs/wiki/ (visited on 09/07/2017).

[17] MitySOM-5CSxSingle or Dual Cortex A9 and User Programmable FPGA
SOM. Critical Link LLC. url: http://www.criticallink.com/product/
mitysom-5csx/ (visited on 09/07/2017).

[18] OPS-SAT. Englisch. Apr. 2017. url: http://www.esa.int/Our_Activities/
Operations/OPS-SAT (visited on 09/07/2017).

[19] Preloader and U-Boot Customization - v13.1. English. v13.1. RocketBoards.org.
Feb. 2017. url: https://rocketboards.org/foswiki/view/Documentation/
PreloaderUbootCustomization131 (visited on 05/10/2017).

[20] M. Schoeberl. JOP - Java Optimized Processor. English. 2007. url: http:
//www.jopdesign.com (visited on 05/10/2017).

VIII

https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
http://legup.eecg.utoronto.ca/docs/4.0/index.html
http://legup.eecg.utoronto.ca/docs/4.0/index.html
http://www.legupcomputing.com
http://www.legupcomputing.com
http://legup.eecg.utoronto.ca
http://legup.eecg.utoronto.ca
http://www.ivmaisoft.com/jcgo/links.htm
http://zhehaomao.com/blog/fpga/2013/12/27/sockit-3.html
http://zhehaomao.com/blog/fpga/2013/12/27/sockit-3.html
https://support.criticallink.com/redmine/projects/mityarm-5cs/wiki/
https://support.criticallink.com/redmine/projects/mityarm-5cs/wiki/
http://www.criticallink.com/product/mitysom-5csx/
http://www.criticallink.com/product/mitysom-5csx/
http://www.esa.int/Our_Activities/Operations/OPS-SAT
http://www.esa.int/Our_Activities/Operations/OPS-SAT
https://rocketboards.org/foswiki/view/Documentation/PreloaderUbootCustomization131
https://rocketboards.org/foswiki/view/Documentation/PreloaderUbootCustomization131
http://www.jopdesign.com
http://www.jopdesign.com

Bibliography

[21] J. Sieka. J2C Compiler. English. July 2015. url: https://bitbucket.org/
arnetheduck/j2c (visited on 05/10/2017).

[22] SPARK: A Parallelizing Approach to the High-Level Synthesis of Digital Cir-
cuits. Microelectronic Embedded Systems Laboratory University of California
San Diego. url: http://mesl.ucsd.edu/spark/ (visited on 09/07/2017).

[23] Varycode Startpage. Varicode Inc. url: https://www.varycode.com/ (visited
on 05/10/2017).

[24] Vivado. English. XILINX INC. url: https://www.xilinx.com/products/
design-tools/vivado.html (visited on 09/07/2017).

[25] Vivado Design Suite HLx Editions. English. Xilinx Inc. 2015. url: https:
/ / www . xilinx . com / support / documentation / backgrounders / vivado -
hlx.pdf (visited on 05/10/2017).

[26] T. A.P.G.T.P.B.J.H.H.T.N.S. A. Watterson. Toba: Java For Applications A
Way Ahead of Time (WAT) Compiler. The University of Arizona. url: ftp://
ftp.cs.arizona.edu/sumatra/report/toba.pdf (visited on 05/10/2017).

[27] T. P.J.H.G.T.P.B.P.B.T.N. S. Watterson. Toba: A Java-to-C Translator. The
Sumatra Project. Apr. 1999. url: https://www2.cs.arizona.edu/projects/
sumatra/toba/ (visited on 05/10/2017).

IX

https://bitbucket.org/arnetheduck/j2c
https://bitbucket.org/arnetheduck/j2c
http://mesl.ucsd.edu/spark/
https://www.varycode.com/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf
https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf
https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf
ftp://ftp.cs.arizona.edu/sumatra/report/toba.pdf
ftp://ftp.cs.arizona.edu/sumatra/report/toba.pdf
https://www2.cs.arizona.edu/projects/sumatra/toba/
https://www2.cs.arizona.edu/projects/sumatra/toba/

	Introduction
	Motivation
	Scope of the Thesis
	Structure

	Technical Background
	The MitySOM-5CSX used by the OPS-Sat project and its development tools
	Hardware Specifications
	Development Toolchain
	Boot Sequence
	Changing the Preloader and FPGA Reconfiguration
	Data Communication between FPGA-Module and AXI Bridge using mmap

	The Eclipse plugin
	Basic Concepts and the Eclipse IDE for Eclipse Committers
	The Manifest File and how Equinox is using it

	Related Work
	Running Java within a JVM usingJOP
	Existing Java to C converter
	JCGO
	JC
	Toba
	Varycode
	Conversion from Java to C++

	High-Level Synthesis (HLS) tools
	LegUp
	SPARK
	Vivado HLS
	Intel HLS Compiler

	Analysis of existing solutions

	Implementation
	Example for Hardware-Kernel Controlled by HPS
	Modifications for LED-Blinky

	The Eclipse Plugin

	Results
	The Configuration of the FPGA, Analysis of the Existing Solutions and the Plugin Examples
	Problems
	Problems with the provided VM
	Problems with the SD image

	Conclusion and Outlook
	List of Figures
	List of Tables
	List of Acronyms
	Bibliography

