TECHNISCHE
UNIVERSITAT
DARMSTADT

Hardware-
acceleration of
Java-implemented
experiments on an
open satellite.

November 2017

Embedded Systems & Applications

Bachelorthesis by
Jan-Peter
Ceglarek

Examiner:
Prof. Dr.-Ing. Andreas Koch
Supervisor:

Dr.-Ing. Andreas Engel

Technische Universitat Darmstadt
Department of Computer Science
Embedded Systems and Applications Group (ESA)

Hardware-acceleration of Java-implemented experiments on an open satel-
lite.

Hardwarebeschleunigung von in Java implementierten Experimenten auf einem Open-
Satellite.

Bachelorthesis by Jan-Peter Ceglarek

Submitted on 01.11.2017

Examiner: Prof. Dr.-Ing. Andreas Koch

Supervisor: Dr.-Ing. Andreas Engel

Thesis Statement

I herewith formally declare that I have written the submitted thesis independently.
I did not use any outside support except for the quoted literature and other sources
mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work,
either literally or in content. This thesis has not been handed in or published before
in the same or similar form.

In the submitted thesis the written copies and the electronic version are identical in
content.

Darmstadt, 1. November 2017

(Jan-Peter Ceglarek)

Abstract

The OPS-Sat project is the first small satellite mission launched by the European
Space Agency (ESA). Its an open satellite using modern commercial hardware
and with which procedures to change the onboard software during the flight will be
tested. As its payload the satellite uses a MitySOM-5CSX - a System on Chip (SoC)
device featuring an Intel Cyclone V Field-Programmable Gate Array (FPGA) fabric
as well as an Advance RISC Machine (ARM) processor. The mission requires to run
Java and C programs on the satellite.

In order to maximize the satellite’s performance, the FPGA will work as a hardware-
accelerator for generic Java code. Therefore particularly suitable parts of the Java
code should be executed on the FPGA. Those segments could be selected by the
developer with an Integrated Development Environment (IDE) plugin. Analysis, of
which Java construct are suited to be hardware-accelerated on the FPGA, is how-
ever out of the scope of this thesis. This thesis demonstrates the necessary internal
communication between hard- and software processor. Therefore two example im-
plementation, using the Advanced eXtensible Interface lightweight bridge, based on
the AXI light standard, were implemented. The first example only uses the FPGA
to explain the basic development toolchain. The second one implements the actual
communication bridge mastered by the HPS. A C program running on the ARM
uses memory mapping to communicate with the interface.

An analysis of existing solutions shows, that there is no practicable tool to execute
Java on an FPGA, or to convert Java to either C or Hardware Description Language
code. But there are however working solutions to generate HDL code out of C code.
In order to help developers with the conversion from Java to C, an Eclipse plugin
can make annotations on selected lines in the code. These annotation can be used
by others tools to generate generic C code automatically.

Kurzfassung

Das OPS-Sat Projekt ist die erste Kleinstsatelliten Mission, die von der Européischen
Weltraum Agentur (ESA) ins Leben gerufen wurde. Mit diesem Open-Satellite, der
aus moderne konventionelle Hardware besteht, sollen Verfahren getestet werden, die
Onboard Software wiahrend des Missionsbetriebes zu tauschen. Der Satellite nutzt
als Payload einen MitySOM-5CSX - ein System on Chip (SoC) bestehend aus einen
Intel Cyclone V Field-Programmable Gate Array (FPGA) und einem Advance RISC
Machine (ARM) Prozessor. Die Missionsrichtlinien setzen voraus, dass sowohl Java,
als auch C Code auf dem Satelliten ausgefiihrt werden kann.
Um die Leistungsfahigkeit des Satelliten zu erhohen, soll der FPGA als Hard-
warebeschleuniger fiir generischen Java Code genutzt werden. Dafiir sollen geeignete
Abschnitte des Java Codes auf dem FPGA ausgefithrt werden. Diese Abschnit-
ten konnen zuvor von dem Entwickler mittels eines Integrated Development En-
vironment (IDE) plugins ausgewéhlt werden. Eine Analyse, welche Java Kon-
strukte besonders geeignet, sind um mit einem Hardwareprozessor beschleunigt zu
werden, ist nicht Bestandteil dieser Arbeit. Mit dieser Thesis soll demonstriert
werden, wie die bendtigte interne Kommunikation zwischen dem Hardware- und
dem Softwareprozessor realisiert werden kann. Dazu wurden zwei Beispiele imple-
mentiert, welches die Lightweight HPS-2-FPGA Bridge, ein SoC internes Interface
basierend auf dem Advanced eXtensible Interface (AXI) light Standard, verwendet.
Das erste Beispiel verwendet ausschlieBlich den FPGA, um die Entwicklung einer
FPGA-Programmierung fir die verwendete Hardware zu demonstrieren. Das zweite
implementiert die eigentliche Kommunikationsbriicke, die von dem HPS gemastert
wird. Ein auf dem ARM ausgefiihrtes Programm kommuniziert mit dem Interface
mittels Memory Mapping.
Eine Analyse der bereits existierenden Losungen Java Byte-Code auf einem FPGA
auszufithren zeigt auf, dass es keinen brauchbares Verfahren gibt. Keines der vorgestell-
ten Losungen bietet eine, den Anforderung geniigende, Ubersetzung von Java nach
HDL, oder kann Java direkt auf FPGA ausfiihren. Es gibt jedoch Programme, die
HDL Code aus C Code generieren kénnen.

Um den Entwicklern bei der Ubersetzung von Java nach C zu helfen, soll ein
IDE Plugin Annotations zu ausgewahlten Zeilen im Java Code hinzufiigen konnen.
Diese Zusétze konnen dann in weiteren Schritten genutzt werden, um automatisiert

Vi

C Code zu generieren.

Vil

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Scope of the Thesis 1
1.3 Structure 2

2 Technical Background 5
2.1 The MitySOM-5CSX used by the OPS-Sat project and its develop-

ment tools)
2.1.1 Hardware Specifications 6
2.1.2 Development Toolchain 9
2.1.3 Boot Sequence 12
2.1.4 Changing the Preloader and FPGA Reconfiguration. 13
2.1.5 Data Communication between FPGA-Module and AXI Bridge
USING MIMADP .+ . .« v v v v v e e e e e 14
2.2 The Eclipse plugin 14
2.2.1 Basic Concepts and the Eclipse IDE for Eclipse Committers . 15
2.2.2 The Manifest File and how Equinox is using it 15

3 Related Work 17
3.1 Running Java within a JVM usingJOP 17
3.2 Existing Java to C converter 17

3.2.1 JCGO 17
3.2.2 JC .. 18
323 Toba 18
3.2.4 Varycode 18
3.2.5 Conversion from Javato C++4 18
3.3 High-Level Synthesis (HLS) tools 18
3.3 1 LegUp . . . o o o o 19
3.3.2 SPARK 19
333 Vivado HLS oo 19
3.3.4 Intel High-Level Systhesis (HLS) Compiler 20
3.4 Analysis of existing solutions L. 20

Contents

4 Implementation

4.1 Example for Hardware-Kernel Controlled by HPS
4.1.1 Modifications for Light-Emitting Diode (LED)-Blinky

4.2 The Eclipse Plugin

5 Results

5.1 The Configuration of the Field-Programmable Gate Array (FPGA),
Analysis of the Existing Solutions and the Plugin Examples

5.2 Problems

5.2.1 Problems with the provided Virtual Machine (VM)

5.2.2 Problems with the SD image
6 Conclusion and Outlook
List of Figures
List of Tables
List of Acronyms

Bibliography

21
21
21
25

27
27
27
27
28

29

\21

1 Introduction

The following chapter provides the reader an overview of the topics covered, and
also with the motivation and definition of this current thesis. The last paragraph
gives an outline of the following chapters and summarizes their content.

