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Abstract

When there is an innovation in satellite operations, it is very hard to test it. This
is due to the risk associated with changing operational methods or software on an
ongoing satellite mission. If there would be an error uploaded with the software, the
operators would lose an otherwise healthy satellite.

Also, space missions are handicapped by the fact that the on-board computer
(OBC) has to withstand the radiation environment of outer space. The terrestrial
chip industry doubles the computing power of computer chips every year. To make
computer chips radiation hardened takes time and is cost intensive, so the radiation
hardened hardware cannot keep up with this doubling. This leads to more and more
commercially available off the shelf (COTS) hardware being used to build satellites.
But using COTS hardware has its downsides. Only by applying special techniques,
such as redundancy, the COTS hardware can survive as long as radiation hardened
hardware in space radiation environment. To further research the reliability of COTS
components is a challenge.

The European Space Agency (ESA) tackles those two known challenges in space-
flight with its new satellite called Operations-Satellite (OPS-SAT). Its main objec-
tive is to be an orbital laboratory for experiments in the satellite operations sector.
Any European institution or company can enlist for testing their experiments. The
experiments can control the satellite, even if their creators do not have any experi-
ence in satellite software or operations. To handle this, OPS-SAT has to be robust
and safe. This thesis describes the aspects that make OPS-SAT robust hardware
wise and specifies a flexible framework, to test experiments on ground, based on
GitLab. The framework is able to semi automatically handle all 115 proposed ex-
periments so far and is able to grow with more registrations. It can create logs and
regression views for the operators at ESA to see the development of the experiments
over time. Initial tests for file size which create reports for the experimenters are
possible. The tests are automatically scheduled. Also, the experimenters can run
their own software on duplicates of the experiment processing platform at European
Space Operations Center (ESOC) in a future iteration of the project.
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Kurzfassung

Das Testen von Innovationen im Bereich der Missionsplanung und Durchführung
gestaltet sich schwierig, da kein Betreiber eines aktiven Satelliten einen Eingriff in
sein System erlauben würde. Dies wäre zu riskant, denn falls die Austauschsoftware
fehlerhaft ist, verliert man einen eigentlich funktionierende Satelliten. Ein weit-
eres Handicap von Satellitenmissionen ist, dass die Hardware strahlungsresistent
sein muss. Die Computerchip-Industrie verdoppelt ungefähr alle zwei Jahre das
Rechenvermögen von Computerchips, und die Herstellung von Computerchips die
strahlungsresistent sind kostet viel Zeit und Geld. Die strahlungsresistenten Chips
können mit dieser Verdoppelung nicht mithalten, weshalb immer mehr kommerziell
hergestellte Produkte Einsatz in Satelliten finden. Jedoch hat der Einsatz von
kommerziell hergestellten Computerchips im Weltraum auch Nachteile. Nur durch
spezielle Verfahren, wie etwa Redundanz, kann man die Lebensdauer eines Satelliten
mit kommerziellen Computerchips an die eines Satelliten mit strahlungsresistenten
Chips angleichen. Die weitere Erforschung des Einsatzes von kommerziell hergestell-
ten Chips in Satelliten ist eine Herausforderung.

Die ESA stellt sich diesen zwei bekannten Herausforderungen mit dem neuen
Satelliten namens OPS-SAT. Dessen Hauptaufgabe ist es, für neue Experimente
im operationellen Bereich ein fliegendes Labor zu sein. Jede europäische Institu-
tion oder Firma kann Innovationen im operationellen Bereich von Satelliten testen.
Die Experimente sind in der Lage, den gesamten Satelliten zu steuern, obwohl ihre
Erschaffer geringe oder keine Erfahrung in der Softwareentwicklung und Satelliten-
steuerung haben müssen. Um mit eventuellen Fehlern zurecht zu kommen, muss
OPS-SAT robust und sicher sein. Diese Arbeit beschreibt die hardwareseitigen As-
pekte, die OPS-SAT robust und sicher machen und spezifiziert ein flexibles System
um Experimente am Boden zu testen, basierend auf GitLab. Das System ist in der
Lage alle 115 Experimente die bis jetzt registriert sind semi-automatisch zu testen
und ist erweiterbar. Das System erstellt Logs und Regressionsdaten. Validation-
stests, so wie zum Beispiel das Einhalten der maximalen Dateigröße sind möglich
und werden dokumentiert. Die Tests werden automatisch zeitlich geplant und aus-
geführt. Außerdem können die Teilnehmer in der Zukunft ihre Experimente auf
einem der Duplikate der Experimentier-Plattform des Satelliten am Boden testen.
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1. Motivation

1.1. Motivation
Space agencies and satellite operators are handicapped by the fact that the OBCs are
not on the cutting edge of what technology has to offer. Making radiation hardened
parts takes time and costs more money than using COTS parts. So, by the time the
satellite is launched, the on-board computers can easily be 6 years or more out of
date. Also, when in flight, it is almost impossible to test new procedures in satellite
operations, because the risk of losing a healthy satellite when a test goes wrong is
too high.

The European Space Agency is addressing those and more challenges in its new
flying laboratory, a satellite named OPS-SAT. It is devoted to demonstrate the
drastic improvements that will be possible, if there would be up to date computers
aboard of satellites. Even though it is only 30 centimeters tall, its on-board comput-
ers are 10 times more powerful than any current ESA spacecraft[13]. The difficulty
to perform live testing of mission control systems gets lowered, by having a small,
cost effective satellite. This fact enables ESA to build an exact copy of the satellite.
This copy is called the ”Engineering Model” or ”Flatsat”. Experiments can be tested
on it before being uploaded to the satellite. With OPS-SAT, no other mission has
to risk their working satellites in orbit. OPS-SAT is build safe and robust, ready
to recover from events that would usually mean the loss of a mission. With this
confidence, the operators are able to try out new and innovative control software
submitted by experimenters. Achieving this level of confidence and safety for a low
cost project is not easy. The Team creating OPS-SAT is able to do so, by com-
bining off-the-shelf solutions that are already common in the nanosatellite sector,
terrestrial microelectronics for the on-board computer, and the experience of ESA in
safely operating satellites. The result is an open, robust, cost effective ’laboratory’
for in-orbit demonstration of revolutionary new control systems and software, that
would be too risky for trial on a satellite in operation. Over 100 Experiments are
already registered to fly on the satellite.

To maximize the on-board testing time for experimenters, as well as to minimize
the risk of losing the satellite to unforeseen malfunctions of the experiments in flight,
there will be a need for extensive pretesting on the ground. With those tests, it will
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1. Motivation

also be possible to compare in-flight behavior of the experiments to characteristics
that were evaluated on the ground. To do this for the 100+ already registered
experiments, that are constantly evolving, is already too much to manage manually.
Especially under low cost conditions. This thesis is an attempt for the specification
of a safety framework and the partial implementation in the OPS-SAT project.

1.2. Scope of this Work
The task proposed by ESA and Embedded Systems and Applications Group (esa)
at the TU Darmstadt was to specify and partially implement a test and control
framework for the OPS-SAT mission. The specific requirements cover:

1. Handling all experiments registered so far as well as experiments that will be
registered in the future
The solution shall have the ability to grow with the number of registered
experiments.

2. Minimize risks for the spacecraft in flight
Adding up on the safety features of OPS-SAT that are already in place, ex-
periment tests performed on ground will help decrease the risk of losing the
satellite.

3. Maximize experiment time in flight
By enabling experimenters to test their own experiments on the engineering
model of OPS-SAT, they can evaluate their own software and thus have an
additional debugging instance.

4. Create standards for experiments
There are several regularities for OPS-SAT. For example the file size has to
be limited, because of the short communication windows that will be available
in the planned orbit.

Excluded from specification in this thesis are the hardware components of the
satellite, because, at the point the thesis started, the hardware of the satellite was
already decided upon. The hardware will be described nevertheless for its error
avoidance abilities in Chapter 4.
Boundary conditions and optimization goals are identified as follows:

1. Internal safety and security procedures that are necessities by ESA.

10



1.3. Contents of Work

2. With OPS-SAT being a low budget mission, the cost shall be minimal.

This shall be realized by specifying an architecture that includes the following
entities:

Entities involved in test and control architecture

1. Experiment Developers, that submit the code to be executed on the satel-
lite.

2. Satellite Operators, who provide boundary conditions for satellite hard-
ware and software.

3. Offline test suits, to be executed before the upload of an experiment to
the satellite.

4. Log and regression view, to provide feedback about executed online and
offline test results as well as results of experiments to experiment devel-
opers and satellite operators.

5. Communication, ensuring proper uplink of experiment software and down-
link of experiment and test results

6. Runtime flight system, to provide online checks of boundary conditions
not to be exceeded by the experiments.

1.3. Contents of Work
The technical background provided in Chapter 2 is required to understand the signif-
icance of this work, as well as to introduce the OPS-SAT project. The introduction
starts with a description of OPS-SAT, its mission, and the events in the space sector
that created a need for new approaches to creating satellites.

A literature research will be provided in Chapter 3. The literature research pro-
vides an overview of why COTS components are getting more and more common in
satellite operations, and lists a similar mission to OPS-SAT.

Chapter 4 describes a methodical approach to identify a solution for the task
of this thesis. Steps included in this approach are, abstraction of the challenge,
identifying sub challenges, identifying sub solutions for challenges, creating a rating
system for each sub solution to find the best ones and creating a solution for the
whole project from all the sub solutions. The whole process will be explained and
the outcome described.

