
Swapping of
FPGA-runtime data in
non-volatile memory
Auslagerung von FPGA Laufzeitdaten in nicht-volatilen Speicher
Bachelor-Thesis von Jan Hohmann aus Offenbach am Main
Tag der Einreichung:

1. Gutachten: Prof. Dr.-Ing. Andreas Koch
2. Gutachten: Dr.-Ing. Andreas Engel

Swapping of FPGA-runtime data in non-volatile memory
Auslagerung von FPGA Laufzeitdaten in nicht-volatilen Speicher

Vorgelegte Bachelor-Thesis von Jan Hohmann aus Offenbach am Main

1. Gutachten: Prof. Dr.-Ing. Andreas Koch
2. Gutachten: Dr.-Ing. Andreas Engel

Tag der Einreichung:

Erklärung zur Bachelor-Thesis gemäß § 23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Jan Hohmann, die vorliegende Bachelor-Thesis ohne
Hilfe Dritter nur mit den angegebenen Quellen und Hilfsmitteln angefertigt
zu haben. Alle Stellen, die aus Quellen entnommen wurden, sind als solche
kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegen.
Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs.2 APB) ein
Täuschungsversuch vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet
und damit ein Prüfungsversuch verbraucht wird. Abschlussarbeiten düfen
nur einmal wiederholt werden.
Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung
eingereichte elektronische Fassung überein.

Darmstadt, den 3. April 2018

(Jan Hohmann)

i

Zusammenfassung

Mobile Sensorknoten und Geräte im Internet of Things (IoT) haben häufig eine begrenzte
Energieversorgung und sind auf Batterien angewiesen. Daher ist es von essentieller Be-
deutung, dass der Energieverbrauch dieser Geräte so gering wie möglich ist. Dies kann
durch die Verwendung moderner Microcontroller Units (MCUs) mit tiefen Schlafzuständen
erreicht werden. Sie sind aufgrund ihrer geringen Rechenleistung aber nicht für rechenin-
tensive Anwendungen geeignet.

Application Specific Integrated Circuits (ASICs) hingegen können spezifische Berechnun-
gen sehr schnell erledigen und können bei entsprechendem Design auch sehr energieeffi-
zient sein. Dafür sind sie aber vergleichsweise teuer im Design und sind daher für kleine
Stückzahlen nicht rentabel. Auch können sie nicht nachträglich für eine andere Aufgabe
angepasst werden. Deshalb werden sie in dieser Bachelor-Thesis nicht weiter behandelt.

Auch Field Programmable Gate Arrays (FPGAs) können spezifische Berechnungen sehr
schnell erledigen, sie unterstützen aber keine tiefen Schlafzustände und benötigen daher
im unbenutzten Zustand wesentlich mehr Energie als eine MCU. Die in dieser Thesis ver-
wendete MCU benötigt beispielsweise in tieferen Schlafzuständen 2.5 µW, während der
FPGA mindestens 52.8 µW benötigt.

Um den Energieverbrauch von FPGAs weiter zu senken, müssen sie daher vollständig ab-
geschaltet werden. Da dies meist vom Hersteller nicht vorgesehen ist, muss der FPGA dafür
von seiner Stromversorgung getrennt werden. Laufzeitdaten, die sich im internen flüchti-
gen Speicher des FPGAs befinden, müssen dabei jedoch in einem FPGA-externen Speicher
gesichert werden, um nach einem Neustart des FPGAs auch weiterhin verfügbar zu sein.
Durch diesen Mehraufwand ist ein Abschalten nur dann sinnvoll, wenn der FPGA einige
Sekunden bis Minuten im Ruhezustand verbleibt.

Im Rahmen dieser Arbeit werden verschiedene Typen von nicht-flüchtigem Speicher auf ih-
re Tauglichkeit als Pufferspeicher zwischen den einzelnen Berechnungszyklen verglichen.
Auch müssen verschiedene Arten von Schaltern für das Abschalten des FPGAs evaluiert
werden, da Schaltstrom und Übertragungswiderstand Einfluss auf den Energieverbrauch
des Gesamtsystems haben. Mit den ausgewählten Bauteilen wird ein Prototyp gebaut.
Auf diesem wird eine Backup- und Wiederherstellungsfunktion für den FPGA entwickelt
und diese an eine Beispielanwendung angebunden. Danach wird durch Messungen ermit-
telt, unter welchen Umständen ein Abschalten des FPGAs effizienter ist als ein Übergang
in einen Standby-State. Um die Messungen steuern zu können und die korrekte Funkti-
on der Beispielanwendung zu verifizieren, wird zusätzlich ein Serial Peripheral Interface
(SPI) Controller implementiert, der die Kommunikation mit einer MCU übernimmt. Die
MCU überwacht die Berechnungen der Beispielanwendung und steuert die Schalter für die
Stromversorgung des FPGAs.

Durch die Verwendung von Ferroelectric Random-Access Memory (FeRAM) als Backup-
Speicher und eines Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) als
Schalter, ist schon bei einer Inaktivität von wenigen Sekunden ein Abschalten des FPGAs
effizienter, als ein Wechsel in den Standby-State. Zwar benötigt der Backup- und Wieder-
herstellungsprozess mit circa 7 ms deutlich mehr Zeit, als ein Wechsel in den Standby-
State, der nur 200 µs dauert. Dafür kann aber die Leistungsaufnahme des FPGAs nach dem
Backup auf null Watt gesenkt werden. Der gesamte Backup- und Wiederherstellungspro-
zess für 450 Byte an Daten braucht mit 52.6 µJ weniger Energie als die 52.8 µJ, die der
FPGA im Schlafzustand pro Sekunde benötigt.

ii

Abstract

Mobile sensor nodes and Internet of Things (IoT) devices are often connected to a finite
power source and rely on batteries. Therefore, it is very important, to keep the power
consumption as low as possible. This can be achieved, by using modern Microcontroller
Units (MCUs), which support low power states. But due to their limited computing power,
they are not suitable for compute-intensive applications.

Whereas Application Specific Integrated Circuits (ASICs) can handle certain calculations
very fast. If they are designed properly, they can also be very energy efficient. With the
drawback, that the development of their hardware design is comparatively expensive and
thus they are not cost-efficient in small numbers. Furthermore, they cannot be adapted to
new tasks afterwards. That is why they are not addressed in this bachelor thesis.

Field Programmable Gate Arrays (FPGAs) can also handle certain calculations very fast,
but they do not support low power states. This results in a higher power drain in idle state,
than an MCU would have. The MCU used in this thesis, for example, needs 2.5 µW in lower
power states, while the FPGA still needs 52.8 µW.

To further lower the energy usage of FPGAs, they have to be switched off completely. Since
this is usually not supported by the vendor, the power supply of the FPGA must be cut. Any
runtime data residing in the internal volatile memory of the FPGA must be backed up into
some FPGA-external memory. Otherwise it would be lost after a power cycle of the FPGA.
Due to this overhead, a power cut is only reasonable, if the FPGA can stay a few seconds
or minutes in this suspended state.

Within this thesis, several technologies of non-volatile memory are compared in terms of
their suitability as buffer memory for in between calculation cycles. Also different types of
switches are evaluated. They are used to switch the FPGA. Differences in their switching
current and transfer resistance have influence on the energy usage of the overall system. A
prototype is built with the selected components to determine, in which cases a power cut
of the FPGA and the swapping of the data into an external memory is more efficient, than
a transition into a standby state would be. For this purpose, backup and restore function-
ality is implemented for the FPGA. A sample application is used to generate pageable data.
Then the power drain is measured, to compare the energy needed by the swapping process
with the standby drain. To control the evaluation and to monitor the sample application,
a Serial Peripheral Interface (SPI) controller is implemented. It is responsible for the com-
munication with an MCU. This MCU supervises the sample application and controls the
power supply of the FPGA with a switch.

Due to the use of Ferroelectric Random-Access Memory (FeRAM) as backup memory and a
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) as switch, a suspend dura-
tion of only a few seconds is enough to make the power cut more efficient than a transition
into the standby state. The backup and restore process takes about 7 ms, which is much
more as the 200 µs a transition into the standby takes. But this allows to reduce the power
drain to zero watt after the backup is finished. The whole backup and restore process takes
52.6 µJ for 450 byte of data. This is less than the 52.8 µJ the FPGA needs in its standby
state.

iii

Contents

1. Introduction 1
1.1. Contribution of this Work . 1
1.2. Structure of this Work . 2

2. Related Work 3
2.1. HaLOEWEn . 3
2.2. Energy Conservation in Wireless Sensor Networks 3
2.3. Data swapping . 4

3. Non-Volatile Memory 5
3.1. Flash . 5

3.1.1. NAND flash . 5
3.1.2. NOR flash . 5

3.2. Phase Change Memory . 6
3.3. Magnetoresistive memory . 6
3.4. Ferroelectric memory . 7
3.5. 3D XPoint™ . 7
3.6. Conclusion . 8

4. Implementation 9
4.1. FPGA Power Cutting . 9
4.2. Hardware Architecture . 10
4.3. Data swapping . 11

4.3.1. Application Module Interface . 12
4.3.2. Toplevel Requirements . 13
4.3.3. Logical Functionality . 14
4.3.4. FeRAM Communication . 14
4.3.5. Design Considerations . 15

4.4. Demo Application . 15
4.5. Control Interface . 16
4.6. MCU Implementation . 16

5. Evaluation 18
5.1. Functional Verification . 18
5.2. Consumption Measuring . 18

5.2.1. Hardware Architecture . 18
5.2.2. Measurement . 19
5.2.3. Results . 20

6. Summary and Future Work 24
6.1. Future Improvements . 24

A. Verilog Module Implementation I

B. Verilog Toplevel Implementation III

iv

C. Libero Compile Report V

Bibliography VI

Abbreviations IX

List of Tables XI

List of Figures XI

v

1 Introduction

Wireless Sensor Networks (WSNs) have gained in importance in recent years. These clus-
ters from a few through to many smart sensor devices (further called sensor nodes) can
be utilized in many different areas and form a large part in the Internet of Things (IoT).
The sensor nodes are typically small, have limited computing power, and are inexpensive
compared to traditional sensors. A sensor node typically has a Microcontroller Unit (MCU)
with limited computing capabilities and one or more sensors, which are connected to it. In
WSNs a sensor node transmits its collected data wirelessly and is not attached to a theo-
retically inexhaustible power source (power adapter). Most sensors use batteries, either as
buffer for a staggering power source, such as a solar panel, or as the only power source.
Both cases require the nodes to ration its available energy.

There are several applications for WSNs today. They are used to track people, animals, and
vehicles. They monitor the weather, patients, and factories. They can be integrated into
existing infrastructure, or can work completely independent from it [1].