1.1 Motivation

Nano satellites, weighing around 10 kg, are way lighter and much less powerful than
their bigger companions. Caused by their smaller size, their possibilities are strictly
limited. The big advantage of those small satellites is, that they are relatively cheap.
Manufactures sell custom nano satellites for a few hundred thousand Euros. The
OPS-Sat project [18] is the first small satellite mission launched by the European
Space Agency (ESA). Its main goal is to test methods to change the onboard
software and to test normal commercial, instead of special space-tested hardware.
For this reason companies or private makers are invited run experiments on this
open satellite. The submitted experiments can be either written in C or Java,
so the satellite must be able to handle both programming languages. In order to
increase the performance of the software processor, as well as the data throughput
of the whole satellite, the Field-Programmable Gate Array (FPGA) will be used as
a hardware-accelerator for executing Java byte-code. Therefore the Java code needs
to be converted to Hardware Description Language (HDL) and an analysis of the
existing tools revealed, that none of them provides satisfying results. Furthermore
it is particular new to this mission, that new software should be transferred to the
payload during flight and therefore changing the programming without physically
touching the FPGA is absolutely necessary. So the Advance RISC Machine (ARM)
has to be able to reprogram the FPGA.

1.2 Scope of the Thesis

Since it is key to the mission to run Java code on the FPGA, existing conversion
tools have to be analyzed and decided, whether they match the requirements.

1 Introduction

There are different High-Level Systhesis (HLS) tools available, but none of them
are working with Java code. All of them are translating C code to one of the two
HDLs. So in order to work with those tools, general Java code has to be converted
into C code. This thesis is also about getting an overview over the current situation
on how it is possible to convert Java to C code, what the existing programs are and
if there is a working solution.

In terms of performance, it is not recommended to perform Java code on an FPGA
instead of an ARM, because every Java code must be interpreted or cross compiled
before it can run on the device. Nevertheless it can be of advantage to run specific
patterns on the FPGA. Therefore an Integrated Development Environment (IDE)
plugin should help the developer to convert selected parts of the code into C code,
so that a HLS tool can compile it into HDL later on. In order to use the FPGA for
executing Java code, extraction and preparing of hardware-kernels out of general
Java code is necessary. There are different approaches to solve this problem. Since
there is no solution, which performs good enough on an FPGA or supports newer
Java versions since 1.5, a refactoring-tool for a Java IDE should help developers to
work with the hardware offered by the satellite. This tool will help the developers
to generate C code out of general Java byte-code. Eclipse was chosen as the fitting
IDE, because it is the most used IDE for Java development, it has a variety of
plugins and is known for making it user-friendly to develop new plugins.

To program the FPGA from the ARM, internal communication channels are used.
The options Cyclone V is offering the user will be discussed and how to implement
one of them. Because exchanging the programming of the FPGA has to be done
without touching the hardware, it is necessary to use the ARM processor for repro-
gramming the FPGA and not using an USB blaster or flashing the SD card manually.
This thesis will cover different approaches to change the programming of the FPGA
and how it is specifically done with the used MitySOM-5CSX. The analysis of the
existing solutions will show, that none of these tools complies with the requirements.
Hence it is also part of this thesis to start the development of an IDE /Eclipse plugin,
that will help the developer with this conversion. The plugin should annotate lines
in the code selected by the user with @FPGA. These annotations should be used
later on by conversion tool.

1.3 Structure

This thesis is structured into six chapters. Beginning with the introduction in, the
motivation as well as the purpose of this thesis is described. Chapter 2 will give
the reader more informations about what the used MitySOM-5CSX is and how
the communication between the integrated FPGA fabric and the Hard Processor
System (HPS) works, what Memory Mapping is and why it is essential for the com-

1.3 Structure

munication with an System on Chip (SoC). Further the Eclipse plugin is explained
in more detail. This includes an explanation on how the basic structure of an Eclipse
plugin works and what is needed to build a new one in Section 2.2. The third chapter
will give an overview about existing conversion tools. What the differences are and
why none of them are suited for the purpose of this work, is described in Section 3.4.
In Chapter 4 it is described, how the implementation of the Advanced eXtensible
Interface (AXI) communication bridge within the MitySOM-5CSX was done and
how the FPGA can be programmed with and without using the software processor.
The results of the implementation are presented in Chapter 5.

2 Technical Background

Starting with a visualization of the implementation, the used hardware and tools
are described in Section 2.1. Section 2.2 focusses on information about the plugin.
The actual implementation is described in Chapter 4.

handoff
hps_0.h folder)
—— < qip
_ <— Qsys
i

Preloader

' SD ¥

GPIO

LOANIO <€ —

Figure 2.1: The concept of the whole tool chain

2 Technical Background

2.1 The MitySOM-5CSX used by the OPS-Sat

project and its development tools

The following section describes the used hardware and the essential tools to configure
the FPGA.

2.1.1 Hardware Specifications

This section focuses on the hardware used for this thesis.

The MitySOM-5CSX

The OPS-Sat project uses a MitySOM-5CSX System on Module (SOM) and its
development kit build by CriticalLink [17]. The MitySOM-5CSX board features
an Altera Cyclone V SoC [9], which consists of an FPGA and an ARM processor.
Each of them has its own power supply, RAM, peripherals and pins. They can work
together via their internal communication bridges or fully independent from each
other.

Altera SoC Device
HPS Portion FPGA Portion
X101 X <. << X1 X XKL XKLL K1KLK XX XXX XXX
Flash SDRAM Controller
Controllers Subsystem Control | User H3S|
Block | 1/0 Transceivers
Cortex-A9 MPU Subsystem
HPS-FPGA
: Interfaces FPGA Fabric
On-Chip Support (LUTs, RAMs, Multipliers & Routing)
Memories Peripherals
PLLs In'_rerface Debug pLLs | Hard | Hard Memory
Peripherals PCle Controllers
XXX XX XXX XX XXX XXX XXX XXX XXX X

Figure 2.2: The SoC block diagram from the manual [5]

2.1 The MitySOM-5CSX used by the OPS-Sat project and its development tools

The Hard Processor System

The Hard Processor System (HPS) is one of the two elements of the Cyclone V.
Inside the HPS, the ARM is the main part. Several peripherals and controllers
are also part of the HPS. The single or dual-cored ARM Cortex, clocked with a
maximum frequency of 925 MHz, can work fully independently, and has several
connections to communicate with the FPGA as shown below. These bridges are
described more detailed in Section 2.1.2.

FPGA Portion FPGAto HPS HPS to FPGA Lightweight HPS to FPGA
Contrul Masters Slaves Slaves 1-6
Block Masters
32-,64-,128-Bit AXI | 32-,64-,128-Bit AXI 32-Bit AXI
4
> FPGA FPGA-to-HPS HPS-to-FPGA Lightweight
Manager Bridge Bridge HPS-to-FPGA Bridge
32-Bit 64-Bit AXI 64-Bit AXI 32-Bit AXI
L4, 32-Bit Bus
L3 t MPU Subsyst
(NIC-301) ARM Cortex-A9
) MPCore
. AP | 32:Bit euw | cu
64Bit APyl pp| S
-Bi Mappe! . .
£ 32-Bit l l
13 Main
-Bi Switch " 12
»! o 250 64-Bit Gache
\—‘ L3 Master
) Peripheral 32-Bit s
Em(32-Bit swith | 3281t
\—‘ 325t Boot ROM SDRAM Controller Subsystem
USB | 32-Bit §
—> 0T S4Bt On-Chip RAM SDRAM Controller
@ 26 Altera PHY
-Bit Single-Port e DDR
" Memory | > PHY
32-Bit
NAND ! 32-Bit Controller
Flash | 64-Bit M |
32-Bit
-Bi HPS1/0 Pi
328t 13 Slave Peripheral Switch 32-Bit Quad
32-Bit SPI
Flash
L4, 32-Bit Bus
CAN Timer ’C Watchdog UART GPIO SPI Clock Reset Scan System
2) @) (4) Timer (2) 3) (4) Manager| |Manager| |Manager| |Manager
)

Figure 2.3: The HPS block diagram from the manual [5]

Some pins of the HPS, such as connections for the Light-Emitting Diodes (LEDs)
on the Development Board or General Purpose Input Outputs (GPIOs), are physi-
cally tied to the HPS. By loaning these pins to the FPGA, it is possible to forward
their functionality. By enabling this in Qsys, the concerned pin is routed through

2 Technical Background

the HPS to the FPGA. A new pin assignment for the FPGA is not necessary.

