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Chapter 1

Introduction

1.1 Project Motivation

Before the 1980s, when the Fieldbus Technology was introduced, the main communication
technology in industrial systems was an analog, centralized control system [10]. In those sys-
tems, the measured data was sent as analog signal (e.g., 4 to 20 mA) via twisted cables to
a control room, where the information was prossesed and sent back control data back. This
approach requires many cables, thus implies high cost. An alternative are distributed systems,
in which each actuator or sensor has the capability to individually process measured data, take
control decisions and communicate to other devices in the network. The fieldbus technology
provides this approach [11]. Digital communication replaces the analog one, providing a better
accuracy and lower costs, as digital-analog converters are not required anymore [12].

Some examples of fieldbus technology are according to [10] the “WorldFIP, Foundation Fi-
eldbus (FF), Controller Area Network (CAN), lonworks, DeviceNet, Profibus-DP, Highway Ad-
dressable Remote Transducer (HART) and Interbus”. Recently, instead of using “proprietary”
fieldbus PHYs, companies tend to implement Ethernet based systems [13]. Those protocols are
called Industrial Ethernet and have some additional features compared to the common one,
which is widely used in local area networks. They are caused by different requirements, e.g.
providing a deterministic behavior in an industrial environment [14]. Additionally, according
to [13], using the Ethernet protocol in industry is not trivial, because it poses high connection
costs, high overhead when sending small packages and bad real-time capabilities due to software
stacks. Some real time Ethernet protocols available on the market are Powerlink, EtherCAT,
EtherNet/IP or PROFI-NET [15].

The EtherCAT technology can be defined as “Ethernet on the fly”[16]. The slaves receive
data and pass information to the next slave while the frame goes through the device. Thus, the
delay of the telegram is small (a few nanoseconds) [17]. Some other advantages of this protocol
are that switches are not necessary and it does not require difficult handling of the MAC or IP
addresses [18]. Besides advantages, the protocol poses also some drawbacks that must not be
overseen. According to [15], one problem when using the EtherCAT technology is that it is not
suitable for event-driven applications. In time-driven operation, messages are generated and
sent within a certain period. This case is covered well by EtherCAT. However, when aperiodic
behavior is required, the protocol leads to long cycle times.

Taking into consideration the above mentioned advantages, EtherCAT slaves are required in
automation industry. Some software as well as hardware solutions are already available on the
market. Some controllers used in automation industry might require high computation power.
In this case, a hardware solution might be more suitable as computation resource compared
to a software one. In order to have high flexibility, designing an Application Specific Inte-
grated Circuit (ASIC) would be a good choice, which would however require extremely high
(non-recurring) production costs. Only companies that sell enough chips, like Intel, afford this
technology. As the number of the required EtherCAT Slaves might not cover the production
costs, designing an ASIC might not come through as the best approach. A good compro-
mise between efficiency and expenses would be using reconfigurable technologies, like a Field
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Programmable Gate Array (FPGA), which gives the designer enough flexibility to obtain the
desired microarchitecture without the need of selling a lot of chips to compensate the high
production costs of an ASIC.

Some open source examples provide an implementation of an Ethernet Control Module using
the processing system of some FPGAs provided by Xilinx [19]. However, the performance is
lower in comparison to a possible full programable logic (PL) based design, which allows a
tighter coupling to the PHY. Due to the fact that EtherCAT processes data on the fly, a PL
based solution would be more suitable. For the last mentioned approach, some solutions are
already available on the market as intellectual property (IP) cores, like the ones provided by
the Beckhoff Company [20] or the HMS Industrial Network [21]. They give the designer the
flexibility of choosing certain features of the module but they do not provide access to the
HDL (Hardware Description Language) files. Thus, the flexibility of the design is limited.
Additionally, in order to be able to use the netlists for production purposes, a payed license is
required.

Besides the Field Programmable Gate Array (FPGA), described in Chapter 2.4, another re-
configurable technology that receives much interest in the academic area is the Coarse-Grained
Reconfigurable Array (CGRA), described in Chapter 2.5. In comparison to the FPGA, which
processes data at bit level, the later computes data at word level, thus requiring less confi-
guration information. Therefore, the time needed to load a certain configuration is less and
the principle of partial dynamic reconfiguration becomes feasible. More clearly, the user can
change the configuration on a CGRA in each cycle, being able to reuse the same logic for
different calculations.

Referencing the above mentioned considerations, a suitable solution in case of distributed
systems requiring high computation power would be using CGRAs on each field device as
computation resource. Because usually in distributed systems processes are interconnected,
meaning that the process of a device in the network might influence another node of the network,
having communication capabilities between the physically separated CGRAs is quintessential.
In industrial automation, real time protocols are required. Compared to other such protocols,
EtherCAT has some advantages. For example, it is faster than PROFINET IO and has a
master less complex than EtherNet/IP [22].

An example network is shown in Figure 1.1. In a company fabricating printed circuits
boards, there is an entire process with various machines, from cutting the boards, drilling them,
printing the circuits or coating them. In order to control the process, sensors and actuators are
required. For example, when coating a board, the speed of the running band is essential. A
camera could check the quality of the coated board and depending on that, the speed could be
adjusted. For such calculations, the computation parallelism offered by a CGRA could be used
to detect faults faster. As the process is a line production, it is highly probable that process
variations in one machine would influence the next machine. Thus, the necessity of sending
data between the machines arises. EtherCAT could be used.

The goal of this project is designing Hardware Description Language (HDL) modules for an
EtherCAT slave that is able to communicate with a CGRA. Thus, the flexibility of designing
an interface between the CGRA and the EtherCAT slave is quintessential. As the license based
solutions do not give access to the source files, it is required to design an own EtherCAT
slave, which motivates the necessity of this project. The functionality and performance of the
developed modules will be analyzed, trying to obtain an optimized design.
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Figure 1.1: Example architecture of a simple EtherCAT network. (ECAT-2052 [1])

1.2 Task Description

The goal of this project is implementing a PL-based EtherCAT slave that would fulfill basic
tasks of the protocol stack, such as topology scan or data exchange. A review of the already
available implementations of EtherCAT slaves shall be done. Additionally, the project must
conduct the concept and implementation of a lightweight interface to the application layer of the
slaves. Functional evaluation of the implemented modules is required as well as its performance
characterization.

1.3 Required Hardware and Software Tools

The architecture of the required system can be visualized in Figure 1.2. In order to fulfill the
task, an Ethernet FMC board and a Zedboard are used. The first one provides four Ethernet
plugs and four PHYs, which implement tasks of the first OSI layer. Although the Zedboard
already provides one Ethernet port, the Ethernet FMC board is needed in order to implement
and test a linear EtherCAT requiring at least two slaves with two PHYs each. It is connected
to the Zedboard through an FPGA Mezzanine Card (FMC) connector. A Zynq 7 FPGA is
mounted on the Zedboard and this will be used to implement two EtherCAT controllers, which
have to fulfill requirements of the upper part of the second Open Systems Interconnection (OSI)
layer, as the Media Access Control (MAC) is part of the Ethernet protocol. The EherCAT
Master is implemented on the compuer using the open source “Simple Open EtherCAT Master
”project [23].

The main tool used for this thesis was Vivado, version 2017.2. The Software Development
Kit (SDK) tool was also used for loading the design implying the processing system of the
Zedboard and described in Chapter 3.1. The Wireshark tool was used for analyzing network
traffic and testing the implemented designs.

1.4 Document Structure

The document starts in Chapter 2 with an introduction of technical terms and theoretical
aspects of the project. As the EtherCAT technology is based on the Ethernet protocol, the
project first implements an Ethernet slave, which is described in Chapter 3. Further on, an
EtherCAT slave based on the AXI Ethernet IP is implemented and evaluated in Chapter 4.
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Figure 1.2: The hardware used for this thesis: one Zedboard, one Ethernet FMC, one PC and
connection cables. [2, 3, 4]

In the following Chapter the core provided by Xilinx is removed in order to improve efficiency.
Chapter 7 provides a description, implementation and evaluation of an interface between the
EtherCAT slave and the CGRA. The setup of a linear EtherCAT topology is described and
tested in Chapter 5. Last but not least, a summary of the implemented designs and their
performance is given in Chapter 8. Additionally, possible further improvements of the current
project are proposed.
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Chapter 2

Technical Backround

This Chapter provides the technical background required for implementing the tasks.

2.1 Ethernet

The Ethernet Technology was initially designed by the Xerox Corporation in 1970 [24] and is
a Local Area Networks (LAN) protocol. Two types of Ethernet protocols can be distinguished,
the clasic one, which can be used at rates of maximum 10 Mbps, and the switched one that can
reach 10 000 Mbps. The later version, which uses a switch to handle high loads, is the most
common LAN protocol used today [25].

Ethernet implements features of the first two layers of the OSI Model. In the physical
layer, fiber optics, coaxial cable or twisted pair can be used. The protocol imposes a maximal
length for its segments, which can be overcome by using repeaters [25]. This rises a problem
in automation industry, where field devices of a fabric are sometimes placed far away from
each other. The Ethernet implements also the MAC sublayer. Its main task is to allocate a
multiaccess channel to its users.