To fit the needs of compute-intensive sensor nodes with a low power drain, the Hardware-
Accelerated Low Energy Wireless Embedded Sensor Node (HaLOEWEn) was developed
[2]. It combines the efficiency and performance of a Field Programmable Gate Array
(FPGA) with the low power drain of an IEEE 802.15.4 based Radio Frequency System-
on-Chip. This allows the platform, to perform complex calculations, such as lossless com-
pression with the FPGA, while using a low power MCU for wireless communication. The
FPGA can be powered down, while no operations are pending to keep the power con-
sumption low. With an Application Specific Integrated Circuit (ASIC) the efficiency could
be further improved, but for a scientific prototype, these are too expensive in design and
construction.

Compared with an MCU, the standby power consumption of an FPGA is much higher. While
the MCU is needed for wireless communication and therefore cannot be omitted, the FPGA
can be switched off completely to overcome the high power consumption while it is idle.
Data residing in the distributed registers and block-RAM of the FPGA must then be backed
up if it is needed later. Otherwise, it will be lost due to the volatile nature of the integrated
memory.

A further requirement to decrease the power consumption of the FPGA is to use flash-based
FPGAs instead of Static Random-Access Memory (SRAM)-based. Flash-based FPGAs can be
initialized faster, since they have their persistent configuration pattern on-chip and do not
need to be programmed with specifications residing in external memory each startup. The
power consumption of the total system is therefore lower compared to an SRAM-based
FPGA, since no additional memory needs to be supplied. And it is possible to disable the
FPGA on a regular basis. These benefits come along with drawbacks in package density
and with a higher price for the chip itself [3].

1.1 Contribution of this Work

The primary aim of this work is to minimize the power consumption of the sensor node,
by switching off the FPGA in idle times, while still conserving the relevant content of its
on-chip memory. Therefore, a suitable memory chip must be selected to keep runtime data
available over multiple power cycles of the FPGA. This memory has to be non-volatile and

1

should consume as little energy as possible. That means it must be fast, while having a low
power consumption.

Furthermore, different types of switches are compared to find the most efficient way to
switch off the FPGA. Those two components are connected to a Microsemi IGLOO devel-
opment board [4], which is used to build a prototype. A Texas Instruments CC2530 MCU
is used to control and monitor the FPGA. It uses an Serial Peripheral Interface (SPI) bus to
communicate with the FPGA. Therefore, an SPI slave module is implemented on FPGA-side.

To backup and restore the relevant data to the external memory a swap-handler module
is developed. This module takes the backup worthy data from the application modules
and writes them to the memory. After a reset of the FPGA, it restores the data back to
the application modules. The modules for themselves decide, which data is required to be
saved. While the backup or restore process is active, all other operations of the FPGA are
halted.

As a sample application a finite impulse response (FIR) filter is implemented, which pro-
cesses data provided by the MCU. The MCU monitors the results of this filter, to verify that
the backup and restore processes work flawlessly. The final results are transferred to an
attached computer.

After this verification of the functionality the setup is ported to the HaLOEWEn platform,
which is described in the next chapter. On this platform the power consumption is mea-
sured, to examine the additional consumption for the backup and restore process. This en-
ergy consumption overhead is compared with the specifications of the FlashFreeze mode.
The power drain of the MCU is not regarded, since it has to be active anyway.

1.2 Structure of this Work

The main parts of this thesis are organized as follows. Chapter 2 will take a look at existing
approaches to minimize the power usage of sensor nodes. It also addresses hibernation
techniques and ways to minimize the data to be transferred. The HaLOEWEn platform is
presented in this chapter, too. Chapter 3 presents currently available non-volatile memory
(NVM) technologies and compares them in terms of power consumption. In this chapter
the decision for a technology is made. Chapter 4 describes the implementation of an en-
ergy efficient HaLOEWEn prototype with reduced standby power consumption. It compares
different kinds of switches and describes the implementation details of the swapping con-
troller. Chapter 5 documents the measurement setup and presents the evaluation results.
Also the conditions which must be fulfilled for the implementation to be more efficient than
the regular standby-state, are described here. Chapter 6 summarizes the results. In addi-
tion, it shows optimization potentials, which, due to the high complexity of the subject, are
not handled in this thesis.

2

2 Related Work

2.1 HaLOEWEn

The hardware architecture of this work is based on the HaLOEWEn implementation in
version 3 as it can be seen in figure 2.1. It combines a software-programmable RF-SoC
and an FPGA. The RF-SoC is a Texas Instruments CC2531 with an integrated 2.4 GHz IEEE
802.15.4 transceiver and an 8 bit MCU, which is based on the Intel 8051 architecture[5]. It
uses the same protocol stack like many ZigBee, 6LoWPAN, WirelessHART and ISA 100.11a
devices. The main tasks of the CC2531 are to handle the radio and other low complex
computations like time-keeping. To preserve energy, the radio is switched off while not
transmitting.

As FPGA a flash-based Microsemi IGLOO AGL1000 is used. This chip has a standby power
drain of 52.8 µW[6]. For a quick dynamic power management it is beneficial that this FPGA
can be woken up in a few microseconds. But the needed standby current is still at least
an order of magnitude larger than the current drawn by typical sleeping WSN software
processors. The CC2531 in comparison only has a power drain of 2.5 µW in its second
lowest power mode and 1.0 µW in its lowest mode.

The FPGA is connected to the MCU with an SPI bus and some additional multifunction
wires. All these connections use the third Input/Output (I/O)-bank (I/O-bank #2) of the
FPGA. It is set to 2.5 V and cannot be switched off or measured. The other 3 I/O-banks can
be driven with either 3.3 V or 2.5 V. They can be individually switched on and off and it
is also possible to measure the power drain of every I/O-bank separately. Sensors can be
attached to these banks via multiple board-to-board connectors.

The whole system can be powered with a 3 V battery. And it is possible to supply the FPGA
with an separate power supply. [2]

2.2 Energy Conservation in Wireless Sensor Networks

There are several approaches to minimize the power consumption of WSNs. Since the radio
is often the unit with the highest power consumption, there are several ways to minimize
its utilization. The so called Duty Cycling approach turns the radio in a low power state

Figure 2.1.: HaLOEWEn v3 Prototype[2]

3

whenever it is not needed. The HaLOEWEn architecture already takes advantage of the
technique. In networks, where single nodes do not only transmit their own collected data,
but also need to forward information from other nodes it is important, that adjacent nodes
synchronize their wake-up periods to make transmissions feasible. In networks, where
nodes are redundant, the sensing area can be divided into virtual grids. Nodes in the same
cell can rotate their wake-up times, so only one node is active at a time. An alternative
approach is to use coordinator nodes, which are responsible for routing and forwarding. A
coordinator node stays permanently awake, while other sensing nodes can go back to sleep
after each measurement. The coordinators organize themselves autonomous.

There are also Data-driven approaches to conserve energy. One way is to minimize the data
to be transmitted. Either by compressing the collected data or by reducing the measuring
points. The missing data can then be supersampled. Both approaches need more com-
putation than a simple collection of the data, but they reduce the needed air-time of the
transmission. [7]

The selection of the MCU can also have a huge impact on the power consumption of the
whole system. The variation in power consumption between different products is in the
range of several hundred milliwatts. To further reduce the power consumption of the MCU,
Dynamic Power Management (DPM) can be used. This technique can put the microcon-
troller in a low power state, while it is idling. But the utilized software has to be adapted
to this. Since often only a timer is still running, there cannot be an event driven wake-up.
The MCU can only wake up periodically to perform calculations. [8]

At last there is the relative new way of using hybrid sensor nodes, which contain a FPGA
for compute intensive tasks, while using the MCU only for management and wireless trans-
mission. The power of the FPGA can be used to compress the data or to further analyze it
so the raw data does not have to be transmitted. These boards may use more energy than
implementations with a low-power MCU, but they have far more computational power
while being more efficient than an MCU with comparable processing power. [9] [2]

2.3 Data swapping

To back up the data from volatile memory into the NVM, there is the need of a backup
process. The simplest way is to back up the whole memory before each shutdown. This
is inefficient in terms of energy and time consumption. And time consumption also means
energy consumption. For non-hybrid platforms there is already a solution based on statis-
tics based dead blocks prediction (SBDP). This platform uses a capacitor to provide energy
after a power loss to backup relevant data until reboot. To minimize writing time after the
power loss, an adaptive writeback scheme (AWS) was designed. With little overhead in
performance and energy a preemptive write-back is fulfilled. This reduces the backup time
and therefore decreases the size needed of the capacitor. But since there is a chance that
not all relevant information are backed up correctly, the technology is not directly applica-
ble to this work. [10] Also the memory has an overhead to address and access its data so
it is less efficient to read or write non-sequential data.

4

3 Non-Volatile Memory

3.1 Flash

Since its introduction in the mid-1980s flash memory gained much popularity. In com-
parison to Erasable Programmable Read-Only Memories (EPROMs), it does not need to be
erased completely before being rewritten. Depending on the architecture, it can be written
in single words or only in pages. There are two types of flash memory available. NAND
flash is available in high densities, but its design does not allow addressing single bytes.
Whereas NOR flash is byte addressable with the penalty of a lower density. NOR flash can
also replace Read-Only Memories (ROMs) without a change in the interface.[11]

3.1.1 NAND flash

NAND flash is currently the most compact available memory technology. With triple level
cells there are chip sizes up to 6 terabit possible [12]. But these flash cells do not have
a high endurance. While single-level cells (SLCs) can handle up to 10k program/erase
cycles [13], multi-level cells (MLCs) can break after 3k program/erase cycles. Triple-level
cells (TLCs) have an even worse endurance with only 500 program/erase cycles [12].
Every level increases the density of the chip with quad level cells as the densest currently
available packaging. The level describes how many bits can be stored in a single cell [14].

The single cells are arranged in pages and unlike in NOR flash, the cells cannot be individ-
ually addressed. A SLC flash page typically has a size of 512, 2048 or 4096 bytes. Multiple
pages are combined to blocks. The read operation works on page level. To get the data of
a single cell, the whole page must be read. The write operation also works on page level,
but only previously erased pages can be written. So to update a single byte the whole page
must be read, erased, and rewritten. A simple write (without a preceding erase) needs an
energy of 4 µJ for a 512 byte page, which is the minimal addressable unit size of a Toshiba
16MB NAND flash [15]. While the read process without addressing overhead only needs
1.69 nJ per byte [16].

The erase operation only works on block level. To clear a page, the whole block must be
erased and unrelated pages have to be rewritten. An alternative would be the implementa-
tion of a wear leveling function, which only writes data in empty pages. If the used memory
is large enough, this would make the erase process expendable and preserves energy.

But even with the implementation of a wear leveling function, NAND flash stays really
expensive in terms of energy consumption. Therefore, it will not further be discussed in
this work.