The Field-Programmable Gate Array

The Field-Programmable Gate Array (FPGA) is the second element in the SoC
and has a maximum global clock frequency of 460 MHz but Phase Locked Loops
(PLLs) can be used to change clock frequency for single components within the
FPGA’s logic. The FPGA is programmed using a Raw Binary File (rbf), which is
generated by Quartus. This configuration can be directly done via an USB blaster

within Quartus, or via several SoC internal solutions, which can be chosen in the
BSP-Editor.

The internal Interfaces based on AXI

The HPS and the FPGA communicate via interfaces, as seen in Figure 2.3, is based
on the AXI standard. These interfaces can be distinguished between a Master on the
one and a Slave on the other. Both sides are capable of transmitting and receiving,
but the Master has to request an answer from the slave before the slave is able to
write to the bridge in return. Always the first name in the name of the bridge is the
master, whereas the second is the slave. The HPS-To-FPGA bridge (H2F) and the
FPGA-To-HPS bridge (F2H) are capable of 32, 64 or 128 bit data width, whereas the
Lightweight HPS-To-FPGA bridge (LH2F) can only transmit 32 bit at once. Each
of these bridges can be enabled and disabled in Qsys, where the desired data width
for the H2F and F2H can be adjusted as well. Inside the FPGA the Avalon-MM
connects components inside the FPGA with the AXI bridges. Figure 2.4 visualizes
this concept.

Lightweight HPS-To-FPGA
<>

HPS-To-FPGA
<>

FPGA-To-HPS
<>

Figure 2.4: Blockdiagaram showing the concept of Avalon-MM

The Avalon-MM supports the implementation of read and write interfaces. The

2.1 The MitySOM-5CSX used by the OPS-Sat project and its development tools

interface has several different signals, but the signals most important for this thesis
are: read, readdata, write, writedata and address [2]. The signals read and write are
both 1 bit signals, which is be set automatically by the interface each time the master
of the interface wants to write to or read from the interface. Only if this enable bit
is set, the data stream, transmitted by readdata and writedata, can be written to the
interface. One AXI bridge can function for many The same AXI bridge can be used
for multiple purposes in the same implementation. To distinguish each individual
data set, a different address signal is used. When no address is set, the first address
block inside the address space is used by default. The address space is discussed in
Section 2.1.5.

2.1.2 Development Toolchain

This section describes all the tools used to program the FPGA. Figure 2.5 gives an
overview about how different parts interact to generate the preloader.

Preloader Generator Preloader Config
() Source Files

Handoff
Folder

make

(") — part of SoC EDS U-Boot Source
Code Archive (*)

User Options

Figure 2.5: The SoC tool flow [19]

The integration tools Quartus and Qsys

Quartus [Quartus] is the IDE provided by Intel for programming the FPGA’s logic
in Verilog or Very High Speed Hardware Descriptive Language (VHDL). The pro-
gram was developed by Intel/Altera and the Premium Lite Edition comes with every
Intel FPGA within the time of warranty for free. Each Quartus project has a Top-
Level Design file, which describes a specific programmed behavior to be implemented
by the FPGA’s logic. This file can also integrate other HDL codes to use their im-
plemented functionalities. After compiling the whole project, Quartus can be used
to generate the rbf, a bitstream to program the FPGA. The compilation creates
also a handoff directory. The subfiles in this folder are used by the BSP-Editor
to generate the preloader. The LOANIO can be described as two 67 bit signals
loan__in, loan__out, and one 1 bit signal, loan__oe. The first two are implemented as
standard logic vectors with 67 entries, whereas the LOANIO output enabler is a 1

2 Technical Background

bit signal, that is only used to enable the communication. The enable bit has to be
set manually, in order for the FPGA being able to write to use the loaned pin.

(sys, as an integration tool in/for Quartus, helps the developer to build the HDL
code. An comprehensible Graphical User Interface (GUI) makes it easy and intuitive
to connect components. Each component represents a hardware subcircuit that is
available as a library component for use in the Qsys tool [1]. Components can be
added and removed from the project and their preferences adjusted. Qsys outputs
a Quartus intellectual property (qip) file, which will be integrated into the Quartus
project and the top-level design file. This qip contains subfiles to describe the logic
of the used components and several tcl-Scripts, that are used by Quartus to solve
for example the pin assignment for the user.

To add new functionality to a Qsys project, existing ones must be adjusted, or a
new component added to the system. Qsys entails already pre-defined components
by Altera, but it is also possible to ingerate an own component, based on HDL code.
One of the most important pre-defined components is named hps_ 0, and it models
the connection to the HPS. As mentioned in Section 2.1.1, it is possible to allow
the FPGA to use peripheral from the HPS. In order to enable the FPGA access
to GPIO50, LOANIO50 has to be enabled within Qsys. In the settings of the HPS
component the required bridges can be enabled and adjusted as well.

Building Preloader and uBoot with the BSP-Editor and Generating the

uBoot Environment

Quartus contains also the sopc-create-header-files tool and the BSP-editor, which
can be accessed via the Altera Embedded Command Shell. Both tools use the hand-
off files Quartus creates during the compilation. The Bootloader Support Package
(BSP)-editor has been used to adjust the settings of the preloader, which is explained
in Section 2.1.3. With the BSP-editor important options like SDRAM_SCRUB-
BING and Serial Support can be en- or disabled. After adjusting the BSP-editor
generates a makefile and the user can create the preloader with make and uBoot,
explained in Section 2.1.3, with make uBoot.

10

2.1 The MitySOM-5CSX used by the OPS-Sat project and its development tools

A
v BSP Editor - fhome/user/projects/mitysom Scsx_dev_ board/dev Scsx_h6 42a final vi4/software/spl bsp/settings.bsp
File Help

ita BSP Editor - /nome/user/p... [-] Termina 1 @ {) 09

[“Main

SOPC Information

CPU name:

Operating system: Preloader
BSP target directory: ./

Version; |default (=]

¢ Settings

¢ Lommon

¢ spl
PRELOADER TGZ
CROSS_COMPILE
¢ boot

BOOT_FROM_QSPI
BOOT_FROM_SDMMC
BOOT_FROM_NAND
BOOT_FROM_RAM
QSPI_NEXT_BOOT IMAGE

SDMMC_NEXT_BOQT_IMAGE

NAND_NEXT BOOT IMAGE
FAT_SUPPORT
FAT_BOOT_PARTITION

FAT LOAD_PAYLOAD_NAME

o Advanced

spl
PRELOADER TGZ:
CROSS_COMPILE:
spl.boot
L] BOOT_FROM_QSPI
BOOT_FROM_SDMMC
[] BOOT_FROM_NAND

[] BOOT_FROM_RAM
QSPI_NEXT_BOOT IMAGE

SDMMC_NEXT_BOOT IMAGE
NAND_NEXT BOOT IMAGE:

[FAT_SUPPORT
FAT_BOOT_PARTITION:

FAT_LOAD_PAYLOAD_NAME:

ader/uboot-socfpga.tar.gz
arm-aftera-eabi-

0260000
0240000
0%c0000

P
[bootimg]

4] i T

information | Problems | Processing |
(@ searching for BSP components wi

o
iy
I N

Figure 2.6: Screenshot of the BSP-Editor [5]

To tell uBoot where to load the necessary files from, the Boot environment has
to be generated out of the software/spl bsp directory created by the BSP-Editor,
with the uBootMMCFEnv.tzt and the command uboot-socfpga/tools/mkenvimage -s
4096 -0 ubootenv.bin uBootMMCEnv.tzt. The mentioned text file ships as a part of
a VM, which is explained in the next section, Section 2.1.2.

The CriticalLink Virtual Machine and SD image

The manufacturer of the MitySOM-5CSX board Critical Link offers on their sup-
port page [16] an image of a whole Virtual Machine, which contains a xUbuntu
14.04 system with several programs pre-installed, such as Quartus, Qsys or Eclipse.
CriticalLink provided a reference design implementation for the MitySOM-5CSX
board in the form of a Quartus Design File (.qdf) and a Qsys project (.qsys). The
pre-configured Quartus project has all the pins already assigned and it contains
a pre-build top-level VHDL code. The problems accrued using this Virtual Ma-
chine (VM) are explained in Section 5.2.