Further on, the frame format is shortly described, as it will clarify better the EtherCAT
frame format introduced in section 2.2. According to IEEE 802.3, the classic Ethernet data
contains the following information:

The field containing information regarding the length of the frame can also be used to
indicate the type of message, if its value is greater than 0x600. For example, the value 0x0800
signals an IPv4 packet.

The checksum, or the Frame Check Sequence (FCS) field is required in order to detect errors
in the transmitted message. It is based on the CRC computation.

The fast Ethernet uses the same frame format, but reduces the bit time. The gigabit Ether-
net is also compatible with previous Ethernet versions and has an unacknowledged datagram
service. The definition of the frame size, its format and the adressing scheme remained the
same [25].

The Ethernet FMC board, having four Ethernet connections, provides 4 Gigabit Ethernet
PHYs from Marvell, namely 88E1510. The PHY modules fulfill tasks of the first OSI layer and
send data to the data link layer controller through the Reduced Gigabit Media Independent
Interface (RGMII) interface. The controller must bring up correctly the PHYs according to its
needs. Control and status data are sent using a Management Data Input/Output connection.

The media-independent interface (MII) was defined in Fast Internet and is equivalent with

Preamble
Start of
Frame

Destination
Address

Source
Address

Length Data Pad Checksum

Nr. of
Bytes

7 1 6 6 2
0 to
1500

0 to
46

4

Table 2.1: Ethernet Frame Format according to IEEE 802.3
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the Attachment Unit Interface (AUI). It connects the PHY device to a controller [26]. Current
variants are [27]:

• Reduced Media Independent Interface

• Gigabit Media Independent Interface

• Reduced Gigabit Media Independent Interface

• Serial Gigabit Media Independent Interface

• or 10 Gigabit Media Independent Interface

As stated above, the interface used by the Marvell 88E1510 is RGMII. It reduces the number
of pins. If the GMII interface needs for receive as well as transmit busses 8 bits, the RGMII
interface uses 4 bits for receive and transmit data, which is compensated by the double data
rate [28]. Table 2.2 explains the functionality of the required signals in the RGMII interface
and is based on [29].

For the Marvell 88E1510, the following characteristics apply according to the datasheet [29]:

• The allowed frequencies for the clock signals are 125 MHz, 25 MHz or 2.5 MHz.

• The data buses are double data rate. The first nibble corresponds to the least significant
bits [3:0] of the sent or received data.

• In case of sending data, the enable control signal must be set on positive edge

An important theoretical aspect regarding the RGMII interface represent the timing con-
straints [5]. As described by the Reduced Gigabit Media Independent Interface (RGMII) stan-
dard, a clock skew is required in order to correctly sample the data. It must be introduced
either by the receiver, the transmitter or the PCB traces, as shown in Figure 2.1. According
to [30], if the transmitter has a data to clock output skew of 0 ps, the receiver has a typicall
1.8 ns data to clock input skew.

Besides the RGMII interface, another important connection is given by the MDIO commu-
nication, used for management purposes. Registers of the PHY are read and written using this
signals. The MDIO interface, also known as Media Independent Interface Management (MIIM)
is composed of one clock pin and one data pin for sending as well as receiving data [6]. Infor-
mation is sent serially.

The data sent through the MDIO must comply with the frame given in Table 2.3 [6].

In order to establish a correct communication, some further theoretical aspects must be
taken into consideration:

• The preamble contains 32 bits of one.

Signal Name Bit Width Description
rgmii txd 4 RGMII transmit data.

rgmii tx ctl 1 RGMII transmit control.
rgmii txc 1 RGMII transmit clock.
rgmii rxd 4 RGMII receive data

rgmii rx ctl 1 RGMII receive contol
rgmii rxc 1 RGMII receive clock

Table 2.2: RGMII Interface
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Figure 2.1: Possible clock skew sources.[5]

Preamble
Communication
Start

Read or
Write

PHY Address
Register
Address

Turnaround Data

32 bits 2 bits 2 bits 5 bits 5 bits 2 bits 16 bits

Table 2.3: MDIO signal pattern.

• The start is signaled through a low signal followed by a high one.

• The write command has the same pattern as the start signal, while the read command
signal has opposite polarity.

• When setting the PHY address, the user must take into consideration that the PHYs on
the Ethernet FMC board are hard-wired with the address 0.

• The registers of the Marvell 88E1510 are organized in pages. In order to write data into
the correct register, the correct page must be selected by writing register number 22.

Some further important aspects regarding the connectivity between the Zedboard and the
Ethernet FMC are:

• The board is connected to the Zedboard through the FMC connector.

• The signal pins include according to the schematics only clock signal, reset, RGMII in-
terface and MDIO connection.

• The power supply is given by the Zedboard, which must provide 2.5 V to the Ethernet
FMC.

Further on, an already available solution for implementing the Ethernet link layer is des-
cribed, as this will be used for implementing the EtherCAT slave required by the task. As the
used hardware has a Xilinx FPGA, a solution provided by this vendor is searched. The AXI
Ethernet Subsystem (complete name AXI 1 G/2.5 G Ethernet Subsystem) is an IP hard macro
provided by Xilinx. It can be parametrized by the designer, who does not have access to the
HDL description though. It eases the workload of the designer in implementing the data link
layer of an Ethernet-capable module. The information of this Section is based on the datasheet
of the IP [31].

The block diagram of this macro is shown in Figure 2.2.
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Figure 2.2: Block Diagram of the AXI 1 G/2.5 G Ethernet Subsystem [6]

The module can be controlled through the AXI Lite bus. The AXI Stream Bus is used in
order to send and receive data from the PHY, via the RGMII. In order to write the registers
of the PHY module, the MDIO connection is used, part of the Ethernet interface shown in
Figure 2.2. The AXI Ethernet Buffer has capabilities such as TCP/UDP Checksum offload or
TX and RX VLAN stripping. As the name suggests, the Tri-Mode Ethernet MAC provides the
Ethernet Media Access Control. This is the most important component of the subsystem and
requires a purchased license.

As stated above, the AXI 1G/2.5G Ethernet Subsystem is a macro, which means, the
designer can select between several function modes of the IP. For the physical interface, the user
can choose between: MII (Media-Independent Interface), GMII (Gigabit Media-Independent
Interface) and RGMII (Reduced Gigabit Media-Independent Interface).

The user can also adjust the frequency of the AXI communication or he can choose to enable
VLAN tagging, stripping or translation.

Another important parameter that can be set is choosing the source of the reference clock.

After generating the IP, the user has the option of using an example design provided by
Xilinx. This creates a design with the architecture shown in Figure 2.3.
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Figure 2.3: Architecture of the AXI Ethernet Submodule Example Design. [6]

The “Example Design Clocks and Reset Generator”, as the name suggests, generates the
clocks required by the design.

The “AXI Lite Control State Machine ” sends through the AXI Lite interface control com-
mands to the IP and writes its registers according to the user needs.

The example design comes also with a testbench. By setting up correctly some input signals,
the design can have two different working modes: “DEMO” mode and “BIST” mode. In the
“DEMO” mode, the testbench sends packets to the IP and the data is passed through the AXI
Stream interface to a FIFO. The data is than looped back and sent through the IP to the
testbench. In the “BIST” mode, the loopback is on the PHY side, while the hardware is able
to generate Ethernet packets.

The “AXI Streaming Pattern Generator and Checker” module provides a FIFO for storing
the incoming packets. It communicates with the IP via the AXI Stream interface. It is also
able to generate packets if the “BIST” mode in testbench is selected.

2.2 Field Bus Technology and the EtherCAT Protocol

According to [32], the “Fieldbus is a digital two-way multidrop communication link between
intelligent field devices”. Before introducing this technology, analog signals were used in indus-
trial automation. Common standards for sending data from sensors in the field to the control
units were 3 to 15 psig or 4 to 20 mA [33]. However, in noisy environments, analog signals are
prone to loss of accuracy, which was an important reason for replacing them with digital ones.

HART is an example of an industrial network, which uses digital as well as analog signals.
The first one is superimposed on the second one. Usually the process variable is sent using
the analog signal, while configuration is done using the digital one [34]. When it comes to
transmission of digital signals, PROFIBUS is a faster solution. Its origin dates back to 1987
and until now, several versions were developed, which makes it easy to be adapted to different
types of devices. For example, in hazardous environments, PROFIBUS PA can be used, while
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Figure 2.4: Example Architecture of an EtherCAT Network. [7]

PROFIdrive was developed for motion control applications, where the precision of the motors
is essential [35]. Compared to HART, PROFIBUS provides more complex diagnosis [34]. In
1995 a new important fieldbus technology was defined, namely Foundation Fieldbus (FF) [36].
While HART is commonly used for configuration and viewing internal variables, FF can addi-
tionally implement real-time, digital, closed loop control [37]. Compared to PROFIBUS, it is
a deterministic protocol ??.