Chapter 5 shows the practical implementation of the solution into the ESOC
infrastructure. This is done by following strict security measures of ESA.
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1. Motivation

Chapter 6 provides an overview of what the solution is capable of, and shows the
results of a validation test.

In Chapter 7, all those findings will be summarized and an outlook for the future
of the project will be identified.

The usual Discussion to compare results to consisting solutions is intentionally
left out, as there is no comparable mission or predecessor.
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2. Technical Background

2.1. Challenges
OPS-SAT has two main objectives: Tackling the challenge of OBC being out of date,
even at launch day and the need for a test platform for new operational methods.

The OBC being out of date roots in the harsh environment of space itself, where
there are several environmental influences that can alter a satellites behavior. The
main influences on a satellite in orbit being, gravity, electromagnetic radiation, atmo-
spheric interference, the ionosphere and matter particles. All of them can interfere
with a satellite.

The OBCs are mostly influenced by electromagnetic radiation. When a charged
particle collides with an element of a computer chip it can cause a variety of fail-
ures, that can be grouped in the categories. Failures because of total ionizing dose
accumulation, neutron or proton flux events and single event phenomena are a se-
lection of them. The table Table 2.1 from [7] shows the main categories of radiation
environment failures, and typical effects on electronic components. For all effects
mentioned, there is some shielding feasibility.

Common measures against radiation related failures are, to avoid high radiation
areas by choosing other orbits, shielding to lower the radiation dose level, use of
radiation hardened components or system level error corrections. Lately, a trend in
space industry is to use more COTS products, that have none of the above qualities.

It is easy to understand, that the regular approach of developing a radiation
hardened chip takes a lot of time, effort, and money. This leads to cost intensive
hardware, that is years behind state of the art computer chip technology.

The approach, using COTS technology in space has its upsides and downsides
as well. By using several of the same COTS hardware components it is possible
to get the same lifetime as using radiation hardened hardware. This can be done
in cold redundancy, where the secondary component will only switch on in case
of a failure, or in parallel, which enables a majority vote for computations. On
the other hand, COTS hardware is not as rigorously tested and does not have the
same documentation standards as specially designed space hardware. This makes it
harder to make predictions for when they will fail. For example, without shielding,
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2. Technical Background

Radiation environment Typical effects

Total ionizing dose

• Threshold shifts in CMOS transistors, leading to
failures of logic gates

• CMOS field-oxide charge trapping, loss of isola-
tion, excessive power-supply currents

• Power transistor threshold shift, loss of on/off
control

• Gain degradation in bipolar-junction transistors

Neutron or proton flux
events

• Displacement damage effects

• Gain degradation in bipolar-junction transistors

• Severe degradation of charge-coupled devices,
dynamic memory performance

• Damage to photodetectors

Single-event phenomena

• Single heavy ion causes ionization “track”

• Single bit errors in static memories

• Localized latchup in CMOS integrated circuits

• Gate rupture of power transistors

• Temporary upset of analog devices such as am-
plifiers

• Burnout of diodes, transistors

Table 2.1.: Radiation related failures of electronics in space from [7]

14



2.2. OPS-SAT Description

the total ionizing dose that accumulates can lead to gain degradation in bipolar
junction transistors.

In conclusion, COTS components can be a way of introducing massive computing
power into satellites and space missions, but their lack of documentation and testing
makes them unpredictable. Studies of COTS components in space have lead to
several solutions for maximizing success rate in space. For example cold redundancy
or majority votes.

The lack of testing facilities for spacecraft operations is also an issue in spaceflight.
No active mission will allow experiments with their satellite, because the risk of
losing it is too high.

2.2. OPS-SAT Description
OPS-SAT, with its powerful COTS OBC will be an in-orbit testing facility for ground
breaking new technology. While being a three unit cubesat only 30 centimeters tall,
OPS-SAT combines robustness, safety and more computational power than any
other mission, into a flying laboratory for innovations in the mission operations
sector.

Its robustness allows the satellite to provide open access for registered experi-
menters, that have ideas for new methods in space craft operations. Experimenters
can upload their experiments and test how these perform in the conditions of outer
space.

OPS-SATs mission objective is to be an orbital test platform for on-board software
applications, advanced communication protocols, compression techniques, demon-
stration of advanced software-defined radio concepts, optical communication from
ground to space, experiments using cameras, attitude control, scheduling and au-
tonomy as well as experiments with ground-based applications. OPS-SAT is packed
with state of the art semiconductors to fulfill its mission objectives. This includes
processors, field-programmable gate arrays (FPGAs), a camera and an attitude de-
termination and control system (ADCS) for pointing to exact locations and recovery
of the satellite in safe mode. Experimenters will be able to access many sensors and
actuators, such as reaction wheels and magnetorquers, either via an application pro-
gramming interface (API), or directly via telemetry. The OBC will relay the signal
in telemetry mode during the experiments execution.

15



2. Technical Background

The OPS-SAT architecture has two major parts, the OPS-SAT bus and the pay-
load, as seen in image Figure 2.1. A satellite bus is the infrastructure of the satellite,
that provides a base for the payload. The bus of OPS-SAT consists of four enti-
ties, namely electrical power system (EPS),on-board data handling (OBDH), coarse
ADCS and telemetry and telecommand (TMTC). The EPS is responsible for power
input, power output, battery and solar panels. The solar panels are used to charge
the battery, which can provide power even when the satellite is in earths shadow.
The EPS also monitors the power consumption of the components of OPS-SAT. If
the power consumption of one of the components is too high, the EPS will open the
switch. This is one criteria for shutting down experiments.

The OBDH consists of the two main OBCs, which are in cold redundancy. They
are in charge of managing the OPS-SAT modes, reading the coarse attitude sensors,
loading, monitoring and managing the executables into the payload computer, ex-
ecuting telecommands, storing and sending the telemetry messages to ground and
obtaining the GPS time and distribute it to all computers. Also, the OBC collects
sensor data for all bus and payload devices and with that monitors the satellites
health. It also performs adequate recovery actions according to its fault detection,
isolation and recovery (FDIR) functionality. This includes receiving high priority
commands sent via ultra-high frequency (UHF).

Coarse ADCS are used to get information about the satellites attitude in orbit.
They are not sufficient enough for pointing, but in case of an emergency, or when a
coarse attitude reading is needed they will be used.

TMTC includes everything that is needed to communicate with the satellite.
The core payload consists of the satellite experimental processing platform (SEPP),

S-band TMTC and the ”consultative committee for space data systems (CCSDS)”
engine. S-band TMTC is used for faster uploading data, such as experiments and
downloading telemetry produced by the experiments. The CCSDS engine manages
the data transfer as well as telecommunications and telecommands according to the
CCSDS requirements.

The SEPP is the main experimentation platform. It is based on an Altera Cy-
clone V SX System-on-Chip(SOC) digital core logic device, which is a COTS compo-
nent. It provide powerful processing capability with its 800MHz central processing
unit (CPU) and 1GB DDR3 RAM. Four of those boards will be on board in cold
redundancy. The board consists of a hard processing platform (HPS) and an FPGA
portion. The HPS is a fully functional computer that contains a dual core CPU
with hardware blocks and device interfaces. The HPS is connected to FPGA and
able to communicate with it. The FPGA consists of logic array blocks (LABs),
memory logic array blocks (MLABs) and arithmetic logic moduless (ALMs). By
connecting these blocks using very high speed integrated circuit hardware descrip-
tion language (VHDL), it is possible to create custom logic structures.
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2.2. OPS-SAT Description

The SEPP has Linux as default operating system. For OPS-SAT, experiments can
be deployed in of four ways: As a Java virtual machine Java virtual machine (JVM),
that uses the Nanosat MO-Framework to access the sensors and actuators, as well
as the camera of the satellite, onto the Linux operating system (OS), as binary on
the kernel, of the system or as FPGA firmware as mentioned in [9].

The first option is, to create a JAVA application that uses the Nanosat MO Frame-
work. The MO Framework, according to [11], is an innovative on-board software
framework for nanosatellites. It is able to provide a way to easily interact with a
nanosatellite. This is possible by introducing the concept of an ”App” for a mobile
phone to a nanosatellite. The apps can be easily developed tested and deployed.
Even execution on multiple spacecraft is possible. It is based on the CCSDS com-
munication layer for satellites. The API enables experiments to access the sensors
and also to interact with the TMTC part of the satellite.

The second option is to develop software to be installed directly onto the Linux
OS. This software does not necessarily have to be written in JAVA. By developing a
software to run on the Linux OS, it is possible to replace the protocol stack. This is
interesting for developers that want to test innovations in data transfer from satellite
to earth.

Thirdly, there is a way to install the experiment raw on the kernel of the SEPP.
This is useful for experiments that want to test a completely new OS.

Lastly, a custom FPGA firmware can be deployed to the satellite.
For the installation of an experiment, it will be uploaded as a binary file together

with an installation script. The script then installs the experiment on the SEPP.
As a safety measure, the experiment have to send an ”alive” signal periodically to
the main OBC. This way it is possible to recognize when en experiment does not
work properly.