Critical Link provides a 4 GB SD image specifically adapted to this board. This
image is shipped with a Linux operating system, a complete file system and a few
programs to test the proper functioning of the board saved in the /home/root di-
rectory.

11

2 Technical Background

It is also possible to build a custom SD card image. For that purpose Crit-
ical Link offers a script (make_sd_card_shell.sh) [CLwikiSD] on their support
page. To build the image the shell needs to be in the same folder/directory with
the preloader (preloader-mkpimage.bin), uBoot (u-boot.img), the uBoot environ-
ment binary (ubootenv.bin) and a tar ball of the root file system with compiled
Device Tree Blob (dtb) and kernel in the /boot directory, called rootfs.tar.gz [16].
Preloader, uBoot and uBoot Environment can be created as shown in Section 2.1.2
The problems I had using this custom SD image are described in Section 5.2.

2.1.3 Boot Sequence

The preloader is a part of the BSP.
The booting procedure of the SoC follows a specific boot flow.

|

+ Starts Running code at reset exception address
~— = Normal operation, BootROM is mapped to reset address

e 1\

Reset

q

* Read Boot source from BSEL pins
| = Setup minimal configuration to read flash
Boot ROM [— » Load Preloader from Flash or execute from FPGA

(- Hardcoded by Altera into device

T« Jumps to Preloader
1 = 4
/"« U-Boot SPL B
PreLoader —— -« Setup HPS 10s and pinmuxing
1 * Setup PLLs and clocking
* |nitialize SDRAM
* Load subsequent stage from Flash into SDRAM
« Jump to subsequent stage (typically U-Boot)
U-boot S J
[J
Linux
—

Figure 2.7: The steps of the booting process RBEmbedded]|

After an external reset or a power-cycle, the board starts with the Boot ROM,
which is hardcoded into the hardware by the manufacturer and prepares the board
for the preloader, loading the preloader from the SD card into the RAM and jumping
to the preloader. The preloader, as the last hardware setup step, sets all the pins and
clocks of the FPGA. It is also responsible to program the FPGA’s logic described in

12

2.1 The MitySOM-5CSX used by the OPS-Sat project and its development tools

the rbf. After the preloader has prepared the hardware, uBoot cares about setting
up the HPS for the Linux system by loading all the necessary files from the SD card.

The preloader does not need to be rebuild for every hardware modification. As
shown in this section, the preloader depends only on the hardware initialized by the
preloader through the rbf, or in other words on the hardware used by the FPGA
and its configuration. Since most of the FPGA’s functionality is described in Qsys,
it mostly depends on the Qsys project, whether new hardware will be used, or
it’s preferences had been adjusted so that a new preloader has to be generated
and exchanged with the old one on the SD card. Minor changes inside the logic,
describing VHDL code of a component, will not lead to a necessary exchange of
the preloader. A new component, which uses a new pin or interface, will entail to
change it. How the preloader is generated is explained in Section 2.1.2.

2.1.4 Changing the Preloader and FPGA Reconfiguration

As described in Section 2.1.3, the preloader initializes the hardware, but the actual
configuration of the FPGA is described in the rbf. To reconfigure the FPGA, the
new rbf has to be copied to the SD card. If a new preloader is needed, is described
in Section 2.1.2. To actually change the preloader, the developer has to load it
manually on the third partition of the SD card, before the SD card is ejected from
the computer. Therefore the command dd if=preloader-mkpimage.bin of=/dev/sdX3
can be used.

To re-configure the FPGA one can either change the rbf in the /home/root di-
rectory on the SD card or use a cat/dd command within the Linux system. For the
first way the user can either plug the SD card into a computer, or use the ARM to
copy the new rbf into the /home/root directory on the SD card. If the computer is
used, the preloader boots with the new configuration, but if the ARM was used to
change the configuration, the board must be restarted. In both cases the new rbf
has to replace the old one with the same name. For the second way multiple rbfs
are stored on the SD card simultaneously. After the board is fully booted, including
the Linux system, the FPGA can be re-programmed with cat dev_5csx_h6_}2a.rbf
> /dev/fpga0 or dd if= dev_5csx_h6_42a.rbf of=/dev/fpgal. Exchanging the rbf
manually on the SD card is the more laborious and slower way than using the Linux
system on the ARM, if multiple rbf are to be tested. The second way requires how-
ever a Linux system running on the ARM, whereas the first way does not need the
ARM at all.

13

2 Technical Background

2.1.5 Data Communication between FPGA-Module and AXI
Bridge using mmap

Memory Mapping is a concept to access peripherals within a virtual address space,
the same way the Central Processing Unit (CPU) can access memory blocks of its
RAM. Therefore the whole memory and every additional external peripherals are
combined in one bus and the RAM and each peripheral can be accessed through its
given address space. This concept is visualized in Figure 2.8. Inside one address
space different elements can be distinguished by different offsets. This value depends
on the interfaces used by the FPGA and can be generated with a tool after Quartus
compiled its whole project. This sopc-create-header-files tool, provided by Altera,
is included into Critical Links VM and can be accessed through the Embedded
Command Shell.

CPU

Bus
RAM Peripheral Peripheral

Figure 2.8: The concept of memory mapping [15]

So in order to actually communicate through this bride, each side has to address
the bridge correctly. On behalf of the FPGA, an existing component has to imple-
ment the Avalon interface correctly. An example of how this could be implemented
is shown in Section 4.1.1. The HPS uses memory mapping to write to the right
address space. Therefore a C code / program running on the Linux system using
mmap() only needs the base address and offset.

2.2 The Eclipse plugin

As stated in Section ..., an IDE plugin should be developed to support the prepa-
ration of hardware accelerators from java programs. In Section ..., the Eclipse IDE
[...] is chosen for this purpose. This section outlines the generic Eclipse plugin
development process.

14

2.2 The Eclipse plugin

2.2.1 Basic Concepts and the Eclipse IDE for Eclipse

Committers

Eclipse is based on the Equinox framework, which is responsible for the plugin
management and execution [8]. Since a plugin can not initiate anything by itself
it needs always the Equinox framework to start the Plugin or its functionality [8].
Every eclipse functionality, such as code editors with syntax highlighting and auto-
completion, is realized by a plugin. Plugins can interact with the user through
very different elements such as context menus or tabs inside the Eclipse GUI and
are offering it’s functionalities to the framework - or to other plugins - through it’s
Extensions, as explained in detail in the next section.

To support the development of an Eclipse plugin, the Eclipse Foundation has
created a package called ,Eclipse IDE for Eclipse Committers* [6]. This package
basically is focused on Java development, but it includes also several functionalities
such as presets and tutorials to develop an Eclipse Plugin, a Git integration or the
Eclipse Extensible Markup Language (XML) editor. The Eclipse Plugln Develop-
ment Environment (PDE) is a Plugin which basically provides similar functionality
but the last version is from 2013 and it is missing the tutorials.

2.2.2 The Manifest File and how Equinox is using it

The main file of every Eclipse Plugin is the Manifest File manifest.mf. This file is
used to specify, how this plugin is handled by the Equinox framework. During the
installation of the plugin this file will be parsed and the plugins structure will be
embedded into the framework. This helps the Eclipse instance to decide when to
launch and kill a plugin. This is related to the plugins lifecycle [7], a topic that is
out of the scope of this thesis.

The manifest.mf file (see Listing 2.1) has nine subsections: Overview, Dependen-
cies, Runtime, Extensions, Extension Points, BUILD, MANIFEST.MF, plugin.xml,
and build.properties.

Ezxtensions and Extension Points are used to extend existing plugins. The Ex-
tension Point provides conditions to offer its functionality and only a plugin with a
fitting Extension can use it [3]. After adjusting the MANIFEST.MF the Extension
and Extension Point appear as XML elements in the plugin.xml.