Using Ethernet in fieldbus technologies can bring advantages like low hardware costs or
easy configuration compared to other competing protocols [38]. Some challenges when using
Ethernet in industrial automation are performance and deterministic behaviour in real time
applications [16]. Some examples of industrial Ethernet protocols are EtherCAT, EtherNet/IP,
Modbus TCP, Powerlink, Profinet or SERCOS [38].

This thesis focuses on the EtherCAT protocol, which is based on the Ethernet protocol.
Therefore, any Ethernet device can be connected to the switch port and in case only EtherCAT
devices are present on the network, no switches are required.

Data is processed on the fly and the protocol has transmission rates of 2 x 100 Mbit/s
in Fast Ethernet, Full-Duplex mode [16]. Through a clock synchronization mechanism, the
protocol suports distributed clocks [16], providing high-precision synchronization [39].[39] gives
as example two distributed devices with 300 nodes and 120 m cable length, where “the clocks
are simultaneous to within much less than 1 µs of each other”.

When it comes to the network architecture, this protocol supports the line, tree, star or
daisy-chain configurations, being very flexible [39]. An example architecture can be seen in
Figure 2.4.

Each device has an EtherCAT Slave Information Files (ESI) provided by the vendor and
this is used by the network master to generate the EtherCAT Network Information File (ENI)
file. This files are not taken into consideration in this thesis. The shown network has a linear
topology. In order to pass the frames through the network with minimal latency, each EtherCAT
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Figure 2.5: Structure of the EtherCAT frames.[8]

slave has two Ethernet ports. As each slave receives parts of the frame, it processes them on the
fly and forwards the data to the next slave. The frame is based on the one used in the Ethernet
communication. While Ethernet implements the physical layer as well as the MAC sublayer,
EtherCAT implements the upper part of the second OSI layer. Therefore, the payload contains
now several datagrams, each having its own header with control information.

EtherCAT packages can be recognized by checking the “Type” field of the Ethernet frame
and it shall have the value 0x88A4. The format of an EtherCAT frame is shown in Figure 2.5.

The Ethernet Data consists of the EtherCAT Header and the Datagrams. Thus, the Ether-
net header is followed by the EtherCAT Header consisting of two bytes. It gives information
regarding the length and type of the message. The datagrams must have between 12 and 1498
Bytes. Each datagram consits of a header, data and a working counter. The header contains
information regarding the datagram, such as the command type, length of the message or ad-
dress. It is used by the data link layer controllers in order to process correctly the payload. The
working counter is incremented or decremented by each slave depending on the command type.
This field can also be used by the master in order to scan changes in the network topology. A
full description of the frame can be found in [7].
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2.3 Already available technologies for EtherCAT slaves

As the project proposes an implementation of an EtherCAT slave, a research regarding
already available technologies must be conducted. The are several open source as well as
license based projects available, which can be used in software or hardware solutions.

One example is the Simple Open EtherCAT Slave (SOES) project implemented in C pro-
gramming language and available at [40]. It is an easy portable code, which can be used in
embedded applications. It implements an EtherCAT state machine. Additionally, it provides
mailbox interfaces, which are used according to [41] for asynchronous accesses. It also supports
CAN application protocol over EtherCAT, where Controller Area Network (CAN) is another
type of real time protocol, originally used in automotive industry [42]. Another supported
protocol is File Access over EtherCAT (FoE).

There is also an already available solution for the widely used Arduino microcontrollers.
ArduCAT is a board implementing an EtherCAT slave using the ATMega2560 processor and
a LAN9252 adapter. It can be connected to an Arduino Mega board. To ease the development
of the application code, users are given an open source code available at ref40! (ref40!).

As some controllers used in automation industry require high computation power, a solution
implemented in hardware might be preferred. In case of Xilinx boards, two examples of Ether-
CAT slaves available for hardware designs are provided by the Beckhoff Company [20] or the
HMS Industrial Network [21], both being license based. In case of the first solution, the user
can configure some parameters of the Intellectual Property (IP). He can set for example the nu-
mber of the PHY ports or the interface type (RMII! (RMII!), RGMII or Media-Independent
Interface (MII)). Additionally, the user can choose between several types of interfaces between
the EtherCAT Slave controller (ESC) and the processor. The size of the RAM is also configu-
rable. A complete description of possible configurations is found in [?]. The second solution,
provided by the HMS Industrial Network is called Anybus. It can be used for Zynq-7000 devices
and reaches a maximum frequency of 143 MHz. It can be purchased as netlist and the IP is
described at [43]. In case of prototyping projects, no fee is required.

2.4 Field-Programmable Gate Arrays

FPGAs are reconfigurable devices used for implementing digital designes. Basically, there
are two categories of FPGAs: the ones that use lookup tables and the ones based on the
multiplexor technology. The first type is the most common one and in this case, SRAM cells
are used as main storage element [44].

The design configuration is defined in the content of the lookup tables (LUTs) and in the
routing elements. This data is usually loaded from a FLASH memory that stores all the desired
configurations [44].

FPGAs consist of logic blocks that are connected in an “Island Style”. The device used
for this project is a Zynq 7000. It has an ARM Cortex-A9 based Application Processor Unit
(APU), while the programmable logic mainly consists of:

• 53200 LUTs

• 140 Block RAMs (BRAMs)

• 200 Input/Output (I/O)

• 106400 Flip Flops (FFs)

• 220 Digital Signal Processing blocks (DSPs)
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• Clock Managment MMCME2 ADV

The LUTs can be used to compute logic functions, but also as distributed RAM. As an
alternative storage elements, BRAMs can be used. They can be configured as single or dual
port memory. In the second case the designer must take into consideration phenomena like
address collisions.

As clock source, the FPGA receives a 100 MHz signal, which must be taken into considera-
tion when defining timing constraints.

The tool used in this Project for obtaining the configuration bitstream and programming
the FPGA was Vivado 2017.2.

2.5 Coarse Grained Reconfigurable Arrays

CGRAs can be used as a reconfigurable technology and high parallization can be obtained.
Its strong advantage is being able to change the configuration in each cycle [45]. It consists of an
array of processing elements (PEs) that process data at word level and are reconfigurable. This
project focuses on the CGRA design proposed in the AMIDAR project, which is developed by
the “Computer Systems“ group of the Faculty of Electrical Engeneering, within the Technical
University in Darmstadt [46]. The CGRA has the architecture shown in Figure 2.6.

The “Context Control Unit” contains a context counter, which works similar to a program
counter and keeps track of the current loaded configuration. The “Condition-Box” can compute
the truth value of complex expressions that can be further on used also as prediction signals.
The “Context Memory” stores the configuration of the PEs[6].

Figure 2.6: Architecture of the CGRA used in the AMIDAR project. [6]
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Chapter 3

Designing an Ethernet Device

Before implementing the EtherCAT protocol, a basic Ethernet communication is established
between the Personal Computer (PC) and the FPGA. The data is sent from the computer
using the Packet Capture (pcap) library. The other endpoint is implemented on the FPGA.
The design is based on the AXI Ethernet Subsystem and its parameters are explained in Section
2.1.

An already available open source project uses the processing system of some Xilinx FPGAs
(Zynq-7000 and Zynq UltraScale+). This solution is described shortly in the first Section of
this Chapter. As the final project shall not use the processing system, this design will not be
described in detail. Some aspects that helped during implementation of the final project are
highlighted however.

Xilinx also provides an example design implemented on the Programable Logic (PL). This
will be used as reference design in order to implement the task of this thesis. As it was not
developed for Zedboard and for the PHYs on the Ethernet FMC board, some modifications of
the HDL files are required. These are explained in detail in Chapter 3.2. The example design
gives some flexibility to the user, which requires additional logic. As the requirements for this
thesis are clearly defined, this flexibility is not needed. The code is optimized by removing
some of them and the corresponding modifications are explained in Chapter 3.3.

3.1 An available solution using the processing system

An example of an open source project implementing an Ethernet capable device can be found
in the GitHub repository [19]. Although the final project should not involve the processing
system, this will be used as an example to get a better understanding of how the system should
work.

The architecture of the design can be visualized in Figure 3.1. Through an AXI Interconnec-
tion bus, the processor sends and receives data from four AXI Ethernet Subsystems, which are
connected to the four PHYs. The example project is able to support only one port at a time.
In order to select the desired port, the platform config.h file must be modified, by changing the
“platform emac baseaddr ” parameter.

For testing the design, setting a static IP in the same subnet as the board is required.
Additionally, some hardware adjustments must be conducted. The proper adjustable voltage
VADJ is selected by putting a jumper on J18 for the desired value (in this case, 2.5 V). The
jumpers M02 to M06 must be set correctly, depending on how the code is loaded into the FPGA
(for this project, all jumpers are connected to GND and the FPGA is programmed through
Joint Test Action Group (JTAG)).