When a part of the satellite is not functioning correctly, it is beneficial to trigger
a ”safemode” command, to keep the satellite safe. In safemode, only the main
components, namely the satellite bus stays operational. This way, the satellite saves
power until it is restored by the operators to complete functionality. Also, the
satellite starts in safemode, when it is switched on. The possibilities to trigger a
safemode are among other things, if the EPS registers an abnormal power usage,
when the ADCS exceeds its tumbling limits, or with a reset command from earth.
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2. Technical Background

Figure 2.1.: OPS-SAT Architecture [12]
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3. Related Work

This chapter will briefly outline, why COTS components are getting more and more
used in satellite production, and shows a satellite similar to OPS-SAT. COTS
components have been used in spacecrafts from the first scientific missions to the new
innovative small satellite programs of the 21st century [3]. The cost reduction paired
with the ever growing computing power makes it intriguing to use COTS products.
Using them is only possible by applying rigorous tests to the parts, to gather data
about their behavior in the natural space environment, described in Chapter 2.
Those screening procedures are pricey, so studies work on standardizing procedures
to safe money. National Aeronautics and Space Administration (NASA)’s [14] paper
acts as a guide to use appropriate parts in the fabrication of space hardware, to meet
mission reliability objectives within budget constraints. OPS-SAT further tests the
abilities of COTS components in space.

OPS-SAT, as a flying laboratory to test new approaches in COTS hardware, as
well as operational methods, is the first of its kind. There was a mission planned
to test COTS hardware, NASA Space Technology 8 (ST8) mission, set to launch in
2009, but has been cancelled [1]. Especially the exchange of experiments in flight,
that OPS-SAT provides has never been done before.
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4. Conceptional Work

This chapter provides a simple overview of error sources during the life of a satellite
and error avoidance strategies. Simple, because error avoidance in satellite missions
is not the main objective of this thesis, but nevertheless a part of it. After the
overview, the focus will lie on the identification of partial challenges for testing
experiments provided by experimenters. Those partial challenges are analyzed and
rated, before combining them into one solution for testing experiments.

4.1. Error Sources Throughout the Life of a Satellite
One of the biggest challenges for the OPS-SAT development is to build a satellite
that can be controlled by amateurs, with little to no experience in spacecraft opera-
tions and be robust enough to not lose the mission when an error occurs. Not losing
the satellite shall be the main objective of the hereby proposed safety and control
framework.

Errors in a satellite mission can occur either before flight or in-flight and can
be caused by hardware, software or the operation of the satellite as such. Satellite
operations cover all activities that are necessary to control and maintain the satellite
in working condition. In OPS-SATs case, there has to be another differentiation,
because experimenters are allowed to control the satellite. Experimenters do not
necessarily have experience in spacecraft operations, nor in software development.
Experiments are software that are controlled by the experimenters, therefore errors
produced by experimenters can be of software or operational nature. This means,
additionally to operators as error sources, we have experimenters in the categories
software before flight, software in-flight and operations. Section 4.1.1 outlines the
whole framework with its error sources, but will focus on the error avoidance for
software before and in-flight for experimenters.

As mentioned before, the errors that can occur in hardware before flight and
hardware in flight are just mentioned here, because the decisions for hardware were
already made when this thesis started. Nevertheless, the test and control framework
will include a description of measures to take to prevent some hardware errors both
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4. Conceptional Work

before and in-flight in the Section 4.1.1. A complete detailed error analysis for the
satellite would go beyond the scope of this thesis.

4.1.1. Hardware Before Flight
First, a selection of hardware errors before flight and what can be done to avoid
them, according to [5]. The spacecrafts hardware consists of structural components,
sensors, actuators and the payload. The structure of the spacecraft is most likely
a lightweight material, that still can resist the immense forces that influence the
spacecraft in its life phases. First, the satellite has to withstand the vibrations and
acoustical stress that happens during the launch of a rocket. When released into
space, the satellite gets battered with solar and cosmic rays, eroding any material
that has not been qualified for space environment. Micrometeorites, blasting through
space at mind blowing speeds can crash into the structural material, destroying any
part that has not been rated for impacts. Also, the temperature gradients, caused
by the combinaton of solar radiation and thermal vacuum, can lead to stress in a ma-
terial, resulting in a deformation or fractures. To avoid structural errors, extensive
modeling and testing of all the structural forces is needed. Tests include acoustical
testing, vibration tests, radiation tests and so on. A recent famous representative of
a structural error causing a spacecraft to fail was the explosion of Falcon 9 Rocket
2015. One of the pressurized Helium tanks ruptured, destroying the rocket and the
payload [15].

Sensors on a spacecraft are needed to determine its spacial information. Not know-
ing a spacecrafts altitude, attitude or orientation towards a reference system, can
result in the loss of the satellite, for example caused by communication loss when
directional antennas are pointed in the wrong direction. There are several main
sensors to determine a spacecrafts attitude. For example Gyroscopes, startrackers,
magnetometers, accelerometers and tracking with radio waves using beacons, gps
and doppler radar. Possible error sources for the sensors in a satellite can be human
error such as in the crosswiring of gyroscopes in the Genesis mission 2001. The satel-
lite crashed at landing, because the accelerometers had been installed backwards.
Also, the Galileo Jupiter entry probe had a fatality when the parachute deployed
1 minute too late. Also due to crosswired accelerometers. The fault had not been
noticed, because the probe was tested in a centrifuge, which had a crosswired test
harness [5]. Other error sources include faulty calibration or interface problems. To
avoid human errors, management systems should be in place as well as the right
procedures to handle sensors.

Actuators are needed, to keep the spacecraft on the correct track to its desti-
nation, or to control a spacecrafts attitude. Common actuators in spaceflight are
thrusters and reaction wheels. Thrusters work with the principle of ejecting accel-
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erated matter, and the resulting acceleration of the spacecraft. Most thrusters work
with pressurized substances, that get ejected through a nozzle. To contain and regu-
late the pressure, valves are needed. The valves have many attack vectors for errors,
such as the mostly corrosive materials used for propulsion, which include Oxygen,
Kerosene or Hydrazine. The valves can get stuck, or break, caused by corrosion.
Solutions for stuck valves can be the parallel arrangement of valves, if the weight
restrictions allow it. For the corrosion of the valves, a serial arrangement could be
made. An example for a mission that had issues with its valves is the tracking and
data relay satellite (TDRS) 9. The US satellite was launched on an Atlas rocked
and and should insert itself into a geostationary orbit. The first burns went well, but
then the sensors indicated that no fuel was flowing. One of the pressurization valves
was stuck and the fuel can not exit its tank without pressurization. Fortunately, the
pressurization lines were redundant, what saved the mission [5].

Reaction wheels are used to control a spacecrafts attitude. But they too are prone
to errors. For example, two of the reaction wheels of NASA’s Kepler ”Planet Hunter”
satellite failed after only two or three years in orbit, respectively [8]. Luckily, Kepler
could be resurrected using the pressure of solar winds to stabilize the spacecraft
without two of its reaction wheels.

The payload of a satellite is usually not a major threat to mission health. But a
payload that does not meet the safety requirements could become an error source.
The payload can be a sensor, a structure, or an actuator, so all the safety measures
stated above have to be applied to the payload of a satellite.

4.1.2. Hardware in Flight

A second source of errors is hardware in flight. As discussed in Section 2.1, the
radiation from the sun and the cosmic background radiation can alter a spacecrafts
structure, which has to be chosen according to the expected environment. But
not only structure can be influenced, silicon based computer chips are also at risk of
failing. In Table Table 2.1 on page Page 14 some typical effects of different radiation
environments are shown. Traditionally such errors are prevented by using radiation
hardened computer chips. Those are developed especially to withstand the radiation
in space. When using COTS components, there are several approaches to reach the
same range of lifetime as with radiation hardened components. As mentioned in
[3] error reduction methods are, redundancies, component inspection and testing in
a thermal vacuum facility. The testing of components in thermal vacuum facilities
is used to provide data about their lifespan in conditions for which they were not
made.
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4.1.3. Software Before Flight (Operators)
As for every other field of application, satellite software development is also error
prone. For example, exception handling and knowledge of system boundaries have
been sources of errors in the past. The loss of the first Ariane 5 rocket was due to
a specification and design error in the inertial reference system[2]. Or the famous
omission of a hyphen that allowed incorrect transmission of guidance signals to the
Mariner 1 Probe, causing in a fatal accident [10]. There are many possibilities for
error correction, such as unit tests, test driven development, modular programming
or tools for code analysis [4].

4.1.4. Software Before Flight (Experimenters)
Besides the more experienced operators, experiment developers may cause software
errors during development (i.e., before flight) in the OPS-SAT project. Tests on
ground can be carried out, to rule out any errors before the flight. Potential tests
could be initial tests performed by the satellite operators, or logging performance
data of experiments, such as CPU or random access memory (RAM) usage of the
experiment on the ground. Also, enabling experimenters to test their own software
on the engineering model of the satellite can help detect software bugs. This section
will be focused on in Chapter 7

4.1.5. Software in Flight (Operators)
When the satellite is in its orbit, software errors can also occur. Either, bugs that
have not been eradicated before launch can be detected, or, when a software change
is needed, new bugs can be introduced. Possible reasons why a software change
is needed are on-board failures or the before mentioned detection of bugs. Factors
that can cause the introduction of errors in flight are time pressure or the team not
knowing their system perfectly. To avoid the errors mentioned here, a bug fix that
is not system critical should be planned ahead with enough time to rule out every
possible error. To rule out errors that could be caused by a team not knowing their
system perfectly, internal changes in teams should be limited, so that no knowledge
gets lost with a change. Also, extensive documentation of produced data is possible
to minimize errors.