Listing 2.1: Utilized manifest.mf file

1 | Manifest—Version: 1.0
2 | Bundle—ManifestVersion: 2
3 |Bundle—Name: JavaFPGAEditor

15

© 0 J O D

10
11
12
13
14
15
16

2 Technical Background

Bundle—SymbolicName: de.ceglarek.plugin.javaFPGAEditor;singleton
=true

Bundle—Version: 1.0.0. qualifier

Bundle—RequiredExecutionEnvironment: JavaSE—1.8

Require—Bundle: org.eclipse.jdt.core;bundle—version="3.13.0",
org.eclipse.core.runtime; bundle—version="3.13.0",
org.eclipse.core.resources;bundle—version="3.12.0",
org.eclipse.core.expressions;bundle—version="3.6.0",
org.eclipse.ed.core.di;bundle—version="1.6.100",
org.eclipse.ed4.ui.services;bundle—version="1.3.0",
org.eclipse.ui

Import—Package: org.eclipse.jface.dialogs,
org.eclipse.jface.viewers,

org.eclipse.swt.widgets

The plugin.zml (see 4.1) is actually the code version of what has been defined in
the tabs "Extensions” and "Extension Points”. This file is used for wrapping the
whole Plugin into a Java Archive (JAR) Packaging.

16

3 Related Work

This section will give an overview about already existing conversion tools, what their
key features are. Further I will do the same for HLS tools.
A final comparison and evaluation of these tools has been done in Chapter 5.

3.1 Running Java within a JVM usingJOP

Java byte-code can be run directly on an FPGA using a Java Virtual Machine
(JVM) implemented in hardware. This method is not very performant, because the
hardware has to emulate the VM, as well. Using a JVM does however not require
to use a HLS tool.

The Java Optimized Processor (JOP) [20] is an implementation of the JVM
in hardware. The main implementation platform is an FPGA. JOP is a time-
predictable processor for hard real-time systems implemented in Java. It was pub-
lished in 2009 and supports Java version 1.4. JOP is open-source under the GNU’s
Not Unix! (GNU) GNU General Public License (GPL) version 3 and has a growing
user base.

3.2 Existing Java to C converter

There are already a few solutions for converting Java to C code. This C code is meant
to be converted again by existing HLS tools, which are represented in Section 3.3.

3.2.1 JCGO

JCGO [14] is a software application which translates programs written in Java into
platform-independent C code. JCGO translator uses some optimization algorithms
that allow, together with optimizations performed by a C compiler, the resulting
executable code to reach better performance if compared with the traditional Java
implementations (based on the Just-In-Time technology). JCGO was last updated
2014 and supports Java v1.4.

17

3 Related Work

3.2.2 JC

JC [4] offers a conversion of Java byte-code into C. It includes a Java byte-code
interpreter with support for compiled, interpreted, and mixed mode execution

Its was last updated 2005 und supports Java version 1.2 and is covered by GNU
GPL version 2.

3.2.3 Toba

Toba [27] is a system for generating efficient standalone Java applications. Toba
includes a Java-bytecode-to-C compiler, a garbage collector, a threads package, and
Java API support. Toba-compiled Java applications execute according to its doc-
umentation [26] 1.5-10 times faster than interpreted and Just-In-Time compiled
applications. Its current version 1.1c was released 1999. It development stopped
with Java Development Kit (JDK) 1.1. Although it is also a stand alone Java to
C compiler, it is primarily built to increase the performance of Java written code
by pre-compiling Java class files into C code and this C code directly into machine
code.

3.2.4 Varycode

Varycode [23] is an online code converter which provides several convert options.
Among others the user can convert Java to C#, Visual Basic .Net, Ruby, Iron
Python or Boo. It supports enums, classes, interfaces, generic methods and classes,
collections, exception handling, annotations, native API functions declaration, try
constructions, loops, switches, String, char and many JRE library classes. Varycode
is royalty free for up to 2048 input chars. It is not obvious which Java version the
tool supports.

3.2.5 Conversion from Java to C++

Although it is not directly linked to the scope of this thesis, because it converts Java
to C++, the J2C project [21] should also be mentioned. J2C is an open source code
converter, that expresses its functionality as an Eclipse plugin. It works with every
Java version 1.6 and was last updated 07.07.2015.

3.3 High-Level Synthesis (HLS) tools

HLS tools are used to translate functionalities from one programming language
into another. The aim is to interpret the behavior of a code and implement this

18

3.3 High-Level Synthesis (HLS) tools

functionality in hardware. Because of its natural close relation to hardware C is the
most commonly used input language for a HLS tool.
HLS tools are used to

3.3.1 LegUp

The University of Toronto developed the open-source HLS tool LegUp [13]. It is
specialized to synthesis C to Verilog and was developed with the aim to make FPGA
programming easier. LegUps last update was on 24 August 2015 with version 4.0
[11]. Tt is for non-profitable usage free but they also launched a compony called
LegUp Technologies Inc. [12].

3.3.2 SPARK

The [22] HLS tool was developed by the Microelectronic Embedded Systems Labo-
ratory University of California San Diego. It uses ANSI C as an input and converts
it to VHDL.

3.3.3 Vivado HLS

Vivado [24] is a HLS tool developed by the FPGA manufacturer Xilinx. It ships
with their product for every in-warranty user. Vivado can handle both C and C++
files as an input and outputs either VHDL or Verilog.

Figure 3.1 [25] shows the concept of the conversion.

Vivado HLx Design Flow

Design closure

15X Faster
HLS-Based Flow Example

C++ Code 16 people months
(5K lines) + 2 people

« 8 months
Place and™_| =l Elie
C Debug
m 53':;3’;‘ Faster for derivative designs

« C++reuse

Test Bench « Scales with parameters
(application) + Device independent

Exhaustive functional tests System-level Debug

Figure 3.1: Block Diagram of the Vivaldo Design Flow

19

3 Related Work

3.3.4 Intel HLS Compiler

The Intel HLS Compiler [10], developed by Intel, is only available as beta access by
the time of this thesis. It handles untimed ANSI C++ files and is meant to work
directly as an input for the Qsys integration tool.

3.4 Analysis of existing solutions

Although there are different approaches to run Java code on an FPGA, none of
them fits the needs of the OPS-Sat project. Running Java code natively on the
FPGA using a JVM results not only in poor performance, since the FPGA has also
to implement the VM in hardware, but additionally misses the requirements of this
thesis. The FPGA should act as a hardware accelerator and the SoC must also be
able to execute C code. Furthermore non of these tools works with Java code based
on versions more recent than 1.5. So there is no solution for recent code. However
parts of existing tools can be used by this plugin in further projects. The HLS tools
are useful, when Java code has already be converted to C. Since however none of
them can handle Java files, they do not directly fulfill the requirements, but can be
used to generate HDL code, when the Java code has been converted to C.

20

4 Implementation

Because there is no fitting solution to hardware-accelerate Java code on the OPS-
Sat’s MitySOM-5CSX FPGA, this thesis is about to implement the necessary fea-
tures in hardware and to start developing the inherent IDE plugin, that helps the
developer to prepare their Java code to be hardware-accelerated by the FPGA.

4.1 Example for Hardware-Kernel Controlled by HPS

As described in Section 2.1.2, Critical Link provides its customers with an image
of a highly equipped VM, which also includes an example implementation for the
MitySOM-5CSX. Based on this Quartus and Qsys project, a simple example for an
FPGA hardware accelerator has been implemented in two steps. The first example
uses only the FPGA to demonstrate the basic functionality of the FPGA and the
used development chain. The second example uses the HPS and additionally one
AXIT bridge, to setup a fully functioning interface for the communication between
HPS and FPGA. To make the result visual, these examples control an LED on the
MitySOM-5CSX development board.

4.1.1 Modifications for LED-Blinky

Example One: Standalone LED blinker driver

The Qsys modules provided by the Critical Link example project, described in Sec-
tion 2.1.2, are pre-defined, so that their logic can be changed. A custom component
has been written in VHDL to implement the requested logic. This new LED com-
ponent uses the 100 MHz signal from a clock component in Qsys and outputs a
1 Hz signal with the help of a 27 bit counter. So the most significant bit toggles at
227 /100 MHz = 1.34s It has a reset and clock signal as input signals and LED as an
output signal. Finally, in the port mapping section of the code, the highest bit of
this vector gets linked to the one bit LED output signal. In Qsys the component has
to be connected to a clock and a reset signal and the LED signal has to be exported,
so that the signal appears as an output signal after the project has been compiled.