In order to read the Universal Asynchronous Receiver-Transmitter (UART) messages, a
terminal, like putty for example, is required. The FPGA is programmed using the SDK tool
from Xilinx and the application is ran. This will output some status information in the terminal.
There are more ways of testing the design, like using the ping command in a shell, the program
Packet Sender or writing a script and sending packets using the pcap library. Wireshark was
used to analyze the network traffic.
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Figure 3.1: Architecture of the PS-Based solution. [9]

Although the final project must be implemented on the reconfigurable logic of the FPGA,
using this example was useful in solving the following problems of the final project:

1. Setting up correctly the AXI Ethernet Submodule

2. Solving the error: IDELAYCTRL cells “˜” and “˜” have same IODELAY GROUP “˜”
but their RST signals are different

3. Fast assignment of output pins

When implementing the solution in PL, one task was setting the control registers of the
AXI Ethernet submodule correctly. As the Processing System (PS)-based example project was
functional, it was used to analyze the commands sent to the AXI Subsystem module and they
were replicated in a control state machine in hardware. This was done using an ILA module.

However, it must be noted that the final working version of the project needs less transfers
to the IP in order to set it up correctly. Table 3.1 shows only some of the transfers conducted by
the Zynq processor. Some of the accesses were needed in the working PL version, like writing
the “TEMAC Receive Configuration Register” or resetting the receiver. Others however, like
reading the interrupt status were not necesserily required.

As it can be seen in Table 3.1, some of the PS transfers are redundant. There are for
example three read accesses from address 40416, and this table enumerates just a part of all the
sent commands. Another such example is a double read-write access to address 0.

The error mentioned above at point “2)” was flagged as the linear EtherCAT Topology
was implemented (Chapter 5). Having more EtherCAT slaves meant instantiating more AXI
Ethernet submodules, which raised this error. The problem was choosing whether to include
shared logic in the core or not, an aspect discussed in the corresponding Chapter.

As stated above, this design based on the processing system was used only as example. The
task is however implementing a PL-based design, which is described in the following Section.
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Read/Write Address Data Meaning

R 0XC 0X0000 01E4 Rd. Interrupt Status

R 0X404 0X1000 FFFF
Rd. TEMAC Receive
Configuration Reg.

W 0X404 0X0000 FFFF
Set Pause Frame

Ethernet MAC Address

R 0X10 0X0000 0000
Rd. Interrupt
Pending Reg.

R 0X404 0X0000 FFFF

R 0X408 0X1000 0000
Rd. TEMAC Transmit

Configuration Reg.

W 0X404 0X1000 FFFF
Initiate a

receiver reset

R 0X40C 0X6000 0000
Rd. TEMAC Flow Control

Configuration Reg.

W 0X40C 0X6000 0000
Setup TEMAC Flow

Control Configuration Reg.

R 0X0 0X0000 0000
Rd. Reset and Address
Filter register TEMAC

W 0X0 0X0000 0000
R 0X0 0X0000 0000
W 0X0 0X0000 0000
R 0X404 0X1000 0000
R 0X408 0X1000 0000
R 0X708 0X0000 0000

W 0X708 0X0000 0000
Setup Frame
Filter Control

Table 3.1: Some of the transfers conducted by the Zynq processor to set up the AXI Ethernet
Subsystem.

3.2 Obtaining a PL-based functional design based on the AXI Ether-
net Subsystem

In the past years the design gap, defined by [47] as the difference between the number of
transistors that can be integrated on a current chip and the ones that are used effectively by an
engineer in a design, has increased. In order to overcome this issue, the level of abstraction in
designing circuits has improved. One way of overcoming this gap is by using IP cores or macros.
The AXI 1 G/2.5 G Ethernet Subsystem is an IP hard macro and it eases the workload of the
designer in implementing the data link layer of an Ethernet-capable module. The information
of this Chapter is based on the datasheet of the IP [31].

The IP can be parametrized by the designer and the appropriate variables for this project
are explained further on. As written in the specification of the PHY present on the Ethernet
FMC board [29], the Ethernet PHY is connected to the Ethernet MAC designed in the FPGA
via the RGMII interface. Thus, this type of communication was chosen for the AXI Ethernet
Subsystem. The frequencies for the AXI Lite and AXI Stream interfaces were set to 100 MHz.

Another essential adjustment is the source of the ref clk signal, which is the reference clock
used for controlling the delay of the RGMII signal. This is an important aspect which must
be taken into consideration when instantiating more such IPs. Otherwise, the Vivado Tool will
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flag errors. Analyzing the open source code using the processing system showed that in case
just one IP is needed, the user has to select the “Include shared Logic in Core Option”. In
this case, the module expects a reference signal and generates an output clock signal. This
shall be used as input for further instances of the same module, which must have the option
“Include Shared Logic in IP Example Design” checked. An explanation of this fact is given also
in the datasheet of the subsystem [31]: “When multiple subsystem instances are targeted for
I/O in the same bank, IDELAYCTRL needs to be shared”, where IDELAYCTRL is a module
generating certain delays in the design.

The user can also choose to enable Virtual LAN (VLAN) tagging, stripping or translation.
For this project, none of them were chosen. The selected options can be seen in Figure 3.2.

An Ethernet capable endpoint can be designed either by controlling this core via the proces-
sing system or via the reconfigurable logic. There is an already available open source example
implying the Zynq processor, as presented in Chapter 3.1. Because in the end the design must
be capable of processing packets on the fly, a PL based solution is preferred. One reason would
be the required determinism in a real time system, which can be achieved better in a hardware
solution. Another reason would be increased computation power due to enhanced parallelism.
(Is the argumentation correct?) After selecting the desired parameters of AXI Ethrnet Sub-
system and generating it, Xilinx offers an example project implemented on the PL. A short
theoretical description of the example design was given in Section 2.1.

The first modification conducted on the example project and the most important was modi-
fying the control state machine implemented in the “AXI Lite Control State Machine” module.
It has the task to write the proper data to the registers of the AXI Ethernet Subsystem and
PHY. The design example provided by Xilinx implements a state machine for configuring the
communication with a virtual PHY. It was obviously not designed exactly for the Ethernet
FMC board. Starting from the example control module, some adjustments were made.

In order to simplify the understanding of this module, instead of implementing a big state
machine, several, smaller ones, were designed. The first one goes through some states according
to the input control signals. It triggers some flags in order to start an AXI transfer. The second
state machine implements the MDIO interface. It is used in order to write correctly data into
the PHY registers. The user first needs to write the data into the “Write Data Register”
of the Tri-Mode Ethernet Media Access Controller (TEMAC) module. In order to start a
transaction on the MDIO line, the “Control Register” needs to be written accordingly. For a
read transaction, the user writes the “Control Register” and then reads the received data from
the “Read Data Register”. This behaviour is shown in Figure 3.3. A third state machine is
implemented to generate a correct AXI Lite Transfer, depending on whether it’s a read or a
write.
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Figure 3.2: Settings of the AXI 1G/2.5G Ethernet Subsystem
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Figure 3.3: Read/Write MDIO accesses.

The original state machine was not functional. Some adjustments were made using the PS-
based design as example and reading several forums. In order to set up correctly the Ethernet
communication, the current state machine performs the following steps:

• Set the MDIO clock frequency and enable MDIO

• Read register zero of the PHY. Loop until the PHY responds

• Write in the register zero of the PHY 14016; Select 1000 Mbps & Full Duplex

• Start auto-negotiation

• Disable receiver. Pause address = ffff16

• Enable receiver.

• Enable transmitter

• Set the Unicast Address by writing the registers “Unicast Address (Word 0)“and “Unicast
Address (Word 1)“

• Registers are organized in pages. Select page two of the register file in PHY

• By writing the “MAC Specific Control Register 2” register, set PHY so that the transmit
clock is not internally delayed

• Select again page 0 of the register file in PHY

• Generate a copper software reset by setting bit 15 of the register 0 in PHY

• Set the MAC speed to 1 Gbps

While setting up the clock frequency of the MDIO communication, the equation 3.1 must be
taken into consideration [31]. In this project, the AXI clock was set to 100 MHz and according
to [31], fMDC shall be lower than 2.5 MHz. For this project, a 2 MHz clock was used, thus the
value 5816 was written into the “MDIO Setup Word” register. The first six bits correspond to
the “Clock Divide” value, while the seventh bit enables the MDIO communication.

fMDC =
f s axi aclk

(1 + ClockDivide[5 : 0]) · 2
(3.1)
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Figure 3.4: Code replacing the DIP switches and push buttons.

In the original project, the user has to press some buttons in order to select the proper speed
and configuration (DEMO versus BIST) of the design. The second modification conducted on
the example project was setting up correctly these control signals. They are represented in
Figure 2.3 by the “DIP Switches Push Buttons” signal. This is however not desired in the
final project. By setting up the parameter TB MODE = “DEMO”, the testbench generates
the proper signals corresponding to the DIP Switches and Buttons. The sequence of the signals
was analyzed and the same approach was implemented in hardware. The added logic basically
sets the speed of the RGMII communication and selects the DEMO mode. It generates a signal
called “control data” that is forwarded to the “AXI Lite Control State Machine” module.
When in reset, this control signal is set to zero. As soon as the “control data” is asserted
a value different than zero, the “start config” signals the state machine that a configuration
process must be conducted. Each time the “control data“ changes its value, the “control valid”
becomes one and is reset by the “control ready” signal. The code describing this behavior is
shown in Figure 3.4.