4.1.6. Software in Flight (Experimenters)
Experiments will be changed on a regular basis, that of course introduces a lot of
possible error sources. Inexperienced experimenters can introduce errors that can
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possibly influence the spacecraft. For example, when an experiment uses the CPU of
the experimenters platform excessively for a long time, the battery could be drained.
There is already a hardware way to stop an experiment and send the satellite to safe-
mode. The EPS recognizes if any unit of the satellite, thus also the experiment unit,
uses too much power and shuts down the corresponding section. This allows the
satellite to recharge its batteries. Also, the experiments have to send an alive signal
periodically [9]. When the signal is not recognized by the main OBC, the experiment
also is shut down. A software solution that is able to warn the experiment, that it
exceeds its limits for resource usage would be a more elegant solution. This way, the
experiment can go on and check what is not functioning correctly, or save the data
produced so far. By logging the performance data of the experiment before hand
like proposed in Chapter 7, it would be possible to create unique and exact limits
for every single experiment. Thus having a way of comparing the resource usage on
orbit with a terrestrial testrun.

4.1.7. Operations in Flight (Operators)

Yet another error source can be the decisions that satellite operators make through-
out the mission. For example when an attitude change with wrong values is uploaded
and the satellite is far away, this could lead to the high gain antenna pointing away
from its terrestrial counterpart, thus losing communication and triggering a safe
mode. To avoid such mistakes, teams could double-check every decision, or have
automated tests in place before uploading operational commands.

4.1.8. Operations in Flight (Experimenters)

In-flight, there is another threat to the satellites health, namely the operational deci-
sions that the experiments make. One operational mistake that could happen is, for
example, the CPU of the experimenters platform runing on high energy consump-
tion in the eclipse of the orbit. Or, when an experiment is spinning the satellite, so
that its solar cells point away from the sun, preventing it from charging. Those two
actions are possible and will not be checked for by a software test. This is why the
hardware of the satellite has to account for such mistakes. Measures against oper-
ational errors by experimenters are for example, that the every face of the satellite
is coverd with solar cells, enabling it to charge even while spinning. Also, the EPS
checks if the battery charge is getting too low, and when it happens shuts down the
experiment before depletion.
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4.2. Architecture for Experiment Testing
As mentioned in Chapter 3, what makes OPS-SAT different from other missions is
the fact, that experimenters will also be able to control the satellite. This is the
key mission element and has not been realized before by any other satellite mission.
But there is also a lot of risk introduced when amateurs can control a spacecraft.
Some examples of what can cause errors when experimenters control the satellite
have been mentioned in Section 4.1. In the following section this thesis will describe
an architecture to rule out many errors that could be introduced by experimenters
handling the satellite.

The hardware to test experiments on the ground consists of five of the MityARM
processors running in the satellite experimentation segment, and an engineering
model of the satellite. The MityARMs will be used for experimenters to test their
software for bugs before it gets uploaded to the satellite. Also, because of the small
and relatively cheap satellite, there will be an exact copy of the satellite in ESOC.
This engineering model, also called ”flatsat” will also be used to test experiments
before uploading them to the satellite in orbit. Again, the hardware was decided
upon, before this thesis was produced.

The following subtasks are covered by the proposed framework. It should have
automated testing, as the experiments are already too many to handle them man-
ually. It should have version control, enabling the experimenters as well as the
operators at ESOC to log the progress of the experiment. The data transfer has
to be arranged, first, from experimenter computers to ESOC data storage. Then,
from ESOC data storage, to test on the MityARMs and, when those tests passed
from the data storage to testing on the flatsat. The architecture should be able
to run initial tests proposed by ESOC on the experimenters hardware. Also, the
experimenters should be able to test their own experiments on ESOC hardware, to
minimize errors. A scheduler should be implemented, to organize experiments to be
tested on the MityARMs and the flatsat, as there are many experiments and not
much testing hardware. There should be an electronic interface for experimenters
to interact with and, of course, ESA security measures are mandatory.
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Figure 4.1.: Experiment architecture overview
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Figure 4.1 shows the basic entities of the envisioned architecture. Rectangular
boxes represent active entities, such as the experimenters, an instance for version
control and data storage, or the entity for the initial tests. Red lines indicate data
transfer of experiment data, such as binaries and scripts, green lines indicate results
that have to reach the experimenters. The blue line indicates the interface between
the experimenters and the testing architecture.

For those sub challenges, sub solutions were identified. Those sub solutions then
were rated and compared. The sub solutions found and the rating process are
described in the following section. A summary of the results is provided in Figure 4.2
and Figure 4.3.
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Rating
excellent 100
neutral 50
not applicable 0

Automated testing
External trigger ESOC defined initial Tests Experimenters Tests Rating

Jenkins 90 90 90 90
Script 30 20 20 23
Gitlab 90 90 80 87

Version Control
Easy to use easy to implement history Rating

Gitlab 80 100 100 93
Sorting by date 80 100 80 87
Change name 60 100 60 73

Data transfer
easy to use easy to implement Automatic scheduling Rating

Human interaction 20 30 0 17
Script 10 30 40 27
Gitlab 80 80 90 83

Initial tests defined by ESOC
Easy to implement easy to maintain security Rating

have  testing scripts 60 80 90 77
Gitlab Runner 80 80 80 80

Figure 4.2.: Summary of the Evaluation Process 1

29



4. Conceptional Work

Experimenters tests on ESOC hardware
Easy to implement easy to maintain security Rating

Share MA physically 20 10 40 23
Gitlab Runner 95 95 70 87

Schedule exp. on MityARM
Easy to implement Automatic Rating

Own scheduler 10 50 30
Gitlab runner scheduler 90 90 90

Schedule exp. On FlatSat
Easy to implement Includes schedule of Team flexible to be auto Rating

COTS scheduler 90 70 10 57
Manual 80 80 10 57
Gitlab runner scheduler 60 40 70 57

Experimenter Interface
Easy to implement easy to use security controllable Rating

Website 10 50 50 37
SSH 70 90 90 83
Gitlab 90 90 80 87

Security
Compatible with ESOC infrastructure Rating

Own server 100 100
Cloud 0 0

Figure 4.3.: Summary of the Evaluation Process 2
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The following section analyses the subtasks and identifies solutions for each. For
the rating, a simple non weighted percent scale is used, 0 as the lowest rating value
and 100 as the best rating possible.

4.2.1. Automated Testing

For automated testing of the experiment software, Jenkins, GitLab or writing own
scripts are identified as possible sub solutions. Those sub solutions were rated if
they can use exernal triggers, to trigger test processes automatically, if they can run
initial tests defined by ESOC, and can run experimenters own tests. 100 percent ”ex-
ternal trigger” correspond to the functionality already in place and correctly setup,
zero percent means coding from nothing. 100 percent ”ESOC defined initial Tests”
means the solution is in its basic form able to run the tests defined by ESOC, zero
percent means no tests can be implemented. 100 percent ”Experimenter Tests” cor-
responds to the solution already able to have the experimenters tests implemented,
zero percent means no implementation is possible. Jenkins as a software for con-
tinuous integration is able to handle all three tasks with the best rating. Writing
own scripts takes longer time and the integration of the scripts in the surrounding
architecture is hard. GitLab features all the integration tools that Jenkins has, and
can be easily connected with its surrounding architecture. Thus GitLab was chosen
as a solution for the automated testing.

4.2.2. Version Control

Version control can be done for example with GitLab, sorting by date or changing
the name of the files. The sorting is the simplest solution for having different versions
of a file. Those alternatives were rated for simplicity of usage, simplicity of imple-
mentation and if they create a history. 100 percent easy to use means a solution has
the functionality implemented and setup, zero percent means the solution has to be
handled by experts. 100 percent easy to implement means it is easy to setup and to
be changed, zero percent means it is not flexible. 100 percent history corresponds
to every change can be logged automatically, zero percent means a change has to be
done by hand and every time. GitLab has received the best rating. Even though it
is not the easiest option to implement, it is easy to use and it creates a history as
well as it logs changes. Again the easy interaction between the other parts of the
architecture was an advantage.
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4.2.3. Data Transfer
Data transfer is needed, to transfer the experiment from the experimenters hardware
to ESOC for the version control, or to transfer the data from the version control to
be tested on the MityARM and the flatsat, respectively. The data transfer should
be easy to use, easy to implement and automatically scheduled. 100 percent easy
to use corresponds to the experiment being fully automatically transferred, zero
percent means it has to be transferred by hand and by an expert. 100 percent easy
to implement would mean a solution is already embedded and set up, zero percent
means the solutions has to be programmed thoroughly. 100 percent automatic
scheduling means the programm schedules every data transfer automatically, zero
percent correspond to no scheduler can be implemented. Possible options for data
transfer are Human interaction (copying files) from a to b, scripts that are written
to automatically handle data, or GitLab. Transferring the data manually is how the
OPS-SAT team managed data transfer so far. But the 100+ experiments registered
are too much to handle manually. For the scheduling to be automatic, a stack has
to be in place. For example when an experimenter wants to test an experiment
in the night, there would be nobody to transfer the the experiment to the test
stage. Implementing a script with a ”first in first out” stack would also solve the
challenge, but is not as easy to implement in the overall architecture, and takes a lot
of time to code. With GitLab it is possible to register runners that automatically
listen for jobs and transfer the data automatically, when the runners are registered
correctly. GitLab also includes git as a way to transfer the experiments from the
experimenters hardware to the included version control tool. Thus GitLab again
provides the simplest solution by having all the features implemented.

4.2.4. Initial Tests Defined by ESOC
The initial tests defined by ESOC have to be easy to implement, easy to maintain
and secure in a way, that the experimenter software can not harm the surrounding
system. 100 percent easy to implement would be, that the solution is already avail-
able without doing anything, zero percent means everything has to be developed
thoroughly. 100 percent easy to maintain corresponds to, for example a graphical
user interface (GUI) with changeable values and zero percent means everything has
to be done again thoroughly for any changes. 100 percent security means there
is no way at all that any experiment interacts with any other part of the system,
zero percent would be direct communication available for all experiments. The test
scripts are not as easy to implement as GitLab, but they both are equally easy to
maintain, with values changeable in the code. The security aspect is better with the
scripts, as they can be associated to only on user and can run on a separate server,
isolated from the rest of the framework. GitLab can also have a separate server for
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running the tests. Overall, GitLab is is easier to implement, so it is chosen.