21

4 Implementation

B/A_UANU_KA/UAKIU_KA/DFIVIU_DD I/HFD_UFIUOL v TANT TXD CANU KAD | /]40U]
B7A_CANI_TX/BOOTSELO0/SPIM0_SS0/HPS_GPIO60 CANT RXD { CANI TXD >7[4C] *JV VBAT
B7A_CANI_RX/SPIM0_MISO/HPS_GPIO59 CANI_RXD _|7[4C] ~

TN 50 Cli4
B7A_TRACE_D7/SPIS|_MISO/HPS_GPIOS6 <22 = v
B7A_TRACE_DG/SPISI_SSO/HPS_GPIOSS <122 L Ve
B7A TRACE DS/SPISI MOSICANI TX/HPS GPIOS4 e A
B7A_TRACE D4/SPISI_CLK/CANI_RX/HPS_GPIOS3 L g
B7A_TRACE_D3/SPIS0_SS0/12C1_SCL/HPS_GPIOS2 2 3CTSCL_ > 6[4B]

]

N
= {]
B7A_TRACE_D2/SPIS0_MISO/I2CI_SDAHPS_GPIOS] [<ias L 2CT SDA__ S6[4B] ('ND
B7A_TRACE_DI/SPIS0O_MOSI/UART0_TX/HPS GPIOS0 (<132 L {"LEDI »6[4B]
B7A_TRACE_DO/SPIS0_CLK/UARTO_RX/HPS_GPIO49 — [LED2 S6[4B] +33V
BYA_MSEL4 —
B7A_TRACE_CLK/HPS GPIO4$ < E LED3 > 6[4B] RI25
GND 0 >GND 10.0K
BSA_TX_Rs PNC w—DA TX R F B5A TX R5 P 7{48
BSA_TX R5 N/NC <& SA TX RS BSA TX RS N> 7[4
VIO_2V5_ENABLE p-36—Y10 2V5 ENABLE VIO 2V5 ENABLE>(
VIO _4A |+2.5V_VIO
GID TSMCL SMSCL > OND _L
B4A_TX_BS0_P/DQSB/DQ2B/B_DM 4 r<c2a—HOMCL SMECL ™ HovicT SMSCL o 638] L 09 —c 10,
B4A TX B8O N/DQSB/DQ2B/B DQ 39 @—TFWCI SMSDA O6(1B] T g3y T 95y
B4A_TX_B77_P/DQSBDQ2B/B_DQ 38 (2o —HSMCZ SMSCL 1 yyqic SMSCL 5 6[6B] omuFIoou.F 100A
B4A_TX_B77 NDQSBDQIB/GND (<28 —HSMC2 SMSDA 7 Hisnca SMSDA 5 6[4B] Vi oV -
BAA_TX B76 N/DQSB/DQ2B/B DQ 35 [aod—TOMCL IS HSMC2 PRSNTN] 6{6D] O
B4A_TX B73 P/DQSBDQ2B/B DQ 34 facs—HSMCZ IX_ (hinvic) 1x 6[4B] .
B4A_TX_B72 P/DQTB/DQZB/E DV 3 (ibt—HSMCZ 1X0 HSMC2 TX0 P 9 6[4B] -
| B4A_TX_B72 N/DQ7B/DQ2B/B_DQ 31 (S0 —ISMC2 TX0 N ™ HisMca TX0 N o 6[4B]
s 4 B4A_TX_B69_P/DQ7B/DQ2B/B_DQ 30 a5 —!] SMCL TX0 P 6[1B]
BAA TV Do nmnTamasnen 0 HSMCT TX0 TenCT TV N pars

Figure 4.1: The schematics of the used development board

The schematics of the development board, as shown in Figure 4.1, shows, that
GPIO50 is the pin for LEDI. The LED is physically wired to the HPS. So in order
to enable the FPGA access to this pin, the corresponding GPIO50 must been loaned
to the FPGA, as described in Section 2.1.2.

In order to communicate with the HPS or its pins, the FPGA can use one of AXI
bridges described in Section 2.1.1. Each of the three bridges has its own use case and
according to the manual [5] the lightweight interface is most useful for accessing the
control and status registers of soft peripherals and useful to low-bandwidth traffic,
because it has a fixed bandwidth and a small address space [c5manLWB]. So the
Lightweight HPS-To-FPGA bridge is best suited for this implementation, since the
transmitted information is very small and the communication will be mastered by

the HPS.

Modification of the Top-Level Design File To integrate the new components
correctly into the project, several changes in the top-level design file are necessary.
The following paragraph explains how the different VHDL codes interact with each
other, visualized by Figure 4.2, and what changes has been made to the provided
Quartus project.

22

4.1 Example for Hardware-Kernel Controlled by HPS

gets
Top-Level VHDL implemented in
(Qsys) 7| Top-Level VHDL

qip (Quartus)
Qsys Quartus
generates
: Quartus
Qsys project generates
VHDL (LED component)
rof

VHDL (Counter)

Figure 4.2: How the different VHDL codes interact with each other

After Qsys compiled the project into a qip file, this file has to be integrated into
the Quartus project. Within the qip is a VHDL, describing the implemented logic.
This code needs to be implemented into the predefined top-level design VHDL code.
The Qsys VHDL file has the led signal as an output, which has to be added to the
Quartus VHDL code. Additionally all the GPIO entries, which were adjusted as
LOANIOs in Qsys, have to be renamed to “LOANIO*“ manually. Because it is not
possible to modify imported signals, a signal has to be created and mapped to the
exported LED signal. Conclusively the LED signal has been routed through the
HPS to physical LED, using LOANIO50. Finally the loan enable signal has to set
to ,1°, as described in Section 2.1.2.

After compiling the Quartus project into a rbf, the BSP-Editor is used to generate
the preloader. The FPGA has to boot from the SD card, so this has to be enabled.

Finally the rbf has to be copied on an existing SD card or a new SD card image
has to be created, like explained in Section 2.1.2.

23

4 Implementation

Example Two: HPS and FPGA using LED blinker driver

The second examples adds the HPS and presupposes, that the Linux system provided
by Critical Link runs on the ARM, which is explained in Section 2.1.2. The aim is
to control the same LED used in the first implementation with inputs to a program
running on the HPS given by the user. The C program on the ARM uses mmap to
address the communication bridge to the FPGA, as shown in Figure 2.1.

Modifications made in Qsys Based on the project of the first implementation,
the logic to the LED component needs to be extended. The extended component
includes an Avalon-MM interface and the logic to react to data transferred via this
interface.

The led_ blinker VHDL code obtains the necessary signals write, writedata, read
and readdata to implement the Avalon-MM interface, as described in Section 2.1.1.
The bitstream in writedata gets linked to a step register, which changes the counting
speed. The write signal is set, when the master writes to AXI bridge/interface, as
shown in Section 2.1.1. The FPGA component perceives when the signal is set and
then reads out the value in writedata. This value changes the speed of the counter
from the first example.

To connect the added interfaces in the VHDL code to the Qsys project, the
Avalon-MM interface has to the added and adjusted in the editing tool of the Qsys
component. Qsys detects the right interface automatically based on the names of
the signals.

The C program running in the ARM using mmap On the other of the bridge,
the ARM uses mmap to address the AXI interface. The principle is, that the user
starts the C program, which transmits a certain value through the selected AXI
bridges to the FPGA, where it changes the counter frequency.

For this thesis a cross compiled C program running on the HPS sends 0x00000000
or OxFFFFFFFF to the FPGA and the FPGA toggled the LED on the development
board. 0x00000000 causes the LED to hold its current status, either being on or off,
and OxFFFFFFFF sets the LED to a 2 Hz blinking frequency. mmap needs the base
address and the offset, to address the selected bridge. They were generated out of
the compiled Quartus project, as described in Section 2.1.2.