3.1.2 NOR flash

NOR flash was first proposed in the 1980s. It was developed as a pin-compatible replace-
ment for Erasable Programmable Read-Only Memory (EPROM). Every word can directly
addressed, read and written. Alternatively there are flash chips with an SPI available,
which can only be addressed on page level. While EPROM needs an UV-light source to
be erased, NOR flash is electronically erasable at block or even page level. But the erase

5

process in NOR flash takes several times longer than in NAND flash, since every byte must
be previously written with zeros. [17]

NOR flash has a durability of up to 105 program/erase cycles per cell. Depending on the
implementation it needs about 1 µJ for a single write on a serial NOR chip with a page size
of 256 byte [15].

3.2 Phase Change Memory

Phase change memory (PCM) (also called PCRAM or PRAM) is one of the emerging mem-
ory technologies. Its key characteristics are a high density, a data retention time of over
10 years and a write endurance in magnitude of 109. While read operations in Flash are
slightly faster than in PCM, write and erase operations are significantly faster in PCM. The
technology is based on the physical effect, that the electrical resistance of a material de-
pends on its phase. If a material is in crystalline phase, its resistance is several magnitudes
lower than if it is in amorphous phase. To change the phase of a material it has to be
heated up. A material in amorphous phase can be transformed into crystalline phase by
heating it up to a temperature between the crystallization temperature and the melting
temperature for a time period long enough to crystallize. Since the amorphous material
has a high resistance, the Poole-Frenkel Effect has to be used. It lowers the resistance by
applying a electrical field to the material, so a crystallizing current can be reached [18].
The crystalline phase is called the SET state. To reset it back into amorphous phase it has
to be melted and then quickly quenched. This is achieved by applying a large current to
the material. The amorphous phase is called the RESET state. To read the value of a cell,
its resistance is measured with a low current.

While almost every material has these two phases only a few are suitable for data storage
technologies. The difference in resistance between amorphous and crystalline phase must
be in a specific range. The crystallization temperature has to be above the operational
temperature and the phase should be changeable in nanoseconds. These requirements
narrow the usable materials down to a few alloys basing on germanium and silicon. [19]

Current phase change materials need up to 512 nJ per byte written,]which make them
more energy expensive than NAND flash if more than 8 byte need to be written in a flash
page. The read operation however is very cheap in terms of power consumption. It only
needs 0.6 nJ to read a single byte[20]. This can be optimized with a data-comparison write
scheme, which will compare the data to be written with the existing data on bit level, so
only required transformations will be done. With this technology up to 64 bits can be set,
before PCM requires more energy than NAND flash, which makes it still very expensive.

3.3 Magnetoresistive memory

An other non-volatile memory technology is Magnetoresistive Random-Access Memory
(MRAM). MRAM-cells store their information in the polarization of a magnetic field. They
use the effect, that the resistance of the magnetic material depends on the polarization of
its surrounding field. If the polarization of the sensing layer is parallel to the surrounding
field, its resistance is low and the bit is interpreted as a "1". If the polarization is anti-
parallel to the surrounding filed, the layers resistance is high and the bit is interpreted as a
"0". [21]

MRAM needs less energy than flash or PCM. In read modes the module needs typically
25 mA. At a frequency of about 22 MHz it will be 3.7 nJ per byte. In write modes the

6

MRAM needs typically a current of 55 mA. This results in an energy of 8.2 nJ consumed
per byte written and in a maximal data rate of 176 Mbit. The standby current of 7 mA is
too high to be ignorable, so the device needs to be switched off if it is not in use. [22]

There are newer approaches based on Magnetic Tunnel Junctions (MTJs), which need less
energy, but they are not yet available as commercial products. This technology uses two
magnetic layers: A pinned layer with a constant field direction, and a free layer, which is
used to store the data by alternating its polarization. To read the information from the cell,
a constant voltage or a constant current has to be applied. If a constant voltage is applied,
the current difference is read with the aid of a comparator. If a constant current is applied,
the voltage difference needs to be amplified to extract the state.

To write data into a MRAM cell, the polarization of the free layer must be altered. This can
be done the traditional way by applying a directed external field at the cell, or with the
spin-torque phenomenon, which uses spin polarized currents to alter the field orientation.
This technology can operate with lower write currents than the traditional one, which
results in a write energy of 2.9 pJ per byte without considering peripheral needs. [23]

3.4 Ferroelectric memory

Ferroelectric Random-Access Memory (FeRAM) is a comparably old technology. It works
with the changeable polarization of ferroelectric crystals. A thin ferroelectric film is used to
store the data. Data is written into a cell by applying a magnetic field, which changes the
polarization of the material. The so written bits are now non-volatile and even insensible
to radiation. A problem is, that the readout of the data is destructive, so read data must be
rewritten. To read from a cell, a zero is written and by sensing the needed current it can
be distinguished, if the cell previously contained a one or a zero [24].

Since the early research in the 1950s the technology was improved in terms of density, en-
durance, and retention time. Currently it is available in a package size up to 4 Mibit. With
an endurance of 1014 read/writes it should be sufficient for most applications. Even though
every read includes a write operation, the typical active current of 2.5 mA at 40 MHz is still
lower than the needs of an MRAM or even PCM module. A single byte read or write only
needs 1.5 nJ with an SPI bus[25] or 3 nJ with an parallel interface[26]. Depending on the
bus frequency, the maximal data rate is up to 40 Mbit/s. The standby current of 150 µA
may be negligible, but since the memory is non-volatile it can also be switched it off. With
a lowered frequency of 25 MHz the FeRAM can also work with a voltage of 2.5 V instead
of 3.3 V. This reduces the requirements for the utilized platform.

3.5 3D XPoint™

3D XPoint™, also known as Intel® Optane™or Micron QuantX™, was not available on
the free market while the decision for the used memory technology was made. Solid State
Drives (SSDs) with Intel Optane technology are currently as of March 2018 becoming avail-
able, but the memory chips themselves are not distributed. Also, there are no datasheets
available, but the SSDs are promoted to be faster than current flash based drives[27]. No
further information about this memory technology are currently available and since the
chips are also unavailable this technology will further be ignored.

7

1.6nJ

4000nJ

0.6nJ

51.2nJ

3.7nJ
8.2nJ

1.5nJ 1.5nJ

NAND
(TC58DVG02A1FT00[16])

PCM
(DCW PRAM[20])

MRAM
(MR256D08B[22])

FeRAM
(FM25V02A[25])

Read Energy

Write Energy

Figure 3.1.: Energy consumed per byte by non-volatile memory
Without erase operations

3.6 Conclusion

Compared with the other shown technologies, FeRAM is best suited as swapping mem-
ory. As to be seen in figure 3.1 it has the lowest energy usage per byte written and the
second lowest per byte read. Because of the cheap write process, there is no need to im-
plement a complex differential of incremental backup process. Also the memory pages can
be overwritten without a separate erase operation, which would be needed with Flash and
PCM.

Furthermore, it can be driven with 2.5 V, which is the main voltage of the HaLOEWEn
board. And its typical supply current of 2.5 mA is low enough to be directly driven by the
I/O-bank of the FPGA.

If the power-consumption of the FPGA itself is considered, the higher speed of the MRAM
could make a difference. This is not further discussed in this work. Also if only a few bytes
change every cycle, FeRAM is not the best option. In this case PCM in combination with an
incremental backup scheme should be considered.

8

4 Implementation

4.1 FPGA Power Cutting

To decrease the power consumption of the sensor node the integrated FPGA has to be
switched off. Therefore, it has to be disconnected from its power source. The Microsemi
IGLOO AGL1000 has two supply voltages. Its core is powered with 1.2 V or alternatively
with 1.5 V. The second supply voltage is used to power the I/O banks. This voltage can
be configured to be 2.5 or 3.3 Volt [6]. In this work, the ARM Cortex-M1-Enabled IGLOO
Development Kit board is used for a proof of concept. The core voltage is set to 1.2 V
and the I/O voltage is set to 3.3 V [4]. For power-consumption measurement and further
validation the HaLOEWEn v3 board [2] is used.

These comparable low voltages make it challenging, to find a suitable semiconductor
switch. Alternatively it is possible to switch off the linear regulators. The line regula-
tors are powered with 3.3 V. This is a voltage, that is easier to switch for a Metal-Oxide-
Semiconductor Field-Effect Transistor (MOSFET), but it has the drawback, that the capac-
itors, which are located after the regulators, need to be recharged every time, the FPGA is
switched back on.

The power consumption of the FPGA while active can be estimated approximately 30 mW
[2][Table 17]. While the FPGA is suspended, it only needs 53 µW. A simple strand with
a profile of 0.8 mm2, for example, has a resistance of 20 mΩ per meter. This causes that a
wire of 10 cm length has a power dissipation of 2 µW. So the suspended FPGA consumes
only 25 times more energy than a simple wire, which makes line resistance a problem.

Bipolar Transistors

Bipolar junction transistor (BJT) were the first transistors widely used in integrated circuits
before they were replaced by the Complementary metal–oxide–semiconductor (CMOS)
technology. A bipolar transistor is current regulated, which means that a current between
Base and Emitter is needed, to switch the transistor on.

They need at least 1 mW switching current, to keep the FPGA powered on. This is about
15 times more, than the 53 µW the AGL1000 needs as standby power. To be effective, the
FPGA has to have an off-time 15 times as long as its active time, just to compensate the
energy consumption of the transistor. Since our setup hast two switchable voltages, this
proportion even increases to 30 times.

Metal-Oxide-Semiconductor Field-Effect Transistors

In comparison to bipolar transistors, MOSFETs need much less energy to keep their state.
They generate an electrical field to induce a tunnel from the source to the drain substrate.
Therefore, its gate is charged with several nano-coulomb.

There are p-channel and n-channel MOSFETs. P-channel MOSFETs close the circuit, if the
gate voltage is below the source voltage, while n-channel MOSFETs are activated with a
higher gate voltage.

In our application a n-channel MOSFET can be used to switch the 1.2 V core voltage, while
the I/O banks and the memory have to switched with a p-channel MOSFET.

9

BJT MOSFET Signal Relay
Switching energy 0 µJ 54 nJ 300 µJ
Active power 60 µW 7 µW 32 µW

Table 4.1.: Overhead of the different switching technologies

The drain-source resistance (RDS(on)) cannot be neglected. It increases the power needed
in active state and has to be added to the active power consumption. A good n-channel
MOSFET has a RDS(on) of 10 mΩ at 1.8 V [28]. This causes an additional power consump-
tion of 7 µW, while the FPGA is active, assuming the 30 mW, declared in the datasheet, are
completely used on the 1.2 V supply.

Since the HaLOEWEn platform does not provide voltages larger than 3.3 V, a p-channel
MOSFET has to be used for theses lines. In this case a good RDS(on) value is approximately
11 mΩ at 2.5 V [29]. This results in an additional power consumption of 1 µW, while the
FPGA is active, assuming the 30 mW are completely used on the 3.3 V supply.

The gate charge of 30 nC can be ignored since the effective energy of 54 nJ is lower than
the energy needed to write the data into the external memory.

But the best transistors are only available in very small packages like the PowerPAK SC-70-
6L. This makes them unsuitable for prototypes. With worse specifications (31 mΩ at 1.8 V),
there are npn-transistors available on the market in TSOP6 packages.[30]

For the prototype smd adapters boards are needed, which will increase the contact resis-
tance, but the impact of those is not predictable.