4.2.5. Experimenters Tests on ESOC Hardware
The experimenters tests on ESOC hardware can be done with sharing the MityARMs
physically by sending them with a delivery company, or by having them implemented
as GitLab runners at ESOC. Criteria for the initial tests are ease of implementation,
ease of maintenance and security. 100 percent easy to implement means the solution
is already available, zero corresponds to the solution being not available. 100 percent
easy to maintain means the hardware is at the same place, and only selected people
have access to it. 100 percent security means no experiment ever is able to access
data of another experiment, and the experiment has no connection what so ever to
the other parts of the framework. Until now, the few experimenters that are located
around Europe are sharing the MityARMs physically. This solution is neither easy
to maintain, easy to implement, nor safe. With the MityARMS configured as GitLab
runners, every experimenter can have safe access to the MityARMS.

4.2.6. Scheduler for Experiments on MityARM
Scheduling experiments for testing on the MityARM should be easy to implement
and automatic. 100 percent easy to implement means that the functionality is al-
ready available and set up, zero percent means it has to be programmed thoroughly.
100 percent automatic means the solution actively schedules jobs and executes them
as fast as possible, zero percent means the scheduling has to be done by hand. Cre-
ating an own scheduler is not easy, and can only with a great amount of integration
be fully automatic. The GitLab runner has this feature ready to be setup, an it
automatically listens if jobs get created.

4.2.7. Scheduler for Experiments on Flatsat
Scheduling on the flatsat is connected to greater effort. The experiment has to be
marked ready for testing on the flatsat by an administrator. The upload to the flatsat
has to be done via a file upload server, that is connected to the S-band receiver of
the flatsat and the experiment must be installed via the communication channel of
the flatsat wich is connected to a communication server. Implementing this is not
easy and not yet ready by the end of this thesis. Scheduling experiments for testing
on the flatsat must be done by a team member, that looks after the experiment
during its execution time. To fulfill this sub challenge perfectly, a scheduler must
be easy to implement and must include the schedule of the team that looks after
the experiment. In the future, it could be possible to at least automatically upload
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the experiment to the flatsat at a specified date in the schedule. To implement
this feature, the scheduler would need the ability to access the experiments and the
flatsat at the same time. 100 percent easy to implement means there is a ready
to use option for the challenge, zero percent means the solution has to be created
thoroughly. 100 percent inclusion of the team members schedule means the schedule
is already implemented, zero percent means there is no way to implement a schedule
for the team. 100 percent flexible to be automatic means the scheduler has the
functionality to be upgraded to automatic file transfer already, zero percent means
there is no way of automatic file transfer. A COTS scheduler is easy to implement, it
can contain the schedule of the team but it is not easily modified for the automatic
file transfer. Doing the scheduling manually is easy to implement, it can include
the schedule of the team but it is not flexible to be automate. A GitLab runner
scheduler is not very easy to implement, it can not easily include the schedule of the
team, but it is able to be modified to be automatic in the future. The rating of this
sub solution does not influence the decision of the overall solution, as the feature is
not yet ready, but it is provided as a decision making aid for the future.

4.2.8. Experimenter Interface

The experimenter interfaces have to easy to implement, easy to use both by ex-
perimenters and by administrators and security contrallable. Security controllable
contains for example access rights for users. 100 percent easy to implement means
the solution is already available, zero percent means the interface has to be created
thoroughly. 100 percent easy to use means the experimenters can easily access the
website and the administrators can easily add the experimenters to access the web-
site. 100 percent security controllable corresponds to all features of the website can
be individually customized, zero percent means every user has the same rights. Cre-
ating an own website is not easy, and takes a lot of time. Its ease of use and security
control features depend on the programmer. Ssh is not as easy to use and does not
include an easy GUI. It is secure in the way that every experimenter has its own
personal and public key. Gitlab has a website as well as ssh already implemented,
which make it easy to setup and to use. Every user can have semi customizable
security access.

4.2.9. Security

For security reasons, the architecture has to be positioned within ESOC infrastruc-
ture.
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4.3. GitLab
GitLab is identified as a COTS solution, that includes many of the required features
by itself. GitLab is a web-based software management tool based on git. It is
an evolving project with a free community edition, an enterprise starter edition
and an enterprise premium edition. The OPS-SAT project uses the community
edition, which inherits all the features needed. For example the community edition
has powerful continuous integration tools, that enable the handling of experiments
automatically. The software itself runs on a server that hosts a website with a
login screen for experimenters, it has versioning tools in place, pipelines that can be
triggered externally and build artifacts for the reports to the experimenters. Also,
a computer can easily be registerd as a runner and so can be the MityARMs.

On this basis, a flowchart for testing the experiments is created. Section 4.4
describes this flowchart.
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4.4. Flowchart for Testing

Figure 4.4.: First Stage of Experiment Testing Process
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Figure 4.4 shows the first stage of theorectical procedure to test an experiment.
An overview of the testing process can be found in Figure B.1 in Chapter B. First,
the experimenter create an experiment. This data in form of a script and a binary
is then pushed to the GitLab server that then creates a job. The job is registered
by the supervisor, that passes it to the executor for the initial tests. If the test fails,
the experiment has to be updated by the experimenter, if the experiment passes, it
can move on to the stage where the experimenter can test their own experiments
on one of the MityARMs. Either way a report is created and the experimenters as
well as the operators are notified and get the results of the tests.

Figure 4.5.: Second Stage of Experiment Testing Process
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Figure 4.4 shows the second stage of the theoretical testing process. Here, the
experimenters will create their own tests to verify the correct execution of their
software on a copy of the satellites experimenter platform, the MityARM. When
the experimenters already created their own tests, this of course is skipped. When
the data is then pushed, the GitLab server registers it and creates a job. The
supervisor picks up the job and sends it to its corresponding executor. There,
the experimenters can run their tests, and the OPS-SAT team can create logs of
resources, to compare them to the experiment, when it is executed on the satellite in
orbit. Further information in Chapter 7. The results of these test are also saved and
the experimenters as well as the OPS-SAT team notified. When the experimenters
are satisfied with the performance of their experiment, it can then move on to be
scheduled on the Flatsat for testing in Stage 3

Figure 4.6.: Third Stage of Experiment Testing Process

Figure 4.6 shows the third stage of the theoretical testing process. There, the
experiment gets scheduled for testing on the flatsat, and afterwards it is uploaded
and executed manually. If the test passed, the experiment gets scheduled for up-
loading to the satellite, if not, the experimenters have to update their experiments
and reschedule the test. Again feedback is created and the experimenter as well as
the team get a notification.
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This chapter describes the practical work installing and configuring GitLab on the
virtual machines in ESOC. The detailed installation process of the GitLab server
and the GitLab runner server is described in Chapter A.

5.1. Configuring GitLab on ESOC Hardware
The framework for testing experiments consists of five entities: Experimenters in-
frastructure, a firewall, the GitLab server, the GitLab runner server (supervisor)
and the GitLab runners. Experimenters infrastructure refers to the experimenters
personal computers (PCs), on which they create and store their experiments. The
hardware structure with interfaces is visualized in Figure 5.1. This image is more
detailed and adjusted to GitLab as a solution, in opposition to Figure 4.1, which
shows a generel solution with only sub challenges.

On the left, the experimenters are shown. The firewall is required by ESOC to
restrict the access to ESOC infrastructure from outside the ESOC network. The
exact mechanism and network can not be shown due to safety reasons by ESA.
Inside the ESOC network, there is the GitLab server, the GitLab runner server
and the runners. The MityARM is in the network, and registered as a runner, but
communication with it is not yet possible as described in Section 5.3. The file upload
server and the flatsat are not yet implemented at this point. The GitLab server
stores all the experiments and GitLab is installed on it. It is, among other things,
responsible for creating the jobs that the supervisor can pick up. Experimenters can
also see the history that git creates with their account on the website provided by
the GitLab server.

The GitLab runner server acts as the supervisor for jobs created by the GitLab
server. It waits until a job is created and allocates it to its corresponding runner,
which executes the job. The jobs are created when an experimenter pushes an
experiment to the server. The ”.gitlab-ci.yml” file, that is located in the initial tests
project, defines stages and tags. The stages ensure that the jobs will be executed
after another, GitLab otherwise runs the tests in parallel. Parallel tests would be
better performance wise, but if the initial test fails, the experimenter is restricted
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Figure 5.1.: Hardware architecture and interfaces

from running their own tests on the MityARMs. This would not be the case with
parallel tests. The tags associated to the stages define which runner should pick
up the job. There are two kinds of runners used in the architecture, shell and ssh.
Shell means, that the defined test is executed on the GitLab runner server and
ssh connects to a remote machine, executing the test there. The shell runner is
configured to only run jobs that are tagged ”init”. This way, the initial tests can
only be run on the GitLab runner server directly. The MityARM is registered as an
ssh runner. It only runs tests tagged ”M1”, as seen in Listing 5.3.