As described by the RGMII standard, a clock skew is required. The AXI Ethernet Submo-
dule inserts by default a clock skew on the transmission line. The PHY on the Ethernet FMC
board also implements a clock skew. Thus, one of them must be disabled. Writing the register
“MAC Specific Control Register 2” of the PHY disabled the skew inserted by the PHY.

Another important problem was writing data to the PHY via the MDIO line. After sending
a write command, a read command from the same address did not yield the desired result. The
received data was 0x1ffff. Varying the PHY address did not solve the problem. The approach
that worked was requesting data from the PHY in a loop until the device responded. Most
probable, this is neccessary as the AXI Ethernet Subsystem holds the “phy rst n” reset signal
active for 10 ms and the PHY can not be accessed afterwards for another 5 ms [31].

A third step was modifying the clock scheme. The example design does not provide support
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for the Zedboard. It was created for the Kintex board which has a 200 MHz Low Voltage Diffe-
rential Signaling (LVDS) oscillator. The clock source on the Zedboard has however 100 MHz.
A fast solution was instantiating a “Clocking Wizard” IP, using a Mixed-Mode Clock Mana-
ger (MMCM) primitive with 100 MHz input signal and a 200 MHz output clock, which was
forwarded to the “Example Design Clocks and Reset Generator” module. In further optimi-
zations of the design this IP must be removed and the “Example Design Clocks and Reset
Generator” module shall be correctly adjusted. As selected in the AXI Ethernet Subsystem,
the macro expects a 100 MHz clock on the AXI Stream as well as AXI Lite bus. Additionally,
the reference clock “ref clk” shall be set to 200 MHz for 7 series FPGAs, as the datasheet sta-
tes [31]. Moreover, according to the datasheet, a 125 MHz clock, “gtx clk” is required for the
RGMII configuration to control the PHY.

The fourth step meant creating the constraints file. As stated above, the example design
does not support the Zedboard. Thus, it does not offer a constraints file. In order to solve
this problem fast, avoiding design mistakes, the PS-based version was analyzed and the signals
required in the PL-version were selected.

A fifth modification was instantiating an ILA IP. Simulating the real PHY behavior in a
testbench would have been time consuming. When configuring the AXI Ethernet Subsystem,
analyzing the AXI Lite communication is enough. Thus, for debugging the problem only few
signals are required and these can be easily analyzed during run time by using the ILA IP and
the ChipScope tool.

A big problem in debugging the design was not being able to capture the RGMII and
MDIO signals. These signals require strict delay and connectivity to the I/O Buffers and the
constraints file of the AXI Subsystems prevents the user from observing them using ILA. A
solution of this problem would be forwarding these signals to some output pins and measuring
them using the oscilloscope. Luckily, the fault in the design was found before taking into
consideration using the oscilloscope.

3.3 Optimizing the design

After obtaining a functional Ethernet slave and testing it, some further optimizations of the
code can be done.

As described in Chapter 2.1, the “Example Design Clocks and Reset Generator” module
manages the clock signals of the design. It expects a 200 MHz input clock and in the beginning
this clock was generated by a “Clocking Wizard” IP. This is however suboptimal. Looking into
the module provided in the example design, it can be found that a “MMCME2” cell generates
the required signals. Adjusting its parameters and removing the additional “Clocking Wizard”
IP is necessary.

When computing the new parameters, the following formula must be taken into considera-
tion:

Desired Frequency =
CLKFBOUT MULT F

DIV CLK DIV IDE ∗ CLKIN1 PERIOD
(3.2)

Table 3.2 illustrates some of the original parameters and the modified ones. When in-
serting the values computed in the middle column, the following error is flaged: “Error:
[Unisim MMCME2 ADV-8] The calculated VCO frequency=500.000 000 MHz. This exceeds
the permitted VCO frequency range of 600.000 000 MHz to 1600.000 000 MHz set by VCO-
CLK FREQ MIN/MAX”. Multiplying the 100 MHz input clock with 5 flagged the error. The
parameters of the third column generated the clocks without problem and this optimization
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Parameter Original Values Illegal values Correct Values Output Frequencies

CLKIN1 PERIOD 5 10 10
CLKFBOUT MULT F 5 5 10
CLKOUT0 DIVIDE F 10 5 10 100 MHz
CLKOUT1 DIVIDE 8 4 8 125 MHz
CLKOUT2 DIVIDE 5 2.5 5 200 MHz

Table 3.2: Modifying the parameters of the “MMCME2” cell.

removes one clock management resource in the design.

Another optimization is removing the logic that emulates the DIP switches and push but-
tons. In the example project the user has to select between certain functional modes by pushing
some buttons. Based on the simulation given by the testbench provided by Xilinx, the same
behaviour was emulated in hardware in Section 3.2. This is however redundant. This additional
logic must be removed and the control module is updated in such a way that it sets up the AXI
Ethernet Submodule and the PHY immediately after reset, without taking into consideration
any commands from user.

A third optimization implies removing most of the steps of the control state machine bringing
up the AXI Ethernet Subsystem, thus speeding up the initialization phase. The current version
only enables the MDIO communication, waits for a response from the PHY, disables the delay
on the transmission line, generates a soft reset and sets the speed of the RGMII communication.

After implementing this changes, the design size reduces by 292 Look-Up Tables (LUTs),
291 registers and one clock management unit.

3.4 Design Evaluation

The functionality of the design is tested directly on hardware. In order to send Ethernet
packets from the PC to the FPGA and check its response, the pcap library is used. The network
traffic is analyzed using Wireshark. The design is evaluated as functional if the received data
is equal to the sent one, having swapped the destination and source addresses.

Figure 3.5 shows the sent and received data prooving the functionality of the design. As
expected, the addresses are swaped correctly while the rest of the data was received unchanged.

An important aspect during testing was observed. When sending small packages, with less
than 46 bytes of data, the message is padded with zeros to be in accordance with the minimum
allowed length. This padding can be disabled according to [31] by setting correctly the bits
25 and 29 of the “TEMAC Receive Configuration Word 1 Register”. By choosing whether to
perform Length/Type field check and to strip the FCS field, the AXI Ethernet module will pad
zeros or not. If both of them are zero, the padding is not passed to user. In order for this to
work, the Type/Length field must be populated with length information. While designing the
module, this theory was tested and the result confirmed the theory.

According to the data recorded by ILA, the padded zeroes do not appear in the AXI Stream
transfer. However, the additional bits were removed by writing the length of the message in the
Length/Type field, instead of its type. In the final project, this field will signal an EtherCAT
access. Thus, the padded zeroes will not be stripped. A solution would be manually stripping
the zeroes after receiving the packet. For the moment, this issue is avoided by sending messages
that are longer than 46 bytes.

Figure 3.6 shows the resource usage of the design. Half of the clocking management cells
were used. One MMCM block was instantiated by the AXI Ethernet Subsystem in order to
generate the clock signals for the RGMII and Medium Independent Interface (MDII) interfaces.
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Figure 3.5: Functionality of the design implementing an Ethernet capable device.

The second was used to generate the clock signals used by the AXI buses and the reference
clock required by the IP.

The circuit presented in this Chapter is able to set up the AXI Ethernet Submodule as well
as the PHY, receive Ethernet packets and send them back with swaped source and destination
address. The code version able to process EtherCAT packets is presented in the following
Chapter.

Figure 3.6: Resource utilization of the design driving one Ethernet port.
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Figure 3.7: Placement of the design.
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Chapter 4

Designing an EtherCAT Slave based on the AXI
Ethernet Subsystem

The design presented in Chapter 3 was able to receive Ethernet packets, switch their desti-
nation and source address and loop them back to the computer. The project must be further
developed in order to be able to recognize and process EtherCAT type frames.

First, the implementation of the design will be described in the next Section, which is
followed by an analysis of the functionality and performance.

4.1 Implementation

The Verilog module responsible for writing the received data in a FIFO and sending it back
is called: “axi ethernet 0 slave loopback”. This module will be extended to process EtherCAT
packages instead of passively looping them back.

The data coming from the computer goes through the PHY, is forwarded via RGMII inter-
face to the AXI Ethernet Subsystem, which forwards it to the “axi ethernet 0 slave loopback”
module through an AXI Stream interface. This interface sends 32 bit wide packages. This is
an important aspect to be taken into consideration when processing incoming data. It poses
some difficulties which are described in the following paragraphs.

When incoming packets were analyzed, an important aspect was observed. The user must
take into consideration that the byte order of the AXI Stream is little endian. The same endian-
ness issue is observed when analyzing packets in Wireshark. The word “030116” corresponds to
the address 010316, which is shown in Figure 4.1. This must also be taken into consideration
when interpreting the incoming packets.

Figure 4.1: Interpretation of the EtherCAT Datagram in Wireshark.

In order to recognize different fields of the frame, some counters were used. One of them
counts the incoming words of the Ethernet header, while the other is used for recording the
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received datagrams.

The first step in processing data was recognizing an EtherCAT type package and ignoring
all other frames. This was done by checking whether the type of the incoming package was
a48816.