Signal Relays

Relays are electromechanical switches. A coil induces a magnetic field, which changes the
state of the switch. There are bistable and monostable relays. While monostable relays
need energy to keep their on-state, bistable relays only need to be powered a few millisec-
onds. Modern signal relays can be powered with voltages down to 3 V and can therefore
be driven by TTL or CMOS logic devices. But the switching current of 66.7 mA is larger
than the current, the ATMEGA MCU can provide through its I/O-pins [31]. A so called H
bridge is needed to power the relays. The benefit of a relays in comparison to a MOSFET
is, that the switched voltage is irrelevant. The drawback is that the switching energy of
approximately 300 µJ is comparably high. With this energy, the FPGA can stay in suspend
state for six seconds. Also the typical contact resistance of 50 mΩ is larger than that of
the best transistors [31]. This results in a power dissipation of 32 µW at 1.2 V, with an
assumed FPGA power consumption of 30 mW.

Conclusion

As it can be seen in Table 4.1, there is no technology without a penalty in power consump-
tion. In comparison to the signal relay, the transistors do not need a significant amount
of switching energy. And because of the high active power of the bipolar transistor, the
MOSFET is the only reasonable choice.

4.2 Hardware Architecture

All functionality is implemented on a Microsemi AGL1000 development kit[4]. It provides
the FPGA, FLASH memory, SRAM, and some light-emitting diodes (LEDs) to display debug

10

FPGA Devboard MCU Devboard

OSC DCDC DCDC

(FET) FET

NVM-FPGA
AGL1000

Sensors FeRAM PC

RF-SoC
CC2530

DCDC

Power Supply
> 2.7 V

3.3V

3.3 V 1.2 V 3.3 V48 MHz

UART

ready
SPI

Figure 4.1.: Hardware Architecture of the first prototype based on the AGL1000 and
CC2530 development kits

information. Several lines from each I/O-bank of the FPGA are provided through BT224
compatible boxed headers. The power is provided by a 5 V@3 A wall plug transformer.
The power supply for the FPGA core can be cut with a jumper. This jumper is replaced
by a Vishay Si4465ADY MOSFET [29], to make the power supply switchable. A 256-
Kbit Cypress FM25V02A[25] FeRAM is used as FPGA-external swapping memory. It is
connected as an SPI slave to the FPGA and can be operated with a clock of up to 40 MHz.
With an operating voltage of 2 V to 3.6 V and a maximum current of 2.5 mA for read and
write operations, it can be powered by a single I/O-pin of the FPGA. An additional switch
is not needed.

A Texas Instruments SmartRF05 Evaluation Board with an integrated CC2530 MCU[5]
is used to control the transistor and the FPGA. To enable communication between the
MCU and the FPGA, the FPGA is connected as an SPI slave to the MCU. An additional
“ready”-wire is used by the FPGA, to inform the MCU about the completion of the backup
process. The whole setup is controlled by a host PC, which communicates via the universal
asynchronous receiver-transmitter (UART)-protocol with the MCU. This hardware setup is
visualized in Figure 4.1.

The MOSFET bracketed out is only included in the later used prototype based on the
HaLOEWEn platform, since it is not needed to cut the power of the I/O-banks for the func-
tional evaluation. Also the power supply is not shared between the development boards.
They only have a common ground.

4.3 Data swapping

All runtime data residing in the FPGA is stored in its distributed registers and block-RAM.
Due to its volatile nature, all information, that is needed after a power cycle of the FPGA,
must be backed up prior to shutdown. Therefore, a swapping controller module is im-
plemented, to copy all relevant information into an external FeRAM-chip. Besides this
swapping controller module, there are application modules implemented on the FPGA,
which can hold data, that has to be backed up. Directly after the device is reset, the swap-
ping controller connects to the external memory and reads all stored information via SPI
and forwards them to the application modules. To achieve this, all application modules

11

State Bitmask Description
IDLE 2’b00 Module should perform its work
BACKUP 2’b10 Module should provide data if addressed
RESTORE 2’b01 Module should restore data if addressed

Table 4.2.: Swapping controller states and their bitmasks

must be kept in a halt state, so that they do not corrupt the data, while it is still being
restored. The swapping controller module is placed in a separate clock domain, to allow
the FeRAM to be read and written with a maximum rate. Therefore the internal data bus,
which is used to forward the data between the application modules and the swapping con-
troller, has a configurable width. With a width of two, the clock of an application module
can be half the clock of the swapping controller. After all data is restored, the controller
ends the halt state and the application modules can continue their work at the exact same
state, they were before the shutdown.

To shutdown the FPGA, a signal is issued by the MCU via an SPI command. The controller
again halts the modules and collects their data, to write it to the external memory. In this
process, the whole memory will be overwritten. There is no differentiation between altered
and unaltered data. After the backup is finished the controller module signals the MCU,
that the FPGA is now ready to be switched off. With the maximum frequency of 40 MHz, a
whole backup or restore process with an 256 Kibit FeRAM takes no more than 6.6 ms.

4.3.1 Application Module Interface

Every application module that holds data, which must be preserved amongst power cycles,
must implement an interface to the swapping controller. The listing in Appendix A shows
a sample module, which contains all logic, that is required to backup and restore its data.
The interface contains an incoming and an outgoing data bus, an address bus, and a status
bus.

The status bus is used by the swapping controller, to notify the modules about active backup
or restore processes. Its possible values are show in Table 4.2. While the state is not IDLE,
all operations of the modules must be halted. The other states signalize, that a backup or
restore process is in progress and that the modules should await their addresses.

The data and the address buses should have a width, configurable via external parameters.
This allows a subsequent modification of the clock domains or the amount of data to be
backed up. The configured address has to be globally unique. This means two modules
must not use the same address for a word. So an address offset should be configurable to
allow local addresses and to make it possible, to move a module to an other position in
the external memory. It makes it easier to reuse a module in other implementations, since
otherwise there is a risk, that two modules would use the same memory address range.
Also a configurable offset allows multiple instances of the same module. When the offset
values are configured, it should be minded, that there are no unused gaps in the address
range. The address translation is done in line 27 and the check, if the provided address is
in the module-specific range, is performed in line 55 of the in Appendix A provided listing.

The DATA_IN bus is only used during restore. Its data should be ignored, if the set address
does not match the address range of the module, or if the swapping controller is not in
restore state. If these constraints are fulfilled, the data can be restored into the local
registers. An example is provided in lines 58 to 62 of the listing in Appendix A. The

12

toplevel

APP1 APP2 ... APPn

Multiplexer

bus_backup_arr
SW

A
PI

N
G

CO
N

TR
O

LL
ER

DATA_OUT

[0]

DATA_OUT

[1]

DATA_OUT

[2]

DATA_OUT

[3]

swp_address

bus_backup

bus_restore; swp_address; swp_state

Figure 4.2.: Toplevel Design

address and data may change every clock cycle. This must be considered, if the data must
be stored in slower memory.

To backup the data, the DATA_OUT bus is used. Again the global address provided by the
swapping controller should be translated into local address. The data must be available in
the same clock cycle as the address changes. This can be achieved by using a multiplexer,
which uses the relative address, to provide the requested data. Data residing in the block-
RAM must be prefetched, to be available in time. This prefetch should be done, while the
address bus is set to one address before the actual data address. In the listing, all data is
aggregated into the wire datasum, while the wire datashift in line 34 provides the requested
word. If the address is not valid, the DATA_OUT bus may be set to zero.

4.3.2 Toplevel Requirements

The toplevel module, as to be seen in Appendix B, must provide the swapping controller
direct access to the FeRAM. The external wires to the FeRAM use the same names, as
they are provided in the pin definitions of the FM25V02A chip [25]. Additionally, the VDD
supply wire is also connected to the FPGA. Its internal name is FRAM_POWER and it gives
the swapping controller control over the power supply of the FeRAM.

To inform the swapping controller about a pending shutdown, the SHUTDOWN_TRIGGER
wire is used. This wire should only be set, if the FPGA has no pending calculations and
can safely be shut down. It causes the swapping controller, to start a backup and to halt all
other modules. When the shutdown is complete, the SHUTDOWN_COMPLETE wire is set
by the swapping controller. In this state, the FeRAM is already switched off and the FPGA
awaits its power to be cut.

The internal bus configuration between the swapping controller and the application mod-
ules is visualized in Figure 4.2. The swp_state, bus_restore, and swp_address wires can be
directly attached to the application modules. For the bus_backup wire, a multiplexer is
used to switch between the application modules. It uses the swp_address wire to select the
correct application module and forwards its data to the swapping controller. In the listing,
a helper array, called bus_backup_arr, is used, to simplify the multiplexer.

13

4.3.3 Logical Functionality

Backup

Before the FPGA can be safely switched off, the application data, residing in the inter-
nal registers and block-RAM, must be backed up. Therefore the swapping controller must
be notified about the pending shutdown via the SHUTDOWN_TRIGGER wire. The swap-
ping controller then powers the FeRAM and transmits a suspend signal to all application
modules, to prevent a corrupt backup. It then writes the addresses, from zero up to the
maximum defined address, in ascending order to the address bus. The application modules
should now await their assigned addresses on the address bus. A multiplexer at toplevel
ensures, that at a time only one module can transmit its data to the FeRAM. After all data is
backed up, the swapping controller signals via the SHUTDOWN_COMPLETE wire, that the
FPGA is now ready to be powered off. The FeRAM is also switched off, to conserve energy.

Restore

After the RESET line is asserted high, the controller powers the FeRAM and sets a signal on
swp_state bus, that it will now issue a restore. This bus must be attached to all modules that
should be backed up and restored. The modules must interrupt their normal operation, if
the BACKUP or RESTORE signal is provided by this bus. After the restore is started, the
controller reads sequentially data from the FeRAM and sends it over the bus_restore bus,
while it increments the address. The sequential read is stopped, when the address reaches
the value configured in DATA_LEN. While the address 0 is reserved for the controller, to do
internal operation, any other address can be used by the application modules for their data.
This address is used to identify the words on the internal data bus and can be different
from the memory address for the same data. The width of the bus is configurable and
should compensate different clocks, used by the controller and the application modules.
It should be as small as possible, to prevent empty bits, which can occur when a module
needs a number of bits, that is not divisible by the buswidth. The modules should use
local addresses for their registers, so that every applicable global address maps on a local
address. This allows a module, to be moved to a different position in the memory without
a required modification of the module. When an address, used by the module, is set
on the address-bus, the data from the data-bus should be written into the corresponding
registers. If an address outside of the address range of the application module is provided
by the address-bus, the data laying on the data-bus must be ignored, since the address may
be assigned to another module. After all modules are restored, the controller removes the
restore-signal from the control-bus and all modules can start working. At the same moment
the FeRAM is disconnected from its power source, since it will not be needed until the next
backup process.