5.2. Interfaces
For the registration of an experiment, an administrator creates a user for the exper-
imenters. GitLab automatically sends the experimenters an email, that contains a
temporary password and the uniform resource locator (URL) to the GitLab server
at ESOC. At the first login, the experimenter must change the password and is
then able to access the account that an administrator created for him. Then, the
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experimenter has to create a public ssh key on their machine and enter it in their
profile. GitLab provides a ”how to” in the ssh section, if an experimenter has never
done this before. The experimenters are now ready to provide their first push to
the project. The second interface for experimenters is the Website. As stated in
Section 5.1, the website provides access to the users project. There they can see
their account as well as the log and regression views.

The interface between GitLab server and supervisor is implemented following
the GitLab installation process. In the GitLab runner setup, the URL for the
corresponding GitLab server has to be entered, this way the runner knows where to
listen for jobs.

The interface between the initial tests project defined by the administrators and
the experimenters project is a trigger and a webhook. An example for a webhook is
shown in Listing 5.1. When the experimenters do a git push command to the their
project, the webhook is activated. The webhook is individual for every experiment
and contains a variable with the link to the experimenter repository and the identifier
(ID) of the experiment. The webhook also contains the token that connects to
the trigger in the initial tests project. When the webhook is activated, so is the
trigger with the corresponding token. This way, the initial tests project knows
which experiment wants to be tested and pulls the data from the repository stated
in the variable of the webhook. The tests then are executed in the experiment folder.

Listing 5.1: Webhook

http ://URL/ api /v3/ p r o j e c t s /1/ r e f / master
/ t r i g g e r / b u i l d s ? token =[TOKEN]& v a r i a b l e s [ repoName]=
git@URL :NAMESPACE/Experiment1 . g i t
&v a r i a b l e s [ expid ]=1

The example for a webhook in Listing 5.1 shows the URL of the webhook. The
first part of the webhook, until the first question mark, is the name space and
address of the initial test project. The complete url is not shown due to security
reasons. The token section includes the unique token of the trigger created in the
initial test project, as described in Section 5.2. This connects the webhook to the
trigger. The ”&variables[repoName]” section is the variable containing the link to
the experimenter repository. This section is unique for every experiment. The last
part is the variable that stores the experimenter ID. In a future implementation,
there can also be variables for the experimenters email address, to automatically
send emails in another stage of the ”.gitlab-ci.yml” file.

41



5. Practical Implementation

5.3. Testing procedure
First, the administrators at ESOC create a project with a script that defines the
initial tests. This script contains the tests, such as checking if the filesize is within
the proposed limits, or if an installation script is present. The script is also able to
create ”.txt” files containing the results of the test. Those files will be stored after
the execution of the test script. The script is shown in Listing 5.2.

Listing 5.2: verify.sh script for initial tests

#!/ bin /bash

echo ” s t a r t i n g example CI v e r i f i c a t i o n s c r i p t ”

# i f [ −e ∗ . sh ] ; then
#echo ” S c r i p t i s there , OK” >> r e s u l t . txt

#e l s e
# echo ” S c r i p t i s not there , FAIL” >> r e s u l t . txt
# e x i t 1
#f i

du −sh >> r e s u l t . txt

The script first echoes that it starts the example verification script. It then checks
if the folder contains a script. This is just an example, for the actual tests, the verifi-
cation script should look for the exact files and scripts. After that, an experimental
printout of the file size is created. In the finished script, this should also be an ”if”
statement checking if the experiment exceeds a maximum file size.

Also, a ”.gitlab-ci.yml” file has to be created in the initial tests project. This file is
mandatory for the use of GitLab’s continuous integration (CI) functions. Functions
used for initial testing in this project are staging, artifacts and tags. The ”.gitlab-
ci.yml” file defines how the test will run. For example when the script will be
executed, what happens if the test fails and how the artifacts are created. Only the
administrators will have access to this project.

The experimenters have to provide an installation script for their experiment in
their GitLab project, with the experimenters ID as name. On the satellite, the ex-
periment will be installed by a script that installs the binary files that were uploaded
together with the script, as mentioned in Section 2.2. This way, the procedure on
the ground is the same as in flight. In the ”.gitlab-ci.yml” file, the script has a
variable name, which is called ”runexp”$expid”.sh”, utilizing the unique ID of an
experimenter as a variable called ”expid”. The variable is defined in the webhook of
each individual project. Only when an experimenter pushes its experiment to the
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server the webhook activates the trigger of the initial tests project and the variables
from the specific experiment are transferred to the ”.gitlab-ci.yml” file.

Listing 5.3: .gitlab-ci.yml file

b e f o r e s c r i p t :
− echo ” S ta r t i ng ”
− g i t p u l l ”${repoName}”

s t ag e s :
− i n i t i a l t e s t i n g
− e x p e r i m e n t e r t e s t i n g

i n i t i a l t e s t i n g :
s tage : i n i t i a l t e s t i n g
s c r i p t :
− chmod u+x . / v e r i f y . sh
− l s − l . / v e r i f y . sh
− . / v e r i f y . sh
tags :
− i n i t

a r t i f a c t s :
when : always
paths :
− r e s u l t . txt

e x p e r i m e n t e r t e s t i n g :
s tage : e x p e r i m e n t e r t e s t i n g
s c r i p t :
− chmod u+x . / runexp ”${ expid }” . sh
− l s − l . / runexp ”${ expid }” . sh
− . / runexp ”${ expid }” . sh
tags :
− M1

The example Listing 5.3 shows a possible implementation for testing experiments
in the ”.gitlab-ci.yml” file. The implementation has been tested and is documented
in Chapter 6. This file, which is created and maintained by the administrators,
defines how the test executes. It is divided into three subdivisions. ”before script”
will always be executed before the rest of the stages, that are defined in ”stages”.
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First, the git repository with the name of the experiment to test is pulled, so that the
data is available. In GitLab, a stage can only start when the stage before it returned
a positive test result. The criteria are defined by the administrators. This means,
that first ”initial testing:” is executed and only when it returns a positive result the
stage ”experimenter testing” is started. This ensures that an experiment can only
be tested further if it passed the initial tests specified by ESOC. Examples for initial
tests are: Checking if file size is less than a boundary or if a installation script is
present to install the experiment. The tag ”init” provides that only runners that are
allowed to execute jobs tagged ”init” can execute the job. The ”artifacts” section
determines what happens with files that are created in the test process. Here,
the artifacts are always created, even when the test fails. This ensures, that the
experimenters get notified why their tests failed. The path variable sets the path
where to safe the file. The artifacts are stored and can be accessed via different
methods as described on the GitLab website [6].

The stage ”experimenter testing:” again is defined to be executed in a shell. But
this time only runners that are allowed to run tests with the tag ”M1” are able to
run the test. The experiment is then installed on the corresponding runner with the
installation script with the unique experiments ID. This feature is now in place in
theory and in the ”.gitlab-ci.yml” file, but is not yet operational due to restriction
issues on the MityARMs. Once the experiment has passed the initial tests, it is then
able to run its own tests on the MityARM hardware. This is a security risk, for the
experimenters as well as for ESOC.

For the experimenter it is risky, because the experiment would stay installed on
the MityARM, enabling another experiment to see the experiment data. To solve
this, it would be ideal if every experimenter would find the same starting conditions.
To provide this feature, there would have to be other stages in the ”.gitlab-ci.yml”
that is created by the administrators. First to provide a the same starting conditions
for every experiment and another one to cleanup after an experiment, erasing all
files. This could be implemented by utilizing Docker. Docker is a software that
is able to provide software containers with defined input and outputs. One such
container could be created with an initial condition of the MityARM image. Docker
then can call the image when an experiment is about to be tested on a MityARM
and the image can be deleted after the test, with all the leftover experiment data.
Reports and results created during the test would of course have to be extracted
before deletion. This again could be done with the artifacts feature of GitLab.

The risk for ESOC is due to the fact that experiments can run scripts on the
MityARM without security checks. This again could be solved by utilizing Docker.
In the Docker image, that is to be used on the MityARM, the outputs could be
restricted or even completely disabled. This way, the harm could be contained in
the Image and deleted afterwards.
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In the future, two more stages could be implemented. First, a stage for automatic
email notification when the test is finished with a link to the created artifacts and
secondly the stage for automatic file transfer to the flatsat. For automatically send-
ing emails, for example sendmail could be configured, as it is a mail agent already
installed on the provided virtual linux machine. It would then be possible to insert a
command to send an email automatically to the experimenters. Further information
in chapter Chapter 7.

The stage for automatic file transfer would implement a section that automatically
transfers the experiments files onto the flatsat and installs them. This would only
be possible when the initial tests passed and the experimenters are satisfied with
their own tests on the flatsat. A scheduling mechanism for the experiments on the
flatsat is required before implementing this stage.

A wiki function is also already in place, providing the experimenters with general
data about the project, and ”how to” information. The wiki is located in its own
project, and experimenters er granted access to it, but only with reading permission.
This way it is ensured, that only administrators can alter the wiki. For each exper-
iment, the wiki function is also in place. This way, experimenters can also provide
the administrators with information about their software easily.
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This chapter recapitulates the assigned task and shows how the final realization of
the architecture was implemented. There is also a section that documents the results
in form of screenshots, that were created during a validation run. This run shows
the interfaces for experimenters, for administrators, and shows the test process for
an example git push command.

6.1. Recapitulation of Assigned Task
The task stated by ESA and esa was to create a test and control framework for
the OPS-SAT project. As a requirement it should include the following entities:
Experiment developers, satellite operators, offline test suits, log and regression view,
communication and a runtime flight system.