For the lightweight bridge a base address of 0xFF200000 with a span of 0x00200000
can be found in the manual of the FPGA. The offset inside the address space can
be generated out of the Quartus compiled project as described in Section 2.1.5.
The generated header file contains the name, the start address inside the relevant
address space, the span and end address of every component connected to the AXI
bridges. mmap uses pointer and since the lightweight bridge has a 32 bit data width,

24

S T e W N =

10
11
12
13
14
15
16
17
18

4.2 The Eclipse Plugin

a 32 bit pointer was used. To run the C program on the ARM processor it was cross
compiled with the GNU cross compiler.

In addition to the existing functionalities a bit inverter has been developed, to
demonstrate a usecase of the address signal and that the FPGA can truly change
transmitted data and send it back to the master. The FPGA bitwise inverts the
transmitted values and uses a second address of the lightweight bridge and so it
writes to the next 32 bit of address space as described in Section 2.1.1.

4.2 The Eclipse Plugin

Although the development of the plugin could not be finished, because of problems
mentioned in Section 5.2, a simpe example plugin had been realized. The Fclipse
IDFE for Eclipse Committers package [6] has been used. How an Eclipse plugin works
and what the plugin.xml file is, is explained in Section 2.2.

This example plugin uses two official Eclipse extension points to access it via the
GUI and open an editor (see 4.1).

Listing 4.1: Utilized plugin.xml file

<?xml version="1.0" encoding="UTF-8"7>
<?eclipse version="3.4"7>
<plugin>
<extension
point ="org.eclipse.ui.menus”>
<menuContribution locationURI="popup:org.eclipse
.jdt .ui.PackageExlorer”>
<command
commandld="de. ceglarek . plugin. htmlconverter.convert”
label="Create QFPGA ;Annotation”
style="push”>
< /command>
</menuContribution>

</extension>

<extension
point="org.eclipse.ui.commands”>

<command defaultHandler="de.ceglarek.plugin.

25

19

20
21
22
23
24
25
26
27

28

29

30

31
32

4

Implementation

javaFPGAEditor. editors . EditorClass”
id="de.ceglarek . plugin.javaFPGAEditor . FPGAAnnotation

7

< /command>

</extension>

<extension point =’

<editor

name="Convert ">

‘org.eclipse.ui.editors”>

name="Properties Editor”

extensions="mpe”

contributorClass= ”de.ceglarek.plugin.
javaFPGAEditor. editors. EditorClass”

class="de.ceglarek . plugin.javaFPGAEditor
.editors.EditorClass”

id="de. ceglarek . plugin.javaFPGAEditor.
EditorClass”>

</editor>

</extension>

</plugin>

The first extension point (org.eclipse.ui.commands) creates a new menu entry in
the context menu in the workspace. The handler referes to the Java class, where
the actual functionality of the plugin is described. The second extension point
(org.eclipse.ui.editors) opens an editor to manipulate the code.

26

5 Results

5.1 The Configuration of the FPGA, Analysis of the
Existing Solutions and the Plugin Examples

The two example implementations show in detail how a complete hardware-accelerator
would be implemented into the hardware. The FPGA can be re-configured only us-
ing the ARM. The reconfiguration however does require to power-cycle the board.

The analysis of existing solutions to execute Java code on the FPGA fabric
showed, that none of them fulfilled the requirements defined by the project.

For the development of new Eclipse plugins, a complete package (FEclipse IDE for
Eclipse Committers) is provided by the Eclipse Foundation. This package makes
it easy to develop new plugins and it includes several examples and tutorials. The
created example demonstrates how a new context menu entry can be integrated to
the GUI to launch the plugin.

5.2 Problems

While working on this thesis technical problems accrued, most of them caused by
the provided VM.

5.2.1 Problems with the provided VM

The VM provided by CriticalLink runs, although it was tested on various computers,
unstable. Often the whole OS stopped operating or the GUI were so slow, that it
was impossible to work with. Sometimes only a complete restart of the VM, without
saving the current status, solved the problem.

Besides the Qsys conversion time with approximated 20 minutes and the Quartus
compilation time with over 35 minutes the permanent hang-ups of the Quartus
software caused tremendous time problems. Often the software did not responed for
a few minutes or other bugs were causing problems. And there were other problems
with Quartus, as well. In order to compile the Quartus project, the right HDL

27

5 Results

file had to be set as the top-level design file. Quartus switched sometimes this
setting without any influence on behalf of the user. Also adding the compiled qip
file often crashed Quartus. The converted qip file should be added automatically to
the Quartus project, but every ones in a while it switches to manually without any
obvious reason.

ESA required to use this VM, so that every developer uses the same tool set. This
simplifies the support.

5.2.2 Problems with the SD image

In order to fully understand the operating system running on the ARM, I wanted
to build a custom Linux SD card image based on the instructions from the Critical
Link support page [16] and the rocket board tutorials [RBEmbedded|.

The custom SD card image however wasn’t that easy to generate even with a lot
of help from the university’s tutor. Some problems remain unsolved, like a problem
with re-programming the FPGA with the new rbf using the Linux on the SD card
only. While with the provided system one can use the cat command, using this on
the custom one results in a crash of the board, which requires a hardware reset. An
ethernet driver error also displayed during booting the board.

28

6 Conclusion and Outlook

Despite all the problems described in Section 5.2, a communication between the
FPGA and the ARM could be implemented and both examples achieved the re-
quired results. The second, more sophisticated example implemented a communi-
cation interface like it will be used in the fully automated hardware-accelerator.
The implementation of the Eclipse plugin however could not be finished because of
reasons described in Section 5.2. Nevertheless a simple example plugin had been
developed, which uses official Eclipse extension points to add a menu entry. Future
projects can build on this implementation.

The concept to use an IDE plugin to convert selected segments of Java code to
VHDL leads to a very flexible solution. The plugin helps the developers to prepare
their code for a conversion directly in the IDE, which is very convenient. Future
work will build on the FPGA implementation and the research made in this thesis
regarding the existing solutions. The example plugin shows how an Eclipse plugin
basicially works.

29

List of Figures

2.1 Concept 5
2.2 SoC block diagram 6
2.3 HPS block diagram 7
2.4 Avalon-MM 8
25 toolchain. 9
2.6 BSP-Editor 11
2.7 boot flow 12
2.8 Memory Mappingo 14
3.1 Vivaldo 19
4.1 Schematics 22
4.2 VHDL file interaction 23

List of Tables

List of Acronyms

ARM Advance RISC Machine

ANSI American National Standards Institute
AXI Advanced eXtensible Interface

BSP Bootloader Support Package

CPU Central Processing Unit

dtb Device Tree Blob

ESA European Space Agency

FPGA Field-Programmable Gate Array
GNU GNU’s Not Unix!

GPIO General Purpose Input Output

GPL GNU General Public License

GUI Graphical User Interface

HDL Hardware Description Language
HLS High-Level Systhesis

HPS Hard Processor System

IDE Integrated Development Environment
LED Light-Emitting Diode

JAR Java Archive

JDK Java Development Kit

LIST OF TABLES

JOP Java Optimized Processor

JVM Java Virtual Machine

PDE Plugln Development Environment

PLL Phase Locked Loop

rbf Raw Binary File

qip Quartus intellectual property

SoC System on Chip

SOM System on Module

VHDL Very High Speed Hardware Descriptive Language
VM Virtual Machine

XML Extensible Markup Language

VI

Bibliography

Altera. Making Qsys Components. English. Altera Corporation - University
Program. Aug. 2012. URL: http://scale. engin. brown . edu/classes/
EN2911XF14/QSYS_COMP.pdf (visited on 05/10/2017).

Avalon Interface Specifications. English. Intel Corporation. May 2017. URL:
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/
literature/manual/mnl_avalon_spec.pdf (visited on 05/10/2017).

N. V. Chris Laffra. FAQ What are extensions and extension points? English.
The Eclipse Foundation. June 2006. URL: https://wiki.eclipse.org/FAQ_
What_are_extensions_and_extension_points%3F (visited on 05/10/2017).

A. L. Cobbs. JC Virtual Machine - Welcome to JVC. English. 2004. URL:
http://jcvm.sourceforge.net (visited on 05/10/2017).

Cyclone V Hard Processor System Technical Reference Manual. English. Altera
Corporation. Oct. 2016. URL: https://www.altera.com/documentation/
sf01410143707420.html (visited on 09/07/2017).