4.3.4 FeRAM Communication

The FeRAM is accessed and controlled by the swapping controller. The HOLD input pin of
the FeRAM is only set if the FeRAM is powered on. The HOLD pin suspends the FeRAM, if
it is set to low. If the FeRAM is not powered on, this pin is shorted to ground internally.

The swapping controller communicates via the SPI protocol with the FeRAM. It ensures,
that all timing requirements are satisfied and that the FeRAM is initialized properly. To
backup the FPGA-internal registers, the first word of the FeRAM is addressed, and all data
is transferred sequentially. After all data is written, an zero byte is written and the FeRAM

14

is switched off. The final zero byte ensures, that all data is correctly written to the FeRAM
prior to shutdown.

To restore the data, a FASTREAD command is issued to the FeRAM. In this mode the mem-
ory transfers data sequentially, while the clock signal is active. After transmitting the first
address, an zero byte must be written to the FeRAM. This is required, since the FeRAM
implements an interface that is compatible to SPI FLASH memories. Then all data can be
received and restored to the application modules. When all information are received, the
swapping controller suspends the clock signal and switches the FeRAM off.

4.3.5 Design Considerations

FPGA

The Microsemi AGL1000 was chosen, since it has integrated flash memory and does not
need to be configured by an external controller. This allows the FPGA to power up in
less than 1 µs. Also the AGL1000 supports core voltages of 1.2 V and 1.5 V, which makes
it predestined for low-power environments. At this moment, the Microsemi IGLOO FPGAs
are the only available flash-based FPGAs on the market. Competing non-volatile FPGAs like
the Intel Altera MAX10 series have the drawback, that they need to copy their configuration
from an internal non-volatile memory. This comes along with a higher initial configuration
time of at least 300 µs [32].

Differential Backup

It was considered, to only backup data that has been altered since the last backup cycle.
This could improve the duration and thereby the power efficiency of the backup process.
This idea was abolished, since the FeRAM can only be written in whole bytes and for
a non-continuous write the address must be retransmitted. Therefore, the write process
must be restarted, which has an overhead of 4 bytes to be transmitted. So a differential
backup is more efficient than a full backup, only if more than four continues bytes can be
left unaltered in the memory. In comparison to FLASH memory, there is no need to erase
the data first and overwriting an unaltered segment does not cause any unproportional
power consumption. Also the implementation of a differential backup needs additional
logic inside the application modules. A dirty flag must be implemented, to track changes
of the data. It is not an option, that the swapping controller compares the local data with
the data residing in the FeRAM, since a comparison takes the same time and energy as the
backup itself.

4.4 Demo Application

To validate the correct functionality of the swapping controller, a demo application is im-
plemented. A simple FIR filter is used to generate data that can be backed up. It stores
a finite amount of 32-bit integers in an array and calculates their average after each ap-
pended entry. If the array is full, the oldest entry is replaced. The entries are provided by
the MCU which transmits them via the control interface, described in Section 4.5. With
each new entry, the calculated average is sent back to the MCU.

The size of the FIR filter can be configured. All its data can be completely backed up. And
it operates with half the clock rate as the swapping controller.

The demo application is required for the evaluation, but the explanation of its basic func-
tionality is also required for a better understanding of the following control interface.

15

Command Bitmask Description
SHUTDOWN 0xF1 Triggers the swapping controller to start the backup process
RESET 0xF2 Resets all application modules to default values
FIR 0xF3 Provides data for the FIR filter
NOP 0x00 Does noting

Table 4.3.: SPI commands understood by the FPGA

4.5 Control Interface

To allow the FPGA to be controlled, a SPI slave module is implemented. It awaits com-
mands from the MCU and forwards them to the corresponding module. This way, the
SHUTDOWN_TRIGGER can be set and the FIR filter is filled with data. An overview of the
accepted command can be found in Table 4.3.

If SHUTDOWN command is received, the FPGA is backed up, as described in Section 4.3.3.
After the shutdown, the MCU is signaled by the FPGA through an additional wire, that the
power can now be cut. The additional wire is needed, since the FPGA cannot transfer data
through the SPI bus on its own initiative.

The RESET command is needed, since the swapping handler always restores all data from
the FeRAM at startup. To reset the application modules to default state, a manual reset has
to be performed. This reset allows the evaluation process, described in Chapter 5, to start
each step with a clean data set. The reset signal should be connected to all application
modules and must not be connected to the SPI slave module itself. The generated reset
signal is cleared with the next received datum on the SPI bus, which can be the NOP
command or the SHUTDOWN command. If the SHUTDOWN command is used, the FeRAM
is filled with the default data of the modules.

To fill the FIR filter, which is required for the evaluation, the FIR command is used. It is the
only command that expects further parameters. The first byte after the command is used
to declare the number of integers, that are transmitted. This is used, to allow the filter to
be initially filled at a faster rate, without the need of retransmitting the command for every
integer. The following bytes are aggregated to 32-bit integers and then forwarded to the
FIR filter module. This command cannot be aborted prematurely. It only terminates, if the
declared number of integers is received. While the integers are received from the MCU,
the module expects the calculated average from the FIR filter. With each received integer,
the previous average is transmitted to the MCU.

This SPI slave module works with the FPGA-internal clock and can handle any SPI clock,
as long as the external clock has a frequency lower than half of the internal clock.

4.6 MCU Implementation

The MCU is used to control the FIR filter and the power supply of the FPGA. To commu-
nicate with the FPGA, the commands listed in Table 4.3 are sent via an SPI bus. It also
calculates the data for the FIR filter and compares its results with the data committed by
the FPGA. The MCU can be controlled via an UART interface. The available commands are
listed in Table 4.4. If the FIR filter is started, the MCU sends an batch of data to the FPGA
to have a initial setup of the internal registers. Then it sends a new integer to the FPGA
every second and compares the received calculation result with the expected result. The

16

Command Description
powerUp Switch the power for the FPGA to state ON
powerDown Trigger backup process and switch off the FPGA on finish
reset Send RESET signal to FPGA
nop Send NOP signal to FPGA
startFir Start FIR filter and continue to send data to the FPGA
stopFir Stop FIR calculations

Table 4.4.: UART commands understood by the MCU

state and the sent and received integers are also send via UART to the host PC. This allows
the user to monitor the operation of the FPGA.

To power cycle the FPGA and to test the swapping controller, the commands powerDown
and powerUp can be used. The powerDown command automatically stops the FIR filter.
To continue the FIR filter after the next start of the FPGA, the startFir command must be
resubmitted.

17

5 Evaluation

5.1 Functional Verification

To verify the correct operation of the swapping controller and the FeRAM, the develop-
ment architecture described in Chapter 4 is used. A counter as evaluation module is
implemented, which displays its current value on a led bar graph, residing on the de-
velopment board. Via the control interface, a power cycle of the FPGA is then issued. To
ensure that there is no phantom data left in the internal SRAM, the development board is
completely cut from its power source in further iterations. The final iteration includes an
switched off time of 24 hours. After each iteration, the restored state is compared with the
pre-backup state.

Additionally a FIR filter, which calculates the average of 32 entries, is used. Each entry
has a size of 32 bit. The FIR filter is implemented on the FPGA as well as on the MCU.
This way, the MCU can verify, that the results received from the FPGA are correct. For the
communication between the FPGA and the MCU, a SPI bus with a rate of 28800 baud is
used.

For the following power measurement, the filter runs automatically. After 100 submitted
entries, the FPGA is shut down for 20 seconds. After the restore, 80 further entries are
submitted, before the test cycle ends. A LED on the HaLOEWEn board is active, while the
received results are correct.

The correct operation of the backup and restore process could be verified.

5.2 Consumption Measuring

5.2.1 Hardware Architecture

To increase the precision of the evaluation the development boards must be replaced by
a platform with less interfering components. Therefore the whole codebase is ported to
the HaLOEWEn v3 board. Besides the Microsemi AGL1000 FPGA[6] and the Texas Instru-
ments CC2531 MCU and their voltage regulators there are no further active components
integrated. The power of the FPGA-core and of three out of its four I/O-banks can be com-
pletely cut. But since the last I/O-bank is hardwired to the MCU, which requires a fixed
voltage of 2.5 V, it cannot be switched off. Whereas the other I/O-banks are configurable
to be driven with either 3.3 V or 2.5 V, by placing a jumper. This jumper can be replaced
with an n-channel MOSFET, to control the power supply of the I/O-banks.

The FeRAM is directly attached to the FPGA. Its power supply is also provided by an FPGA
pin. The FPGA-core and the I/O-banks can be configured and controlled with jumpers. By
replacing these jumpers with multiple n-channel MOSFETs, the power supply of the FPGA
can be controlled by the MCU. The switched power must be provided by a separate DC
power supply, because of the high current that is needed to refill the stabilizing capacitors
of the FPGA. Otherwise, the supply voltage of the development board would drop below
the operating voltage of the MCU. This could be mitigated by placing the transistor after the
voltage stabilization unit, or by installing more powerful voltage regulators. Both concepts

18

FPGA Power

FeRAM Power

PreRestore Restore Operation Backup PostBackup

Figure 5.1.: Backup Process cycle

could not be implemented in this work, since they require a redesign of the printed circuit
board (PCB) of the HaLOEWEn board.

To generate some data to be backed up and restored the previously explained FIR filter
is used. The MCU monitors the calculated results to guarantee that the backup/restore-
process works flawlessly. It also controls the whole test cycle by initiating the restore and
backup process of the FPGA.

But even the HaLOEWEn v3 board has some drawbacks concerning the evaluation. The
UART connection to the computer is missing, so it is not possible to get extensive informa-
tion about the current state. Admittedly, it provides an USB interface, but its usage required
extensive adaptations of the sourcecode. To monitor the correct execution of the FIR filter
and of the backup and restore process, two LEDs are used. These LEDs are connected to the
MCU and therefore do not affect the measured power drain of the FPGA. Also the SPI bus
controller on the MCU, used with the development boards, cannot be used, due to a bug
in the HaLOEWEn board. Therefore, the program running on the MCU has to be altered
to use the second available controller. This results in huge changes in the source code,
because all SPI related status registers including the interrupt routines had to be adapted.

FPGA Logic Cell Requirements

The listing in Appendix C shows the compile report for the swapping controller. The con-
troller is configured with a bus width of 8 bit and a backup size of 32 kbit. Additionally,
the SPI bus controller and a counter as demo application module are synthesized. These
modules combined, require 4.5 percent of the core logic gates and 7.81 percent of the I/O-
lines. Since the FPGA has only one phase-locked loop (PLL) module, this sample uses all
available PLL modules. But two out of three available clock signals can be configured for
application modules.

With this simple setup, the swapping controller can be driven at 40 MHz. This is the
maximum frequency supported by the FeRAM.