Another step involved recording the length of the EtherCAT message. This was not
necessarily required, as the end of an AXI Stream transaction is always signaled by the
“axis slvlb d tlast” flag.

In order to analyze the header of the datagrams, some aspects need to be taken into consi-
deration. According to Figure 2.5, the Ethernet header and the EtherCAT header consist of 16
bytes, which corresponds to 4 AXI Stream transactions. Thus, the command type of the first
datagram shall be the first byte in a 32 bit AXI transfer. This however is not necessarily valid
for the next datagram. Depending on the length of the message in datagrams, the position of
the datagram header in a 32 bit AXI transfer varies and it is also possible that a control field
will be sent over two transactions. This misalignment problem must be taken into consideration
when interpreting the incoming bytes. One common solution would be buffering the datagram
and shifting it correctly. However, this shall not be implemented for an EtherCAT slave that
must process data on the fly.

The offset of the datagrams is stored in the register “datagr start”. It might happen that
one transaction contains information of two datagrams: n and n+1. For computing the byte
position of datagram n, the value of the register “datagr start” is used. In contrast, for the
n+1 datagram, the combinational signal “new datagr start” is used. In the example processing
the address, the second byte of the address is computed using the combinational signal when
the start offset is zero or the value stored in the register “datagr start” otherwise. Figure 4.2
shows how this misalignment problem is solved when computing the address of the datagram.

Figure 4.2: Solving misalignment problems when interpreting the datagram’s address.

According to [48], an EtherCAT slave has a 64 KB address space, out of which 4 KB
are used for configuration information and the data RAM begins at 0x1000. In this project,
the entire address space was not implemented. A register file with 32 entries was described
instead, which was sufficient for test purposes. Each entry is 8 bits wide, as the registers of a
common EtherCAT Slave, according to [48]. When a message longer than 8 bits is received,
the corresponding address is simply incremented. Depending on the transaction, the 32 bits
received thorugh the AXI transfer could yield interrupt flag and data, only data bits or data
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and the working counter field. Due to this, the position of the data bits varies and this must
be taken into consideration when reading the incoming bits and writing them into the register.
In order to do this correctly, another counter was used, which stores the number of already
received bytes: “datagr nr B wrttn”.

An EtherCAT transaction can have different outcomes. This depends on the command
type. [49] enumerates them. The design implemented in this project distinguishes between a
read, a write or a read-write command. It takes into consideration the command types which
have the value between 5 and 9. Depending on the type of command, the working counter is
incremented differently. A valid read increments it with one. A successful write has the same
effect. In case of a read/write command, a successful:

• Read increments the working counter with 1

• Write increments the working counter with 2

• Read and write increments the working counter with 3

4.2 Design Evaluation

The functionality of the design as well as its timing performance and resource usage are
analyzed.

In order to test the EtherCAT slave on hardware, the Wireshark tool is used for analyzing
network packets. The frame shown in Table 4.2 was built and sent from the computer to the
FPGA.

Figure 4.3 shows the outgoing and incoming frames. Transaction number 15 corresponds
to the sent data, while number 16 to the received one.

Figure 4.3: Analyzing the sent and received EtherCAT frame using Wireshark.

The answer from the slave was received after 86 µs. It must be noted however that the
PC is not a real time system, thus this delay value might vary for different runs. Like in the
previous design presented in Section 3, the module was capable of switching correctly the source
and destination addresses. It recognized the EtherCAT frame and processed its headers and
data. The slave was able to correctly update the value of the working counters, depending
on the received command. For example, the last received byte was 116, which corresponds
to a successful write command. Updating the working counter on the correct position of the



28

frame also implies processing correctly the length of the datagrams. This is valid also when the
received datagram’s headers have different offsets in the AXI packages, because the datagrams
shown in Table 4.2 generate such offsets and the received frame is still standard compliant.

Additionally, the data received by the slave during the first datagram was written correctly
in the memory. The proof is the value inserted in the second datagram, which is a read-write
command at the same address.

Nr. of the
last sent byte

Sent data Dscription Datagram number

0 0xffffffffffff Destination Address
-
Ethernet Header

6 0x010101010101 Source Address
-
Ethernet Header

12 0x88a4 Signals an EtherCAT frame
-
Ethernet Header

14 0x2b10
Length = 0x02b
Reserved: Valid = 0x0
Type: EtherCAT Command = 0x1

-
EtherCAT Header

16 0x08010000000005000000

Command = 8. Broadcast write
Length = 0x5
Slave Address = 0x0000
Offset Adress = 0x0000

1

26 0xa5a5a5a5a5 Data sent to the EtherCAT Slaves 1
31 0x0000 Working Counter = 0x0000 1

33 0x09010000000101000000

Command = 9. Broadcast read-write
Length = 0x1
Slave Address = 0x0000
Offset Adress = 0x0001

2

43 0x00 Data sent to the EtherCAT Slaves 2
44 0x0000 Working Counter = 0x0000 2

46 0x080100000001028000

Command = 8. Broadcast write
Length = 0x2
Slave Address = 0x0000
Offset Adress = 0x0001
Last Datagram

3

56 0x00000 Data sent to the EtherCAT Slaves 3
58 0x0000 Working Counter = 0x0000 3

Table 4.1: Frame sent from the computer to the designed EtherCAT slave.

Further on, the resource usage of the design is analyzed. The results are shown in Figures
4.4. A visual result of the routing and placement process is shown in Figure 4.5. The module
that was simply looping back the data in Chapter 3 is now able to process EtherCAT frames.
The added logic increased the resources used by this module with 1531 LUTs. However, as in
the previous design, most of the resources are required by the Ethernet Subsystem.
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Figure 4.4: Summary of the used resources.

Figure 4.5: Design placement of the EtherCAT slave.
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Chapter 5

Designing a Linear Topology

5.1 Design Architecture

As stated in Chapter 2, the EtherCAT technology is used in distributed systems. Different
network topologies can be used, like line, tree, star or daisy-chain configurations. As the
designed EtherCAT slave shall be able to be attached to such a network, this Chapter focuses
on analyzing this capability of the already developed design.

For test purposes, a linear topology was chosen. The design used as EtherCAT slave was
the one developed in Chapter 4. However, its capabilities must be extended in order to be able
to attach it to a network. These changes and the system architecture are described in more
detail in Section ??. The design is than evaluated in Section ??.

5.2 Implementation

The tested network configuration is a linear one, having two EtherCAT slaves. It fulfills
the architecture shown in Figure ??. The data is sent from the computer to the first slave,
which processes the information and forwards the message to the next slave. After processing
it, the second slave must send back the data to the first one. Further on, the first slave forwards
directly the data to the master.

The current design version can not be inserted directly into the topology. Some extensions
must be implemented.

First of all, the current design is not able to detect whether it is the last one in the chain.
This is necessary so that it would be able to loop back the EtherCAT frame in case no other
slaves follow him in the chain. This feature can be implemented by using the registers of
the PHY. As stated in Chapter 2, the PHY has its registers organized in pages. The status
information provided by register number 17, of page 0, called “Copper Specific Status Register
1”, can be useful in solving this task. Bit number 10 gives information in real time regarding
the status of the link. A high state of this bit means the communication link is up. If the
current slave is the last one in the chain, one of its PHYs will not be connected to any other
decive. Thus, its link will remain down and this can be read from the status register number
17.

In order to test whether the current slave is the last one in the chain or not, two new states
are added to the control module, “RDLINK” and “CHECKLINK”. The first one requests a
MDIO access to register 17, page number 0. The second one reads the received value from
register 50c16 of the Ethernet Subsystem.

If the link is down, the data processed by the streaming generator is looped back to the
first AXI Ethernet core. If the link is up, it forwards the information to the second Ethernet
subsystem.

The original slave had the task to switch the source and destination addresses of the Ethernet
frame before sending it back to the master. However, if this would be conducted by each slave
in the topology, depending on the number of connected devices, the data received by the master
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Figure 5.1: Linear topology containing two EtherCAT slaves.

might not have the correct addresses. This must be updated so that only one slave would swap
the addresses. As it can already be detected which slave is the last one in the chain, he could
be the one conducting this task. Thus, the streaming generator module was updated so that it
receives information from the control module regarding its position in the chain and depending
on that it interchanges the addresses or not.

The master can conduct a topology scan by sending a broadcast package and reading the
received value of the working counter.

After implementing the design updates, the design needs to be synthesized so that later on
it could be tested on actual hardware. The real distributed system would have one FPGA for
each field device. One board would contain:

• two PHY ports

• two AXI Ethernet Subsystems

• one clock management system

• two control modules, one for each Ethernet subsystem

However, for test purposes these modules will be instantiated on the same FPGA, as the
Ethernet FMC supports the design principle by having four ports. In order to save resources
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and speed up the synthesis and implementation processes, only one clock management unit is
used for both EtherCAT slaves.

An important aspect observed when instantiating more AXI Ethernet Subsystems was the
fact that out of the four AXI Ethernet instances, only one is allowed to include shared logic in
the core option. This behavior is described in subchapter 3.2.