Eclipse. Eclipse IDE for Eclipse Committers. English. The Eclipse Foundation.
URL: http://www . eclipse . org/downloads /packages/eclipse-ide-
eclipse-committers/oxygenr (visited on 05/10/2017).

Eclipse. Plugin Lifecycle. English. The Eclipse Foundation. URL: https://
www . eclipse.org/che/docs/assemblies/plugin-lifecycle/ (visited on
05/10/2017).

A. T. Gabriel Wetzler. Eclipse Plugins. Deutsch. Fern-Universitdt Hagen. 2010.

URL: https://wiki . fernuni-hagen.de/eclipse/index . php/Plugins
(visited on 05/10/2017).

VII

http://scale.engin.brown.edu/classes/EN2911XF14/QSYS_COMP.pdf
http://scale.engin.brown.edu/classes/EN2911XF14/QSYS_COMP.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F
https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F
http://jcvm.sourceforge.net
https://www.altera.com/documentation/sfo1410143707420.html
https://www.altera.com/documentation/sfo1410143707420.html
http://www.eclipse.org/downloads/packages/eclipse-ide-eclipse-committers/oxygenr
http://www.eclipse.org/downloads/packages/eclipse-ide-eclipse-committers/oxygenr
https://www.eclipse.org/che/docs/assemblies/plugin-lifecycle/
https://www.eclipse.org/che/docs/assemblies/plugin-lifecycle/
https://wiki.fernuni-hagen.de/eclipse/index.php/Plugins

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

Intel Cyclone V. English. Intel Corporation. URL: https://www.altera.com/
products/fpga/cyclone-series/cyclone-v/overview.html (visited on
09/07/2017).

Intel HLS Compiler. English. Intel Corporation. 2017. URL: https://www.
altera.com/products/design-software/high-level-design/intel-hls-
compiler/overview.html (visited on 09/07/2017).

LeqUp 4.0 Documentation. English. University of Toronto. 2015. URL: http://
legup.eecg.utoronto.ca/docs/4.0/index.html (visited on 05/10/2017).
LeqUp Computing. LegUp Computing Inc. URL: http://www.legupcomputing.
com (visited on 05/10/2017).

LegUp High-Level Synthesis. English. University of Toronto. URL: http://
legup.eecg.utoronto.ca (visited on 05/10/2017).

I. Maidanski. JCGO: Java and C/C++ web developer resources. English. Iv-
MaiSoftLLC. Dec. 2015. URL: http://www.ivmaisoft.com/jcgo/links.htm
(visited on 05/10/2017).

H. Mao. Exploring the Arrow SoCKit Part III - Controlling FPGA from Soft-
ware. English. URL: http : //zhehaomao . com/blog/fpga/2013/12/27/
sockit-3.html.

MitySOM-5CSx Altera Cyclone V SOC Wiki Page. English. Critical Link LLC.
URL: https://support.criticallink.com/redmine/projects/mityarm-
5cs/wiki/ (visited on 09/07/2017).

MitySOM-5CSzSingle or Dual Cortex A9 and User Programmable FPGA
SOM. Critical Link LLC. URL: http://www.criticallink.com/product/
mitysom-5csx/ (visited on 09/07/2017).

OPS-SAT. Englisch. Apr. 2017. URL: http://www.esa.int/Our_Activities/
Operations/0PS-SAT (visited on 09/07/2017).

Preloader and U-Boot Customization - v13.1. English. v13.1. RocketBoards.org.
Feb. 2017. URL: https://rocketboards.org/foswiki/view/Documentation/
PreloaderUbootCustomization131 (visited on 05/10/2017).

M. Schoeberl. JOP - Java Optimized Processor. English. 2007. URL: http:
//www.jopdesign.com (visited on 05/10/2017).

VIII

https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
http://legup.eecg.utoronto.ca/docs/4.0/index.html
http://legup.eecg.utoronto.ca/docs/4.0/index.html
http://www.legupcomputing.com
http://www.legupcomputing.com
http://legup.eecg.utoronto.ca
http://legup.eecg.utoronto.ca
http://www.ivmaisoft.com/jcgo/links.htm
http://zhehaomao.com/blog/fpga/2013/12/27/sockit-3.html
http://zhehaomao.com/blog/fpga/2013/12/27/sockit-3.html
https://support.criticallink.com/redmine/projects/mityarm-5cs/wiki/
https://support.criticallink.com/redmine/projects/mityarm-5cs/wiki/
http://www.criticallink.com/product/mitysom-5csx/
http://www.criticallink.com/product/mitysom-5csx/
http://www.esa.int/Our_Activities/Operations/OPS-SAT
http://www.esa.int/Our_Activities/Operations/OPS-SAT
https://rocketboards.org/foswiki/view/Documentation/PreloaderUbootCustomization131
https://rocketboards.org/foswiki/view/Documentation/PreloaderUbootCustomization131
http://www.jopdesign.com
http://www.jopdesign.com

Bibliography

[21]

[22]

[23]

[24]

[25]

J. Sieka. J2C Compiler. English. July 2015. URL: https://bitbucket.org/
arnetheduck/j2c (visited on 05/10/2017).

SPARK: A Parallelizing Approach to the High-Level Synthesis of Digital Cir-
cuits. Microelectronic Embedded Systems Laboratory University of California
San Diego. URL: http://mesl.ucsd.edu/spark/ (visited on 09/07/2017).

Varycode Startpage. Varicode Inc. URL: https://www.varycode.com/ (visited
on 05/10/2017).

Vivado. English. XILINX INC. URL: https://www.xilinx.com/products/
design-tools/vivado.html (visited on 09/07/2017).

Vivado Design Suite HLz FEditions. English. Xilinx Inc. 2015. URL: https:
//www . xilinx . com/ support /documentation/backgrounders /vivado -
hlx.pdf (visited on 05/10/2017).

T. AP.GT.P.B.JHHT.N.S. A. Watterson. Toba: Java For Applications A
Way Ahead of Time (WAT) Compiler. The University of Arizona. URL: ftp://
ftp.cs.arizona.edu/sumatra/report/toba.pdf (visited on 05/10/2017).

T. P.JH.G.T.P.B.P.B.T.N. S. Watterson. Toba: A Java-to-C Translator. The
Sumatra Project. Apr. 1999. URL: https://www2.cs.arizona.edu/projects/
sumatra/toba/ (visited on 05/10/2017).

https://bitbucket.org/arnetheduck/j2c
https://bitbucket.org/arnetheduck/j2c
http://mesl.ucsd.edu/spark/
https://www.varycode.com/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf
https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf
https://www.xilinx.com/support/documentation/backgrounders/vivado-hlx.pdf
ftp://ftp.cs.arizona.edu/sumatra/report/toba.pdf
ftp://ftp.cs.arizona.edu/sumatra/report/toba.pdf
https://www2.cs.arizona.edu/projects/sumatra/toba/
https://www2.cs.arizona.edu/projects/sumatra/toba/

	Introduction
	Motivation
	Scope of the Thesis
	Structure

	Technical Background
	The MitySOM-5CSX used by the OPS-Sat project and its development tools
	Hardware Specifications
	Development Toolchain
	Boot Sequence
	Changing the Preloader and FPGA Reconfiguration
	Data Communication between FPGA-Module and AXI Bridge using mmap

	The Eclipse plugin
	Basic Concepts and the Eclipse IDE for Eclipse Committers
	The Manifest File and how Equinox is using it

	Related Work
	Running Java within a JVM usingJOP
	Existing Java to C converter
	JCGO
	JC
	Toba
	Varycode
	Conversion from Java to C++

	High-Level Synthesis (HLS) tools
	LegUp
	SPARK
	Vivado HLS
	Intel HLS Compiler

	Analysis of existing solutions

	Implementation
	Example for Hardware-Kernel Controlled by HPS
	Modifications for LED-Blinky

	The Eclipse Plugin

	Results
	The Configuration of the FPGA, Analysis of the Existing Solutions and the Plugin Examples
	Problems
	Problems with the provided VM
	Problems with the SD image

	Conclusion and Outlook
	List of Figures
	List of Tables
	List of Acronyms
	Bibliography