5.2.2 Measurement

To get the power consumption of the single components, a HAMEG HMO3224 [33] digital
oscilloscope is used. It has a DC gain accuracy of two percent. In combination with an
100Ω shunt resistor for the I/O-banks and a 10Ω shunt resistor for the core, the input
current and input voltage is recorded. These shunt resistors are installed between the
DC/DC converters and the switching MOSFETs. Since the export of the trace only allows
single precision floats, the recorded current is multiplied with the recorded voltage by the
oscilloscope to reduce the loss of information due to rounding. The precision of the two
probes adds up to a four percent error. The resistance of the shunts has been verified to be
precise with an error of 0.1 percent. The data has 6 significant digits, which is still more,
than the guaranteed precision of the oscilloscope. The trace is then exported as a CSV-file
to be further analyzed with GNU Octave.

19

The test cycle is divided in multiple phases illustrated in Figure 5.1:

• First the pre-restore phase which starts 4 ms before powering up the FeRAM and ends
just before powering up the external memory.

• Afterwards, the restore phase starts, in which the copy process from the external
memory to the internal registers takes place. It ends with powering down the FeRAM.

• Then the operation phase begins where the external memory is shut down and the
FPGA does its normal work. This phase is covered later, since its duration is indepen-
dent from the amount of data, that needs to be backed up.

• In the backup phase all relevant data from the internal registers is copied back to the
FeRAM.

• The post-backup phase starts just after powering down the FeRAM and lasts for 4 ms.

The buffer capacitors for the FPGA core need 20 ms to discharge below 1 mV. This is far
less that the 20 s waiting time, between shutdown and power up, used by the test cycle.

Every single phase of the process is measured independently and multiple times. This
allows the detection of observation errors. And it shows, which phase is associated with a
high energy consumption.

5.2.3 Results

FPGA-core and I/O-bank power consumption are measured independently which allows to
decide which switches are really needed. Backup and restore were performed with 450
bytes of data and with an SPI bus frequency of 25 MHz. This is the maximum frequency,
the FeRAM supports, if it is powered with 2.5 V instead of 3.3 V. The energy consumption
with different amounts of data is calculated. Therefore, the power consumption during the
backup phase is lineary scaled to the time, which is required for a different amount of data.

FPGA Core Energy Consumption

Table 5.1 show the energy consumed solely by the FPGA-core. First it must be decided,
if the recharging of the buffer capacitors could be compensated. The first row, titled with
“switched”, shows the energy consumed, if the MOSFET is used to cut the power. The
second row, titled with “non-switched”, shows the energy consumed, if the core is not
switched off. This data is collected, to determine the impact of the buffer capacitors on
the energy consumption. Additionally, Figure 5.2 shows, that a large amount of Energy is
consumed to power up the FPGA. In comparison to the second measurement series, the
start of the FPGA consumes additional 39.426 µJ. (12.469 µJ + 33.140 µJ - 6.183 µJ)

The transition into the FlashFreeze state was not separately evaluated. The comparison is
made with the datasheet values. With the energy, which is required to charge the buffer
capacitors, the FPGA can stay nearly one second in the FlashFreeze state. Therefore, in-
dependent from the amount of data to be backed up, it is not efficient to switch off the
FPGA for less than one second. The FPGA core needs 9.4 mW, while it is performing the
restore. With an clock of 25 MHz, the transfer of one byte data takes 320 ns. Therefore,
for each byte of data, an additional energy of 6 nJ is needed, only by the core, for backup
and restore combined. The data independent energy consumption totals up to 48.29 µJ.
(12.469 µJ + 33.140 µJ + 5.381 µJ - 450 * 0.006 µJ) This can be split to initialization time
of the FeRAM before restore and backup, and to the start of the FPGA. After the FPGA is
switched off, there is no further energy consumed by the FPGA.

20

Pre-Restore Restore Backup Post-Backup
switched 12.469 µJ 33.140 µJ 5.381 µJ 0.061 µJ
non-switched 37.537 µJ 6.183 µJ 5.381 µJ 38.310 µJ

Table 5.1.: FPGA-Core Energy consumption for 450 byte of data

Pre-Restore Restore Backup Post-Backup
switched 5.758 µJ 37.230 µJ 0.235 µJ 0.097 µJ
non-switched 0.002 µJ 1.267 µJ 0.235 µJ 2.144 µJ

Table 5.2.: I/O-Bank Energy consumption for 450 byte of data

I/O-Bank Energy Consumption

For the I/O-banks, Table 5.2 shows, that the non-switched variant consumes significant
less energy than the switched variant. The I/O-banks are switched off by the FPGA core,
when it is powered down. Therefore, there is no need to switch off the I/O-banks of the
FPGA, since they consume no energy, while the core is switched off. The I/O-banks require
420.6 µW while performing a backup. A single byte needs less than 0.3 nJ to be backed up
and restored. The data independent overhead is 3.51 µJ. (1.267 µJ + 0.235 µJ + 2.144 µJ
- 450 * 0.0003 µJ)

Total Swapping Energy Consumption

The data idependent overhead of core and I/O-banks combined sums up to 51.80 µJ, which
is slightly less, than the FlashFreeze mode consumes per second. Figure 5.3 shows, how
long the FPGA must be idle, that the swapping process is more efficent than the Flash-
Freeze. This time depends on the amount of data to be backed up. The figure does not
consider the energy consumption of the MOSFET.

MOSFET Penalty

At last, the power dissipation of the utilized MOSFET is considered. Therefore, the power
drain during the operation phase is measured. This shows, that the core consumes
10.11 mW with an integrated MOSFET and 10.007 mW without an integrated MOSFET.
The difference of 103 µW is twice the consumption, the FPGA consumes in FlashFreeze
state. Therefore, the FPGA must be twice as long switched off, than it is powered, to
compensate the energy loss on the transistor.

Following formula can be used to determine, how long the FPGA has to be idle, so that the
power down pays off:

b := data to be backed up (byte)

f :=memory frequency (hertz)

t := active time (seconds)

s :=minimal sleep time (seconds)

s =
�

1
f
× 16× b+ t
�

×
103
52.8

  

1

+
51.8
52.8


2

+
0.0063
52.8

× b
  

3

(5.1)

The first addend regards the power dissipation of the MOSFET. This is affected by the run-
time of the application modules as well as by the amount of data to be backed up. The

21

-4 -3 -2 -1 0 1 20

0.02

0.04

0.06

0.08

Time (ms)

Po
w

er
(W

)
Switched
Unswitched

Figure 5.2.: Power usage of the core during restore process
The FeRAM is powered on at 0 ms

second addend compensates the data independent power consumption, arisen from the ini-
tialization of the FPGA and FeRAM. The third addend is used to calculate the compensation
time, which is needed to backup and restore the data.

22

0 5000 10000 15000 20000 25000 300000

1

2

3

4

5

Data Length (Byte)

Id
le

Ti
m

e
(s

)

FlashFreeze

Swapping

Figure 5.3.: Idle time, depending on the amount of data to be backed up, for which swap-
ping is more efficient than a transition into FlashFreeze

23

6 Summary and Future Work

In this thesis, a prototype based on Microsemi and Texas Instruments development boards
was developed to reduce the standby power drain of an FPGA by switching it off. It uses
an external FeRAM as backup memory to preserve to information located in the FPGA-
internal SRAM. The FeRAM technology has been evaluated to be superior in terms of energy
consumption to current alternatives like FLASH or MRAM.

To preserve the relevant infomation, a swapping controller was implemented on the FPGA
which undertakes the communication with the FeRAM and provides an interface for the
application modules. Additionally a controll protocol between the FPGA and an MCU
based on the SPI bus was designed. It is used to initiate the shutdown and backup and to
control a FIR filter which is used to verify the correct operation of the swapping controller.

For the evaluation the prototype was ported to the HaLOEWEn v3 plattform. Because of
its high energy efficiency, it allowed precise tests to determine the energy usage of the
backup and restore process. With this plattform it was possible to reduce the power drain
of the FPGA to zero watt, while it is not used. The time overhead of 10 ms per power cycle
as well as the additionally energy usage of 52 µJ must be considered, to determine if the
implementation into a WSN application is reasonable. Additionally the MOSFET switch,
used to controll the power of the FPGA, has a noticable resistance, which results in an
additional power drain of 103 µW. With the used Microsemi AGL1000, the data swapping
is rentable if the idle time exceeds twice the active time.

6.1 Future Improvements

There are two main issues which require further improvements. At first the PCB design of
the HaLOEWEn plattform should be altered. It needs the direct integration of the MOSFET.
Then even more efficient transistors like the Vishay SiA427DJ[34] can be used. Since it
is only available in the PowerPAK®package, which is unsiutable for a development pro-
totype, this MOSFET was not evaluated. But its specifications promise a higher power
efficiency than the used Vishay Si4465ADY[29]. Additionally the transistor could be po-
sitioned logically behind the buffer capacitors. This removes the large initial power drain
during powering up the FPGA.

Also an incremental backup scheme could be implemented and evaluated. This could
shorten the backup time and may allow a changeover to PCM. But this approach only pays
off, if the application data mostly stays the same during multiple power cycles. For the
FeRAM an improved alignment of the application data inside the memory can make an
incremental backup scheme more efficient, with only a few bytes of “static” data. But in
the end, it is highly dependent on the type of data to be backed up.

As additional minor issue, the swapping controller expects the data, to be backed up, in
the same clock cycle, as it updates the address. This requires the application modules
to implement prefetching logic, if they have data stored in the block-RAM. This could be
improved, by implementing a halt bit, which allows the modules to suspend the backup
process, until the data is fetched from the block-RAM.