5.3 Design Evaluation

Before testing the implemented design on hardware, the right cable connections must be
done. Data from the second port, which corresponds to the first slave, must be forwarded to
the third one, which corresponds to the second slave. The correct type of cable must be chosen
in order to transmit the correct data. Some of the PHYs support only crossover cables, while
others are able to swap internally the signals in case straight through cable is detected.

Accroding to [29], the module is capable of swapping the receive and transmit signals if this
is needed, so that no cross over cable is required. According to the control register “Copper
Specific Control Register 1” bits five and six are initialized with value 316,so the automatic
crossover is enabled after hardware reset.

The first conducted test was checking whether the EtherCAT slave is able to detect if there
is any device connected to it. Reading the “Copper Specific Status Register 1” once, after reset
does not return the correct result, as the link is down in the beginning. Thus, a loop must
be implemented to request repeatedly the link status in case the corresponding bit is low. If
the device is not the last one in the chain, bit ten of the above mentioned register becomes
high after a certain time. The corresponding value can be seen in the data captured using ILA
(Figure ??). Bit ten of the “s axi rdata” signal is one.

Figure 5.2: Reading the link status of an Ethernet port connected to another device.

The data is looped back correctly by the last slave, as the master receives the sent frame.
This can be seen in Figure 5.3. If the logic implementing the swapping of the addresses was
defective, both slaves would have interchanged the source and destination addresses so that
the master would have received the same Ethernet header. This however does not happen
according to Figure 5.3, so the two slaves can detect correctly whether they are the last ones
in the network chain or not.

Another important aspect is observing the values of the EtherCAT datagrams. Although
in real-case designs two slaves would have different addresses, for test purposes, the slaves
instantiated in this project had the default address 0. Therefore, when sending a packet to this
address, both slaves should react and update the working counter. This behaviour is confirmed
when using Wireshark. If we compare the last byte received in Figure 4.3 with the one in Figure
5.3, we can see that the working counter was incremented twice in the second case.
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Figure 5.3: Sent and received EtherCAT frame in case of a linear topology containing two
slaves.

Moreover, the network delay in case of having only one slave can be compared to the delay
observed now. Table 5.3 illustrates a comparison between the design implemented in Chapter
4 and the linear topology implemented now. As stated also in the previous chapter, because
the PC is not a real time device, different runs might result in different delays.

Type of design
Design containing

one EtherCAT slave
Linear topology containing

two EtherCAT slaves
Type of data Transmitted frame Received frame Transmitted frame Received frame
Timestamp

(s)
5.604137 5.604223 5.508813 5.508959

Delay
(s)

0.000086 0.000146

Table 5.1: Timing characteristics of the sent and received EtherCAT frames in case of one or
two slaves.

Figures 5.4 and 5.5 illustrate the resources used for implementing the linear topology. Howe-
ver we must take into consideration that one module was used for generating the clocks for
both slaves, which is not valid in real-case applications, where the slaves are implemented on
different boards.
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Figure 5.4: Summary of the resources used for implementing two EtherCAT slaves connected
in linear topology.

Figure 5.5: Design placement of two EtherCAT slaves connected in linear topology.
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Chapter 6

Removing the AXI Ethernet Subsystem

In Chapter 4, an EtherCAT slave was designed using the AXI Ethernet Subsystem. Howe-
ver, using this core poses some decisive drawbacks. Firstly, using this IP brings some limitations
regarding design speed and reduces performance when it comes to resource utilization. Secon-
dly, an essential limitation when using this core is not having access to the HDL files.

6.1 Motivation for replacing the Xilinx IP

Despite being able to set some parameters of the IP before generating the netlist, the user
can not modify particular signals of the source code. Thus, he can not adjust the design to his
own needs.

Additionally, the design speed is limited by the AXI interfaces, which can be observed
in Figure 6.1. The IP first buffers the data received through the RGMII interface, which is
pointed by the first cursor. After receiving the last nibble, it initiates an AXI transfer, signaled
by the second cursor. The control logic processes the data and sends it back to the Ethernet
Subsystem. The IP buffers again the received data before sending it to the PHY. The fourth
cursor signals the transmission through the RGMII interface. This highlights the delay of the
loopbacked data.

The AXI stream data bus is 32 bit wide, thus the received frame is sent within several bus
accesses. According to the datasheet [31], the AXI Stream interfaces “typically operate with
a clock between 100 MHz and 125 MHz”. The RGMII works however at 125 MHz, sending one
data nibble on each clock edge. Thus, the data needs to be buffered before sending it through
the AXI interface. In case of real time devices, the optimal solution would be receving data,
processing it and forwarding it without any buffering delay. Thus, removing the subsystem and
implementing a design to improve timing performance would be of interest.

Another important issue when instantiating the Ethernet Subsystem is the size of the circuit.
The area used by the core is around 45% of the total design area required by the design in
Chapter 4.2. As the core can change at run-time some parameters of the communication,
depending on the control registers, its logic is more complex than required by this project.
Complexity is reflected also in the required hardware and the unused functionalities shall be
removed in order to save resources. A simple example is supporting Jumbo Frames, which have
a length bigger than the one specified in IEEE Std 802.3-2002. This feature will not be used
in case of the EtherCAT slave developed in this project, so it can be removed.

Last but not least, the AXI Ethernet Subsystem is not an open source project and the
required license raises the design costs.
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Figure 6.1: Timing performance of the AXI Ethernet Subsystem.

6.2 Implementation of the Cyclic Redundancy Check

When transmitting data to another Ethernet capable device, a 32 bit CRC value must be
padded to the message. This will be the FCS field of the Ethernet frame, according to the
protocol requirements described in Chapter 2.1. According to [50], the CRC “is a non-secure
hash function designed to detect accidental changes to raw computer data”. Because the frame
would be dropped at OSI layer two if the received checksum would not correspond to the actual
computed one, implementing a CRC generator is essential. In previous designs, this task was
conducted by the AXI Ethernet Subsystem.

The design has the following input signals:

• The generator polynomial

• The input data

• The last result

As output signal, the circuit returns the computed checksum. The CRC computation is
based on the division operation. The input data is the divident. Depending on the degree
of the polynomial, zeros must be padded to it. The input data is divided by the generator
polynomial and the rest of the computation is the required CRC.

When using this module for Ethernet capable devices, the generator polynomial can also be
defined as a parameter, because it has a constant value. It shall have a high bit on each position
where the polynomial has a coefficient different from zero. According to [51], the generator
polynomial used for Ethernet capable devices should comply to the following formula:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + x0

(6.1)

However, this signal was left as input so that the module could be used in future projects
also for other purposes.

In order to design the CRC generator in hardware, a shift register was used. The most shifted
bit is xored with the input data, which is eight bit wide. The obtained value is “AND”combined
with the generator polynomial and the result is xored with the shifted previous result. This
behavior is illustrated in Figure 6.2.

The design works asynchronously, computing the data in one clock cycle. So the above
decribed circuit has an actual parallel structure. It requires more resources as a synchronous
shift register, but it is able to process on the fly each byte received through the RGMII interface.
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Figure 6.2: Design of the CRC module.

6.3 Implementation of the MDIO communication

The MII managment interface is used in order to write control data in the registers of the
PHY. Its functionality was described in Section ??.The “axi ethernet 0 axi lite ctrl” control
module, that has the task of bringing up correctly the PHY and the AXI Ethernet Subsystem
has three implemented finite state machines. One of them controls AXI Lite accesses in case
data must be written through the MDIO wire in the PHYs registers. Thus, all the control data
for the PHY first goes through the Ethernet IP and requires two AXI bus accesses, as described
in Section 3.2. This steps can be removed by implementing a design capable of conducting the
MDIO accesses.

An additional important advantage in creating a MDIO capable module is removing some
states of the finite state machine that were writing data into the IPs control registers in order
to set up correctly the MII interface. The parameters of this communication will be hard-wired
in the design.

The new module receives from the “axi ethernet 0 axi lite ctrl” the following signals:

• Enable signal, telling the design when the data line has valid entries

• Address of the PHY

• Address of the accessed register

• Data to be written into the PHYs registers

• Read/Write command

After a transfer was issued, a counter stores the number of the already sent bits and generates
on the MDIO line the pattern described in Section ??. The module releases the line (through a
high impedance signal), when it expects data from the PHY or does not conduct any access. In
the top module, an Input/Output Buffer (IOBUF) cell makes possible that both this module
as well as the PHY can access the MDIO wire.

The module receives a 2.5 MHz clock signal.

The output data consists of the information sent to the control module, as well as the data
sent to the PHY.



38

6.4 Implementation of the RGMII communication

The PHY communicates with the EtherCAT data link layer thorugh the MDIO and RGMII
interfaces. The first one was already implemented in the previous Section. This Section intro-
duces an implementation of the RGMII interface.

The designed module to conduct this task is called “rgmii”. It must conduct receive as well
as transmit operations. It complies to the protocol pattern introduced in Chapter ??.