The architecture introduced in section 4 identifies possible error sources in the
lifespan of a satellite, and suggests several solutions for error avoidance. For ex-
ample common hardware errors as well as software and operational errors and their
according avoidance options. This is the first part of the test and control framework.
Together with focus on the errors caused by experimenters they are the specification
part of the test and control framework. The implementation that was proposed in
Chapter 5 is the practical implementation of the test and control framework, and
Section 6.2 shows the results.

6.2. Realization of the Architecture
The actual realization of the GitLab server and the GitLab runner server is as
virtual machines on the ESOC server architecture. This way, it is easy to erase, or
to change something. This could come in handy, if the current disk space of 20 GB
is not sufficient enough anymore for the experiments. About 5 GB are used by the
operating system and GitLab, which calculates to 15 GB of free space. With 115
experiments registered so far, the space for one experiment calculates to about 130
MB.
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The single ground station of OPS-SAT will be located at ESOC in Darmstadt.
With the planned orbit, the visibility time of the satellite is about eight minutes.
The satellite is capable of a data rate of 200 kbit/s in the 256 kbit/s uplink rate.
According to CCSDS standards, the data has to be Reed-Solomon encoded and
interleaved, to minimize data loss in the propagation channel. This then results in
a maximum data rate of 173 kbit/s for experiments according to [9]. Eight minutes,
or 480 seconds, of data transfer with a data rate of 173 kbit/s leads to a file size of
maximal 83040 bits or 10.380 bytes, which is about 10 Mb per experiment. Thus the
130 MB planned for every one of the 115 first registered experiments is sufficient.

No experiment is in a stage, where it could provide ESOC with data about file
sizes. Thus having a virtual server that is able to grow is useful. The GitLab server
uses one core of ESOC architecture’s CPUs and has 2 GB of RAM associated, both
values can also be adjusted to better fit the future needs. GitLab itself is able to
host as many projects as there is free memory available. This is perfect, as it is
not sure yet how many experiments will be registered in the future. The GitLab
runner server has the same specifications. It has to store the experiments as well
as the created artifacts. The artifacts can be automatically deleted after a time has
passed. At this moment it is unclear in what rate experiments will have to be tested
and thus how many artifacts have to be stored. The flexibility of the server comes
in very handy in this case.

Running the initial tests will take about two seconds, with only very simple tests
in place right now. The team is currently deciding on possible initial tests (Date:
09/09/2017).

6.3. Validation Run of Testing an Experiment
This section will show the results that were created during a validation run of the
experiment testing architecture.

Image Figure 6.1 shows the overview of experiments so far, from the view of an
administrator. Experimenters will only see their own project.

Some details in the screenshots, that would show ESOC internal features or details
about specific information, are censored due to security concerns.

On top is the project that hosts the initial tests as described in Section 5.3. The
second project is the experimenters wiki project. This project houses the wiki pages
that are available for all the experimenters, also mentioned in Section 5.3. The
third project is a test project created by the administrator. This is mainly to test
webhooks and using git push commands to triggering the test process. The fourth
project is the initial test project again, but with another namespace, to test if a
change is possible. On the right side the red crosses indicate the failed tests, caused
by git pushes to the initial test projects. This is due to the fact, that the test stage
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Figure 6.1.: OPS-SAT Overview of Experiments

that shall run on the MityARMs in a later stage is failing.

Figure 6.2.: View of Initial Test Project (Censored for Security)

Figure 6.2 shows a view inside the initial tests project. The top of the page
shows the tabs associated with the project. The lower part of Figure 6.2 shows the
repository tab, where the files with their last commits are shown. This contains the
verify.sh script and the ”.gitlab-ci.yml” file described in Listing 5.3. Also, a readme
and a testfile are shown in the picture. The tab ”commits” shows the history of
changes, for the log and regression view. By clicking on the gear located on the top
right of this page, the project options will drop down. This is where the options
for triggers and runners are. The runners were created before hand according to
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Chapter A.

Figure 6.3.: Triggered Pipelines in InitTest project

The Figure 6.3 shows the pipelines that were triggered by git push events. The
top of the page shows the interaction tabs, to navigate on the Website. This again
is the view of an administrator. The experimenter will not see this, as they can
only access their own project. When they push code to their own project, the test
pipeline in the initial tests project is triggerd. This is an overview of all the events
that caused the tests to be triggered. Now to inspect the first entry in more detail.
On the left, there is a status icon showing if the test failed or succeed. Next is
the job counter and who triggered it. The third column shows the commit of this
push and a commit identifier, which is censored. The ”stages” column shows the
two stages and their dependencies. First, the initial tests are executed, if they fail,
like in the second row, the MityARM tests for experimenters is not allowed. In the
first row, the initial test succeeded, but as described in Section 5.3 the MityARM
stage is not yet available, thus the test fails. The fifth row shows the duration of
the test and when it was triggered. The duration of the initial tests is between
two and ten seconds, this is because of the very simple tests that are used in this
example. On the far right, one can see a download button for the created artifacts
and a retry button. As described in Section 5.3 the artifacts are always created. The
”verify.sh” script creates a report of the test, which is used to notify experimenters
which part of the test failed or succeeded. The artifacts that are created in this
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iteration of the project can not be downloaded by an experimenter. This feature
has to be implemented in the future as described in Section 5.3 and in Chapter 7.
The artifacts can also be downloaded via a link to the artifacts archive according
to [6]. Using this feature in an automatically generated email will lead to further
automate the test process. Further information in Chapter 7.
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By clicking on the job, the administrators can see further details of the stages
and if they succeeded or failed. Figure 6.4 shows this overview and the associated
job. This is the detailed view of job 123, and it shows again, that the initial tests
executed with a positive result and the experimenter testing failed, because of the
missing MityARM.

Figure 6.4.: Detail View of one Job
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With another click on the stage, it is even possible to see an exact view of how
the shell that executed the initial tests on the GitLab runner server. On top of
the page is again the information about the build and the pipeline. The console
shows the version of GitLab runner that is installed on the GitLab runner server
(OSRUNNER). The testprogram outputs that it uses shell execution and runs on
the GitLab runner server as mentioned in Section 5.1. This is due to the Tag ”init”
that is visible on the right hand side. The next output the console shows is, that
it clones the repository, and starts executing the ”.gitlab-ci.yml” file of the initial
tests project. The detailed ”.gitlab-ci.yml” file can be found in Listing 5.3. The
git config lines are from an older version of the ”.gitlab-ci.yml” file, where there
had to be login to a specific git user. Then the console echoes the variable of the
experimenters repository, in two different ways for testing purposes. Then the actual
experiment is cloned and the ”verify.sh” is executed. At the end of the console, the
log for the artifacts can be seen. This takes the files that the ”verify.sh” script
created and saves them in the artifacts archive. In the future, it will be possible to
send a link to the exact artifacts created by the test automatically as mentioned in
Chapter 5 and in Chapter 7. For this, the unique token is used that is created in
this step on the bottom of the page. It will be accessible as a job specific variable
after the creation of the artifacts in the stages.

On the top right, the artifacts are ready to download, but only for the adminis-
trators thus far.

Figure 6.5.: Shell View of Job
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Now to have a look inside a project that was created by an administrator for an
experimenter.

Figure 6.6.: Project Overview Experimenter

In Figure 6.6 one can see the experimenters overview of projects. The exper-
imenter only sees its own project and has access to the wiki project for general
information. On the top right the red symbol indicates the impersonation of an
experimenter, which is possible to do as an administrator, and was used for demon-
stration purposes. The impersonated experimenter is also not a real experimenter,
it is only a test user.
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Figure 6.7.: Inside an Experiment with Experimenter View(Censored for Security)

Figure 6.7 shows the view inside an experiment with an experimenters view. One
can see that the script is correctly inserted and that no binary is uploaded yet. In
the stage that the project is now in, with the simple test methods in the initial test
project, this leads to the experiment passing the initial tests. The button ”history”
will the log and regression view of the project. This is visible for experimenters and
administrators.
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7.1. Summary
The current state of the architecture implementation is sufficient for registering
experimenters to projects and allow them to push their own experiment data in form
of binaries and an installation script to the project. There, a log and regression view
is created by the git implementation. With the git push command, the initial tests
are triggered and a report is created. The report is saved as an artifact and visible
and downloadable for the administrators. The ”.gitlab-ci.yml” file of the initial test
project has a second stage implemented to execute the experiment on a MityARM,
but the MityARM is not yet correctly configured. The experimenters also have
access to a wiki created by the administrators. In the future, there could be many
more features implemented. The following section will show a few of them and how
to implement them into the existing architecture.

7.2. Future Work

7.2.1. Email Notifications
Notifying experimenters about the outcome of their experiments is a crucial feature
of the architecture, that has not been implemented yet. For this feature to work,
first, one has to setup ”sendmail” , to be able to send emails automatically and
by utilizing shell commands. An simple mail transfer protocol (SMTP) server is
suffiecient, because the server will only send emails. With a simple SMTP server
it will then be possible to enter a command into the ”.gitlab-ci.yml” file to enable
automatic emails. The webhook associated with every experiment has to be changed,
so that it includes the experimenters email address as a variable as mentined in
Listing 7.1. This way it is easy to implement the automatic email transfer as a stage
in the ”.gitlab-ci.yml” file of the initial test project. Listing 7.1 shows a possible
webhook, again not with the actual url of the GitLab server at ESOC due to security
precautions. It is the same webhook as in Listing 5.1, only with another example
variable for the experimenters email address.
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Listing 7.1: Webhook with email adress

http ://URL/ api /v3/ p r o j e c t s /1/ r e f / master
/ t r i g g e r / b u i l d s ? token =[TOKEN]& v a r i a b l e s [ repoName]=
git@URL :NAMESPACE/Experiment1 . g i t
&v a r i a b l e s [ expid ]=1& v a r i a b l e s [ emai l ]=user@domain . com

The webhook triggers the execution of the ”.gitlab-ci.yml” file created by the
administrators to test the experiment, just like in Section 5.2 of Chapter 5. The file
has to be changed as well, to send emails automatically.