24

A Verilog Module Implementation

1 module demo_appl icat ion (CLK , RESET , DATA_ADDR, DATA_IN , DATA_OUT, SWP_STATE) ;
2
3 // Parameter to con t ro l swapping bus
4 parameter BUS_WIDTH = 4;
5 parameter ADDR_WIDTH = 16;
6 parameter ADDR_OFFSET = 1;
7
8 // Constants tha t de f ine amount of data to be backed up
9 localparam BITCOUNT = 1032;

10 localparam MAX_ADDR = div_up (BITCOUNT , BUS_WIDTH) + ADDR_OFFSET−1;
11
12 input wire CLK ;
13 input wire RESET ;
14 input wire [1:0] SWP_STATE;
15 input wire [ADDR_WIDTH−1:0] DATA_ADDR;
16 input wire [BUS_WIDTH−1:0] DATA_IN ; // Restore t h i s
17 output wire [BUS_WIDTH−1:0] DATA_OUT; // Backup t h i s
18
19 // Constants f o r backup s t a t e
20 // Can be omitted
21 localparam SWP_IDLE = 2 ’ b00 ;
22 localparam SWP_BACKUP = 2 ’ b10 ;
23 localparam SWP_RESTORE = 2 ’ b01 ;
24
25 // Ca l cu l a t e l o c a l address
26 wire [ADDR_WIDTH−1:0] address ;
27 assign address = DATA_ADDR − ADDR_OFFSET;
28
29 // Combination of a l l r e g i s t e r s to be backed up
30 wire [BITCOUNT−1:0] datasum ;
31
32 // S e l e c t data
33 wire [9:0] d a t a s h i f t ;
34 assign d a t a s h i f t = datasum >>> (address * BUS_WIDTH) ;
35 // Set output i f address i s in {1 ,2 ,3}
36 assign DATA_OUT = ((DATA_ADDR >= ADDR_OFFSET) &&
37 (DATA_ADDR <= MAX_ADDR) &&
38 (SWP_STATE == SWP_BACKUP))
39 ? d a t a s h i f t [BUS_WIDTH−1:0] : {BUS_WIDTH{1 ’ b0 }} ;
40
41
42 // Re g i s t e r conta in ing data to be preserved
43 reg [7:0] l o c a l r e g ;
44
45 always @(posedge CLK)
46 begin
47 i f (RESET)
48 begin
49 // Reset r e g i s t e r s
50 end
51 else i f (SWP_STATE == SWP_IDLE)
52 begin
53 // Do your work
54 end
55 else i f (SWP_STATE == SWP_RESTORE && DATA_ADDR >= ADDR_OFFSET &&
56 DATA_ADDR <= MAX_ADDR)

I

57 begin
58 begin case (address)
59 // Restore data
60 0: l o c a l r e g [3:0] <= DATA_IN ;
61 1: l o c a l r e g [7:4] <= DATA_IN ;
62 endcase end
63 end
64 end
65
66 /* ******** FUNCTIONS ******** */
67 // d iv ide and round up
68 function integer div_up ;
69 input [31:0] d i v iden t ;
70 input [31:0] d i v i s o r ;
71 integer product ;
72 begin
73 div_up = 1;
74 for (product=d i v i s o r ; product < d iv iden t ;
75 product = product + d i v i s o r)
76 div_up = div_up+1;
77 end
78 endfunction
79 endmodule

II

B Verilog Toplevel Implementation

1 module t o p l e v e l
2 (
3 input wire CLK ,
4 input wire RESET ,
5 output wire SHUTDOWN_COMPLETE,
6 output wire FRAM_CLK ,
7 output wire FRAM_CS,
8 input wire FRAM_SO,
9 output wire FRAM_SI ,

10 output wire FRAM_WP,
11 output wire FRAM_HOLD,
12 output wire FRAM_POWER
13) ;
14
15 wire [1:0] swp_state ;
16 wire [7:0] swp_address ;
17 wire [3:0] bus_backup ;
18 wire [3:0] bus_backup_arr [6 : 0] ;
19 wire [3:0] bus_ re s to re ;
20
21 wire SHUTDOWN_TRIGGER;
22 wire RST ;
23 assign RST = (! RESET) ;
24
25
26 assign bus_backup_arr [0] = 0;
27 assign bus_backup_arr [2] = 15;
28
29 assign bus_backup =
30 (swp_address < 3) ? bus_backup_arr [2] :
31 (swp_address < 261) ? bus_backup_arr [3] : bus_backup_arr [0] ;
32
33
34 swap_handler #(
35 .BUS_WIDTH (4) ,
36 .ADDR_WIDTH (11) ,
37 . DATA_LEN (900)
38)
39 SWAP_HANDLER_i (
40 . CLK (CLK) ,
41 . RESET (RST) ,
42 . BACKUP (SHUTDOWN_TRIGGER) ,
43 . BACKUP_FINISHED (SHUTDOWN_COMPLETE) ,
44 . DATA_IN (bus_backup) ,
45 .DATA_OUT (bus_ re s to re) ,
46 .DATA_ADDR (swp_address) ,
47 . SWP_STATE (swp_state) ,
48 .FRAM_SO (FRAM_SO) ,
49 . FRAM_CLK (FRAM_CLK) ,
50 .FRAM_CS (FRAM_CS) ,
51 . FRAM_SI (FRAM_SI) ,
52 .FRAM_WP (FRAM_WP) ,
53 .FRAM_HOLD (FRAM_HOLD) ,
54 .FRAM_POWER (FRAM_POWER)
55) ;
56

III

57
58 demo_appl icat ion #(
59 .BUS_WIDTH (4) ,
60 .ADDR_WIDTH (8) ,
61 . ADDR_OFFSET (3)
62)
63 DEMO_APPLICATION_i (
64 . CLK (CLK) ,
65 . RESET (RST) ,
66 . DATA_IN (bus_ re s to re) ,
67 .DATA_OUT (bus_backup_arr [3]) ,
68 .DATA_ADDR (swp_address) ,
69 . SWP_STATE (swp_state)
70) ;
71
72 endmodule

IV

C Libero Compile Report

1 Compile repor t :
2 ===============
3
4 CORE Used : 1107 Tota l : 24576 (4.50%)
5 IO (W/ c lo ck s) Used : 14 Tota l : 177 (7.91%)
6 D i f f e r e n t i a l IO Used : 0 Tota l : 44 (0.00%)
7 GLOBAL (Chip+Quadrant) Used : 3 Tota l : 18 (16.67%)
8 PLL Used : 1 Tota l : 1 (100.00%)
9 RAM/FIFO Used : 0 Tota l : 32 (0.00%)

10 Low S t a t i c ICC Used : 0 Tota l : 1 (0.00%)
11 FlashROM Used : 0 Tota l : 1 (0.00%)
12 User JTAG Used : 0 Tota l : 1 (0.00%)

V

Bibliography

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey”, Computer
Networks, vol. 52, no. 12, pp. 2292–2330, Apr. 2008, ISSN: 1389-1286. DOI: 10.
1016/j.comnet.2008.04.002.

[2] A. Engel, “A heterogeneous system architecture for low-power wireless sensor nodes
in compute-intensive distributed applications”, PhD thesis, Technische Universität
Darmstadt, 2015. [Online]. Available: http://tuprints.ulb.tu-darmstadt.de/
5778/.

[3] F. Mafie. (Mar. 2014). Comparing flash- and sram-based fpgas, [Online]. Avail-
able: http : / / www . electronicproducts . com / Digital _ ICs / Standard _ and _
Programmable_Logic/Comparing_flash- _and_SRAM- based_FPGAs.aspx (vis-
ited on 04/23/2017).

[4] ARM Cortex-M1-Enabled IGLOO, Rev. 1, Microsemi, Jun. 2011. [Online]. Available:
http://www.digchip.com/datasheets/download_datasheet.php?id=4246116&

part-number=M1AGL1000-DEV-KIT.

[5] A USB-Enabled System-On-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee Ap-
plications, CC2531, Texas Instruments, 2010. [Online]. Available: http://www.ti.
com/lit/ds/symlink/cc2531.pdf (visited on 03/13/2018).

[6] IGLOO Low Power Flash FPGAs, DS0095, Rev. 27, Microsemi, May 2016. [Online].
Available: https:/ /www.microsemi. com/document- portal/doc_ download/
130694 - ds0095 - igloo - low - power - flash - fpgas - datasheet (visited on
03/21/2018).

[7] G. Anastasi, M. Conti, M. di Francesco, and A. Passarella, “Energy conservation in
wireless sensor networks: A survey”, Ad Hoc Networks, vol. 7, no. 3, pp. 537–568,
Jun. 2008, ISSN: 1570-8705. DOI: 10.1016/j.adhoc.2008.06.003.

[8] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-aware wireless
microsensor networks”, IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 40–50,
Mar. 2002, ISSN: 1053-5888. DOI: 10.1109/79.985679.

[9] J. Valverde, A. Otero, M. Lopez, J. Portilla, E. de la Torre, and T. Riesgo, “Using sram
based fpgas for power-aware high performance wireless sensor networks”, Sensors,
vol. 12, no. 3, pp. 2667–2692, Feb. 2012. DOI: 10.3390/s120302667.

[10] H. Li, Y. Liu, Q. Zhao, Y. Gu, X. Sheng, G. Sun, C. Zhang, M.-F. Chang, R. Luo, and
H. Yang, “An energy efficient backup scheme with low inrush current for nonvolatile
sram in energy harvesting sensor nodes”, in Proceedings of the 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition, ser. DATE ’15, Grenoble, France: EDA
Consortium, 2015, pp. 7–12, ISBN: 978-3-9815370-4-8. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2755753.2755756.

[11] R. Novotný, J. Kadlec, and R. Kuchta, “Nand flash memory organization and opera-
tions”, Journal of Information Technology & Software Engineering, vol. 5, no. 1, 2015.
DOI: 10.4172/2165-7866.1000139.

[12] Micron® 3d nand flash memory, Micron Technology Inc, 2016. [Online]. Available:
https://www.micron.com/~/media/documents/products/product-flyer/3d_

nand_flyer.pdf (visited on 04/23/2017).

VI

https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2008.04.002
http://tuprints.ulb.tu-darmstadt.de/5778/
http://tuprints.ulb.tu-darmstadt.de/5778/
http://www.electronicproducts.com/Digital_ICs/Standard_and_Programmable_Logic/Comparing_flash-_and_SRAM-based_FPGAs.aspx
http://www.electronicproducts.com/Digital_ICs/Standard_and_Programmable_Logic/Comparing_flash-_and_SRAM-based_FPGAs.aspx
http://www.digchip.com/datasheets/download_datasheet.php?id=4246116&part-number=M1AGL1000-DEV-KIT
http://www.digchip.com/datasheets/download_datasheet.php?id=4246116&part-number=M1AGL1000-DEV-KIT
http://www.ti.com/lit/ds/symlink/cc2531.pdf
http://www.ti.com/lit/ds/symlink/cc2531.pdf
https://www.microsemi.com/document-portal/doc_download/130694-ds0095-igloo-low-power-flash-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_download/130694-ds0095-igloo-low-power-flash-fpgas-datasheet
https://doi.org/10.1016/j.adhoc.2008.06.003
https://doi.org/10.1109/79.985679
https://doi.org/10.3390/s120302667
http://dl.acm.org/citation.cfm?id=2755753.2755756
http://dl.acm.org/citation.cfm?id=2755753.2755756
https://doi.org/10.4172/2165-7866.1000139
https://www.micron.com/~/media/documents/products/product-flyer/3d_nand_flyer.pdf
https://www.micron.com/~/media/documents/products/product-flyer/3d_nand_flyer.pdf

[13] Y. Koh, “Nand flash scaling beyond 20nm”, in 2009 IEEE International Memory Work-
shop, Apr. 2009, pp. 1–3. DOI: 10.1109/IMW.2009.5090600.

[14] R. Micheloni, A. Marelli, and S. Commodaro, “Nand overview: From memory to
systems”, in Inside NAND Flash Memories. Dordrecht: Springer Netherlands, 2010,
pp. 19–53, ISBN: 978-90-481-9431-5. DOI: 10.1007/978-90-481-9431-5_2.

[15] G. Mathur, P. Desnoyers, P. Chukiu, D. Ganesan, and P. Shenoy, “Ultra-low power
data storage for sensor networks”, ACM Trans. Sen. Netw., vol. 5, no. 4, 33:1–33:34,
Nov. 2009, ISSN: 1550-4859. DOI: 10.1145/1614379.1614385.

[16] 1-GBIT (128M x 8 BITS) CMOS NAND E2 PROM, TC58DVG02A1FT00, Toshiba, Oct.
2003. [Online]. Available: http://www.alldatasheet.com/datasheet-pdf/pdf/
538804/TOSHIBA/TC58DVG02A1FT00.html (visited on 03/21/2018).

[17] R. Bez, E. Camerlenghi, A. Modelli, and A. VIsconti, “Introduction to flash memory”,
Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502, Apr. 2003, ISSN: 0018-9219. DOI:
10.1109/JPROC.2003.811702.

[18] D. Ielmini, “Threshold switching mechanism by high-field energy gain in the hop-
ping transport of chalcogenide glasses”, Phys. Rev. B, vol. 78, p. 035 308, 3 Jul. 2008.
DOI: 10.1103/PhysRevB.78.035308.

[19] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson, “Phase change memory”, Proceedings of the IEEE, vol. 98, no. 12,
pp. 2201–2227, Dec. 2010, ISSN: 0018-9219. DOI: 10.1109/JPROC.2010.2070050.

[20] B. D. Yang, J. E. Lee, J. S. Kim, J. Cho, S. Y. Lee, and B. G. Yu, “A low power phase-
change random access memory using a data-comparison write scheme”, in 2007
IEEE International Symposium on Circuits and Systems, May 2007, pp. 3014–3017.
DOI: 10.1109/ISCAS.2007.377981.

[21] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerren, “Progress
and outlook for mram technology”, IEEE Transactions on Magnetics, vol. 35, no. 5,
pp. 2814–2819, Sep. 1999, ISSN: 0018-9464. DOI: 10.1109/20.800991.

[22] MR256D08B Dual Supply 32k x 8 MRAM, MR256D08B, Rev. 3.2, Everspin Technolo-
gies, Jun. 2015. [Online]. Available: https://www.everspin.com/file/207/
download (visited on 06/10/2017).

[23] C. Augustine, N. N. Mojumder, X. Fong, S. H. Choday, S. P. Park, and K. Roy, “Spin-
transfer torque mrams for low power memories: Perspective and prospective”, IEEE
Sensors Journal, vol. 12, no. 4, pp. 756–766, Apr. 2012, ISSN: 1530-437X. DOI: 10.
1109/JSEN.2011.2124453.

[24] J. F. Scott and C. A. P. de Araujo, “Ferroelectric memories”, Science, vol. 246,
pp. 1400–1405, 4936 Dec. 1989. DOI: 10.1126/science.246.4936.1400.

[25] 256-Kbit (32K × 8) Serial (SPI) F-RAM, FM25V02A, Cypress Semiconductor Corpo-
ration, Sep. 2016. [Online]. Available: http://www.cypress.com/file/139666/
download (visited on 03/15/2018).

[26] 4-Mbit (256K × 16) F-RAM Memory, FM22LD16, Cypress Semiconductor Corpora-
tion, Jan. 2016. [Online]. Available: http://www.cypress.com/file/136506/
download (visited on 03/15/2018).

[27] ShroudResearch, “Intel optane storage performance and implications on testing
methodology”, Oct. 2017, [Online]. Available: https://static1.squarespace.
com / static / 57fdb580ff7c50274b1387ef / t / 59f24b308e7b0f2fb05e73f3 /

1509051187047/IntelOptaneSSD900p_Performance_Testing_Methodology_v10.

pdf (visited on 03/15/2018).

VII

https://doi.org/10.1109/IMW.2009.5090600
https://doi.org/10.1007/978-90-481-9431-5_2
https://doi.org/10.1145/1614379.1614385
http://www.alldatasheet.com/datasheet-pdf/pdf/538804/TOSHIBA/TC58DVG02A1FT00.html
http://www.alldatasheet.com/datasheet-pdf/pdf/538804/TOSHIBA/TC58DVG02A1FT00.html
https://doi.org/10.1109/JPROC.2003.811702
https://doi.org/10.1103/PhysRevB.78.035308
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/ISCAS.2007.377981
https://doi.org/10.1109/20.800991
https://www.everspin.com/file/207/download
https://www.everspin.com/file/207/download
https://doi.org/10.1109/JSEN.2011.2124453
https://doi.org/10.1109/JSEN.2011.2124453
https://doi.org/10.1126/science.246.4936.1400
http://www.cypress.com/file/139666/download
http://www.cypress.com/file/139666/download
http://www.cypress.com/file/136506/download
http://www.cypress.com/file/136506/download
https://static1.squarespace.com/static/57fdb580ff7c50274b1387ef/t/59f24b308e7b0f2fb05e73f3/1509051187047/IntelOptaneSSD900p_Performance_Testing_Methodology_v10.pdf
https://static1.squarespace.com/static/57fdb580ff7c50274b1387ef/t/59f24b308e7b0f2fb05e73f3/1509051187047/IntelOptaneSSD900p_Performance_Testing_Methodology_v10.pdf
https://static1.squarespace.com/static/57fdb580ff7c50274b1387ef/t/59f24b308e7b0f2fb05e73f3/1509051187047/IntelOptaneSSD900p_Performance_Testing_Methodology_v10.pdf
https://static1.squarespace.com/static/57fdb580ff7c50274b1387ef/t/59f24b308e7b0f2fb05e73f3/1509051187047/IntelOptaneSSD900p_Performance_Testing_Methodology_v10.pdf

[28] N-Channel 8 V (D-S) MOSFET, SiA436DJ, Rev. A, Vishay, Nov. 2011. [Online]. Avail-
able: http://www.farnell.com/datasheets/2050059.pdf.

[29] P-Channel 1.8 V (G-S) MOSFET, Si4465ADY, Rev. B, Vishay, Mar. 2009. [Online].
Available: http://www.farnell.com/datasheets/2049699.pdf.

[30] Bsl802sn, Rev. 2.2, Infineon Technologies AG, Mar. 2010. [Online]. Available: http:
//www.farnell.com/datasheets/1648222.pdf (visited on 05/31/2017).

[31] TQ RELAYS, TQ2-L-3V, Panasonic Corporation, Jul. 2014. [Online]. Available: http:
//www.farnell.com/datasheets/2243479.pdf (visited on 05/24/2017).

[32] Intel® MAX® 10 FPGA Device Datasheet, Intel, Dec. 2017. [Online]. Available:
https://www.altera.com/en_US/pdfs/literature/hb/max-10/m10_datasheet.

pdf (visited on 03/31/2018).

[33] 350Mhz 4 Channel Digital Oscilloscope, HMO3524, Hameg Instruments GmbH. [On-
line]. Available: https://mcs- testequipment.com/resources/Datasheets_
Downloads/Hameg/HMO3522%203524%20Datasheet.pdf (visited on 03/06/2018).

[34] P-Channel 8 V (D-S) MOSFET, SiA427DJ, Rev. C, Vishay, May 2012. [Online]. Avail-
able: http://www.farnell.com/datasheets/1698160.pdf.

VIII

http://www.farnell.com/datasheets/2050059.pdf
http://www.farnell.com/datasheets/2049699.pdf
http://www.farnell.com/datasheets/1648222.pdf
http://www.farnell.com/datasheets/1648222.pdf
http://www.farnell.com/datasheets/2243479.pdf
http://www.farnell.com/datasheets/2243479.pdf
https://www.altera.com/en_US/pdfs/literature/hb/max-10/m10_datasheet.pdf
https://www.altera.com/en_US/pdfs/literature/hb/max-10/m10_datasheet.pdf
https://mcs-testequipment.com/resources/Datasheets_Downloads/Hameg/HMO3522%203524%20Datasheet.pdf
https://mcs-testequipment.com/resources/Datasheets_Downloads/Hameg/HMO3522%203524%20Datasheet.pdf
http://www.farnell.com/datasheets/1698160.pdf

Abbreviations

ASIC Application Specific Integrated Circuit
AWS adaptive writeback scheme

BJT bipolar junction transistor

CMOS Complementary metal–oxide–semiconductor
CSV comma separated values

DPM Dynamic Power Management

EPROM Erasable Programmable Read-Only Memory

FeRAM Ferroelectric Random-Access Memory
FIR finite impulse response
FPGA Field Programmable Gate Array

HaLOEWEn Hardware-Accelerated Low Energy Wireless Embed-
ded Sensor Node

I/O Input/Output
IoT Internet of Things

LED light-emitting diode

MCU Microcontroller Unit
MLC multi-level cell
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MRAM Magnetoresistive Random-Access Memory
MTJ Magnetic Tunnel Junction

NVM non-volatile memory

PCB printed circuit board
PCM phase change memory
PLL phase-locked loop

RDS(on) drain-source resistance
RF-SoC Radio Frequency System-on-Chip
ROM Read-Only Memory

SBDP statistics based dead blocks prediction
SLC single-level cell

IX

SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
SSD Solid State Drive

TLC triple-level cell

UART universal asynchronous receiver-transmitter

WSN Wireless Sensor Network

X

List of Tables

4.1. Overhead of the different switching technologies 10
4.2. Swapping controller states and their bitmasks . 12
4.3. SPI commands understood by the FPGA . 16
4.4. UART commands understood by the MCU . 17

5.1. FPGA-Core Energy consumption for 450 byte of data 21
5.2. I/O-Bank Energy consumption for 450 byte of data 21

List of Figures

2.1. HaLOEWEn v3 Prototype[2] . 3

3.1. Energy consumed per byte by non-volatile memory Without erase operations 8

4.1. Hardware Architecture of the first prototype based on the AGL1000 and
CC2530 development kits . 11

4.2. Toplevel Design . 13

5.1. Backup Process cycle . 19
5.2. Power usage of the core during restore process The FeRAM is powered on at

0 ms . 22
5.3. Idle time, depending on the amount of data to be backed up, for which

swapping is more efficient than a transition into FlashFreeze 23

XI

	Introduction
	Contribution of this Work
	Structure of this Work

	Related Work
	HaLOEWEn
	Energy Conservation in Wireless Sensor Networks
	Data swapping

	Non-Volatile Memory
	Flash
	NAND flash
	NOR flash

	Phase Change Memory
	Magnetoresistive memory
	Ferroelectric memory
	3D XPoint™
	Conclusion

	Implementation
	FPGA Power Cutting
	Hardware Architecture
	Data swapping
	Application Module Interface
	Toplevel Requirements
	Logical Functionality
	fram Communication
	Design Considerations

	Demo Application
	Control Interface
	MCU Implementation

	Evaluation
	Functional Verification
	Consumption Measuring
	Hardware Architecture
	Measurement
	Results

	Summary and Future Work
	Future Improvements

	Verilog Module Implementation
	Verilog Toplevel Implementation
	Libero Compile Report
	Bibliography
	Abbreviations
	List of Tables
	List of Figures