Listing 7.2: Example .gitlab-ci.yml File With Email Notification

a f t e r s c r i p t :
− echo ”You can f i n d your t e s t r e s u l t s at
https : // example . com/<namespace>/<pro j e c t >/−/jobs / a r t i f a c t s
/<r e f >/raw/< p a t h t o f i l e >?job=<job name>”
| mail −s ”Automated Test Resu l t s ” ”${ emai l }”

By extending the same ”.gitlab-ci.yml” file as in Listing 5.3 with the example code
in Listing 7.2 the programm sends an email with the link to the created artifacts. The
code shows the ”echo” function that sends an email with the subject ”Automated
Test Results” to the mail address specified in the experiments unique webhook as
shown in Listing 7.1. The body of the mail contains a description and the link to
the artifacts that were created in this test. In this example for linking artifacts from
[6] the parts wrapped in ”〈〉” are placeholders for its content.

7.2.2. Testing on MityARM
The experimenter testing their experiments on the MityARM, as described in Sec-
tion 5.3 is not yet operational. Yet it is necessary for the experimenters to have the
option to test their own experiments on ESOC hardware. The stage in the ”.gitlab-
ci.yml” file is inserted and the MityARM registered as a runner. Testing on the
MityARM in this stage of the project would be a security risk for the experimenters
as well as for ESOC. As mentioned in Section 5.3 Docker could be used to create
an image of the MityARM that provides only necessary, and by the administrators
defined input and output options to the experiment running on the MityARM. This
way, every experiment can have a clean image at the beginning of the test, without
completely resetting the MityARMs operating system with every new experiment
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test. The experiments would have access to the peripherals defined in the input
and output section, just like with a regular MityARM. After the execution of the
test, the created results can be stored in artifacts, and the image with the remaining
experiment data deleted. This way, the damage potential of an experiment and the
potential for experiments spying on each other is minimized. GitLab has a function
to have Docker images as runners already installed in its latest runner verions. This
way, only an update of the GitLab runner server would be needed.

7.2.3. Automatic Data Transfer Server
The test and control framework so far is limited to the initial tests. In the future,
before uploading the experiment, it would also be desirable to test the whole pro-
cess of uploading, installing and running the experiment on the ground. For this
purpose the engineering model or ”flatsat” is built. This final test can so far only
be performed by ESOC team members, that do all the data transfer from the file
upload server to the flatsat by hand. An automatic process would be desirable due
to the low budget nature of the OPS-SAT mission.

In the future, there could be another server created and configured as a GitLab
runner to schedule the experiments for final testing on the flatsat and carry out the
data transfer from the server, through the data uplink and through the propagation
channel simulator onto the flatsat. This way, the OPS-SAT team would only be
needed to simulate the TMTC commands for the experiments, together with the
experimenters.

7.2.4. Runtime Flight System
To further minimize the error sources, performance logs could be created during
the phase were experimenters test their experiments on ESOC hardware, such as
MityARMs or the flatsat. This way, the administrators would be able to collect
data about the experiment and derive boundaries from it, for when the experiment
is executed in orbit. Resources to be logged could be CPU usage, RAM usage,
Battery usage data rates and so on over time. On the satellite, a software could
be installed that monitors those resources and at the same time compares them to
the created logs to give warnings when a process uses too much processing power
too long. This way, not only the operators get an early warning if something is not
exactly right with an experiment, also the experimenters could implement functions
that recognize a boundary breach event, to stop the affected software part. If that
still does not help, the experimenters can implement a software function that stores
the data created until that time, to recover part of the created results.
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7.2.5. Battery Model
In the more distant future, it would also be possible to create variable power source
for the flatsat, in order to simulate the power production by the solar panels. The
simulation could be based on a model of how the solar panels produce power in the
different orbit sections. The model could be precise enough to plan the available
power for the experiment on the day it is executed. When the experiment influences
the satellites attitude in a deterministic way, even the power production with the
satellites precise attitude with orientation to the sun could be calculated. This way,
the power consumption of an experiment can be monitored precisely. And as an
advantage for experimenters, they can further optimize their operations.
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1. Get a copy of the virtual machine, provided by Thorsten Graber in SMILE
lab. Make sure to have root access to the server.

2. Download Mobaexterm on your machine to have a way to SSH into the server.
Start a new session and change the user to root with the command su root.
Enter the password.

3. Initialise the machine for the installation of GitLab with the information pro-
vided on
https : // about . GitLab . com/ i n s t a l l a t i o n/#opensuse

4. Execute step 1

5. For the second step, script installation is not possible. You must download
the files manually and run them.

6. Download a version of GitLab from
https : // packages . g i t l a b . com/ g i t l a b / g i t l ab−ce

For the file, search for ”opensuse/” as distribution and download the latest
version of the install files for sles13.x86.

7. Right click on that and copy link address

8. Download the file using
cURL: c u r l −LJO https : // packages . g i t l a b . com
/ g i t l a b /GitLab−ce / packages /
opensuse /13 .2/ g i t l ab−ce−8.14.0− ce . 0 . s l e s 1 3 . x86\ 64 . rpm
/download

9. Install the package with:
rpm − i g i t l ab−ce−8.14.0− ce . 0 . s l e s 1 3 . x86\ 64 . rpm
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10. Reconfigure GitLab with:
sudo g i t l ab−c t l r e c o n f i g u r e

11. Change the external URL of the Server to its IP, so that it is reachable.

12. The config file is reachable with:
sudo v i / e t c / g i t l a b / g i t l a b . rb

13. Using the arrow keys navigate to the parameter external URL and change it
by pushing, which lets VI get into insert mode.

14. To end VI press escape to go to the normal mode, then type ”:wq” to save and
quit the program. If you made a mistake, end the program without saving by
typing ”q!” in normal mode.

15. Reconfigure GitLab using:
sudo g i t l ab−c t l r e c o n f i g u r e

16. Enter the IP-adress of your server in your webbrowser

17. Enter the password you desire

18. Log in with username: root and the password you just created

19. To push projects, you have to get a SSH key.

20. Go to ”profile settings” in the top right corner and then to SSH Keys.

21. Follow the instruction on creating a SSH key.

22. Insert the key.

23. Create a new project by manoeuvring to the top left corner, open the menu
and select ”projects”

24. create the projects for the initial tests

25. add a trigger in the project options

26. IMPORTANT: Copy the example for Webhook shown on the bottom of the
page

27. safe the project
Install GitLab Runner on the GitLab runner server
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28. GitLab runner and GitLab server shall not run on the same machine, because
the runner can, by using scripts, alter the server.

29. The Version of GitLab that is available for the SLES version 11 is 8.14.0. For
this version, the runner has to be version 1.11.2, because runner version 9.xx
cannot connect to GitLab 8.xx, it needs GitLab version 9.xx.

30. Download the binary with command:
wget −O / usr / l o c a l / bin / g i t l ab−c i−multi−runner wget −O / usr / l o c a l / bin / g i t l ab−c i−multi−runner https : // g i t l ab−c i−multi−runner−downloads . s3 . amazonaws . com/v1 . 1 1 . 2 / b i n a r i e s / g i t l ab−c i−multi−runner−l inux−amd64

31. Give executable permission with
chmod +x / usr / l o c a l / bin / g i t l ab−c i−multi−runner

32. Register a runner using:
g i t l ab−c i−multi−runner r e g i s t e r

33. Put in the address of the coordinator, in our case osgitlab.esoc.esa.int

34. Get the token for the runner from the admin area, then go to runners

35. Insert the token

36. Write the description

37. Write the tags (for the initial tests runner its ”init” this ensures that the runner
only runs the initial testing jobs. When you configure a MityARM as a runner,
it will get another tag, so it only runs scripts like it would on the satellite)

38. do not let it run untagged builds

39. for the init tests select shell as executor

40. after successfully registering the runner, install the program with:
g i t l ab−c i−multi−runner i n s t a l l −−user=root −−working−d i r e c t o r y=/usr / l o c a l / bin

41. run the service with: gitlab-ci-multi-runner run

42. start the service with: gitlab-ci-multi-runner start

43. check if the service is running with: gitlab-ci-multi-runner status

44. check if the GitLab runner server has a SSH Key for pulling the repositories
from the GitLab server, as user admin.
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45. Type:
cat ˜/ . ssh / i d r s a . pub

in the command line, if the machine has a public key, it will be shown here.
Copy the whole text.

46. Go to the GitLab instance as admin, on the top right, select profile settings
on your Admin logo. There, move to SSH-Keys, Insert the key and give it a
description.

47. If there was no public SSH key in that location, create one with the manual
provided on the admin page.
Register new experiment

48. go to admin area – users – create user

49. insert email address and name of user

50. the user has to be marked external

51. create user

52. go to projects – new project

53. name the project with its unique ID

54. add the created user as developer or master

55. register the new project

56. go to the new project

57. add a webhook following the instructions on the copied example before

58. add the Experimenter repository as a variable using
&v a r i a b l e s [ repoName]=ACTUAL LINK

59. add the ID using
&v a r i a b l e s [ expid ]=ID

Testing the project

60. after an initial push, the webhook can be tested. If there is no push, the
webhook can not be triggered manually
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Figure B.1.: Overview of Experiment Testing Process
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