In order to detect the start of a frame sent by the PHY, the receiver logic stores the last
received nibble. When the sequence “5d16” is detected, a start of a new frame is signaled.
The data received afterwards is stored in a buffer of 45 bits. The reason is the FCS field. As
the “Streaming generator” module, processing the incoming data, does not need the FCSfield,
removing it is desired. The “buffer remove fcs ” FIFO stores each received nibble with an
attached valid bit. This bit is set high as the data is received. If the end of the frame was
reached, by detecting a negative edge of the “rgmii rx ctl” signal, the valid bits of the last eight
stored nibbels are reset. Thus, they are not forwarded to the processing logic.

The transmission logic forwards the data to the PHY when a write request is received from
the “Streaming generator” design. Apart from the preamble data, each sent nibble is also
forwarded to the module computing the CRC. After sending the data blocks, the CRC result
is also attached to the signal sequence.

Because data must be sent at double data rate, both receiver and sender logic work with
a 250 MHz clock. The transmission clock forwarded to the PHY is defined at 125 MHz. The
“rgmii rxc” clock signal is received from the PHY and shall have the same frequency.

6.5 Updating the architecture design

After replacing the AXI Ethernet Subsystem with own implemented modules, the architec-
ture of the design also changes. Figure 6.3 shows the updated structure of the project.

The Ethernet Subsystem module was replaced by two designs, one implementing the MDIO
communication, while the other conducting RGMII transfers.

The “Controller”module has the task of sending control information to the PHY via the
“Management Data Input/Output”. By writing correctly the registers of the PHY, it must
bring it up correctly.

The “Streaming generator”module processes data received from the “Reduced Gigabit Me-
dia Independent Interface” module that communicates with the PHY through the RGMII
interface. Both modules work at the same frequencies.

In order to generate the correctCRC value of the frame, so that the receiver would not drop
the message, the “Reduced Gigabit Media Independent Interface” also instantiates the “CRC”
module.

As the IP provided by Xilinx was removed, the AXI buses were also no longer needed.
Thus, the new design is more simplified. Additionally, because AXI buses worked at different
frequencies than the MDIO and RGMII interfaces, removing them also meant having less clock
domain crossings.

6.6 Design Evaluation

First, the functionality of the design will be tested. In order to ease debugging, the “Strea-
ming generator”module is in this case a simple loop back, without implementing EtherCAT
capabilities.



39

Figure 6.3: Design of the CRC module.

The design works in case of certain frames, while in other cases it introduces some bit errors.
Figure 6.4 shows a case when the design passes the test, while Figure 6.5 shows an example
when it fails. The data received in the second case was not completly wrong. However, a few
bits had the wrong value that flag some timing issues in the design. As the RGMII interface
requires strict conditions regarding signal delay, it might be possible that the defined timing
constraints do not match entirly the specification.

In order to debug this problem, ILA was used. THe results are shown in Figure 6.6. The
frame presented in Chapter 4.2 was used again as test data. At first sight, the signals captured
in ILA on the RGMII interface were according to the requirements. We can recognize some
bytes of the frame not only on the receiving bus, but also on the transmission line. We can also
recognize in Figure 6.6 the preamble before sending the data. Additionally, the addresses are
swaped correctly. Taking this into consideration, an assumption would be an error in defining
the timing of the transmission wires. This must be researched in further work.

As expected, the design requires less logic. Figure 6.8 shows in yellow the logic replacing the
AXI Ethernet Subsystem. As it does not provide the flexibility and complexity of the Xilinx
core, it uses much less logic. Additionally, it does not buffer the entire data received through
the RGMII interface, which also saves a great amount of logic.

The subsystem required one MMCME2 cell and the rest of the logic used a second clock
manager module. Removing the core also means removing one of the MMCME2 cells. As the
FPGA does only have 4 such elements, this is might be useful if additional clocking resources
are needed in later complex projects.
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Figure 6.4: Example case when the design fulfills the requirements. Top frame is the sent data,
bottom frame is the received data.

Figure 6.5: Example case when the transmission includes a few wrong bits. Top frame is the
sent data, bottom frame is the received data.
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Figure 6.6: Debug information captured by ILA.

Figure 6.7: Summary of the required resources.
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Figure 6.8: Design placement.
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Chapter 7

Interface to CGRA

Compared to FPGAs, CGRAs have the advantage of processing data at word level, thus
implying smaller configuration files and less configuration time. The architecture is able to
load a new design in each clock cycle. This strong capability might increase the usage of
CGRAs in the detriment of FPGAs. As EtherCAT receives a growing enthusiasm in industrial
projects and some controllers used in this field require high computation power, providing an
interface to CGRAs might also increase the interest in this reconfigurable technology. Each
field device would process the measured data and compute control signals using a CGRA,
while communicating with other field devices through EtherCAT protocol. Thus, defining an
interface between the EtherCAT controller and such a reconfigurable architecture would be of
benefit. The following Section introduces the design requirements, while the second Section
describes its implementation. In the end, an evaluation of design performance is conducted.

7.1 Architecture requirements

The current project implements a peripherial for the CGRA architecture used in the AMI-
DAR project developed by the “Computer Systems“ group of the Faculty of Electrical Enge-
neering, within the Technical University in Darmstadt [46]. For the above mentioned CGRA
type, the peripherals cannot directly write data into the register file of the PEs. The current
architecture implies that in order to process data from peripherals, the context must be first
written accordingly. As the architecture is not yet well defined and it will undergo several modi-
fications according to ongoing research studies, a simple, parameterizable interface is preferred
for the current project.

The EtherCAT master as well as the CGRA must both have access to the data memory.
A possible access conflict between the two must be supported. In contrast, the configuration
memory of the EtherCAT slave must be accessed only by the network master, as it will be the
only capable of controlling the communication’s parameters.

As different software codes need a different number of PEs, in order to have an optimal
runtime, the EtherCAT controller must support a variable number of PEs. Thus, the memory
address must be structured in such a way that each PE would receive its own storage space
and the various address spaces would be transparent to the PEs. The EtherCAT slave does not
need to flag any new incoming data to the CGRA, as this information will be generated by the
scheduler. Thus, the PEs will initiate on their own a memory access to the EtherCAT slave,
according to their context. All of them must be able to request access to their own storage
space in parallel.

7.2 Implementation

The design architecture fulfilling the requirements described in the above Section can be
visualized in Figure 7.1.
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Figure 7.1: Implementation of the interface between CGRA and EtherCAT Slave.

The data coming from the CGRA is defined in Verilog as a big bus containing information
bits from all the PEs. The same applies for the address, enable and write bits.

There are two types of memories defined in the design. One of them, called “config reg file reg”,
stores the configuration information and is single port. The second one, storing user’s data,
is instantiated in the “data memory” module and is a dual port. The later one must provide
access to both the EtherCAT master as well as to the CGRA. Using the generate construct, the
Verilog module is able to generate a variable number of “data memory” modules. The PEs can
access only the data stored by this modules and they do not see the address offset introduced
by the configuration memory.

If a collision occurs, meaning a simultaneously write access from the EtherCAT master and
the CGRA, the “data memory” module is able to recognize it and gives priority to the PE.
Additionally, it stores the data from the master in a FIFO. If no write accesses occur and there
is still data in the buffer, the module will write this data into the memory. No collision occures
if both the CGRA and the EtherCAT master try to read data from the memory or if they
request a read and a write access simultaneously. Additionally, no conflict is detected if all the
PEs write data at the same time, as their storage space is physically separated.

When sending data to the EtherCAT master, the module needs to choose between the
output data of the “data memory” modules. An “or” gate is used for this purpose. Thus, if a
module is selected, the output data will correspond to the content of the memory. In contrast,
if it is not selected, it will output zeroes, so that the result of the “or” function will correspond
to the enabled module.

The EtherCAT master selects between the PEs through the incoming address. According
to the EtherCAT protocol, the address bus has 32 bits. Out of these, the first eight will be
used to recognize the EtherCAT slave, the following eight will differentiate between the PEs
while the last sixteen bits will access the configuration or data memory space.
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7.3 Design Evaluation

In this Section, the functionality of the design, the resource utilization and the maximum
path delay are analyzed. The design under test can be connected to three PEs, but as stated
in the previous Section, this number is variable.

Before running the synthesis, the design is tested to comply the requirements. A testbench
conducting the following operations was established (data is given in decimal format):

• EtherCAT read request. Address = 25710. Data = 2410

• EtherCAT write request. Address = 25710. Data = 2410

• Generate Conflict. EtherCAT write request. Address = 25810. Data = 2410. CGRA
write request. Address = 25810. Data = 1110

• Concurrent read requests

• EtherCAT write request. Address = 6579610. Data = 2410.

The results are shown in Figure 7.2. Should I make the simulation photo landscape? In this
case maybe they will ask me why I didn.t attach it as Annex (Answer: because 60 pgs =)))

Figure 7.2: Simulation results of the design implementing the CGRA interface.

The first access is requested by the EtherCAT master. Its address is 25710. Because it is
higher than 25510, an access to the data memory space at address 210 is initiated. Moreover,
due to the second highest byte, which is zero, the first PE is addressed.

The next access generates a conflict, as both the CGRA and the ETherCAT master try to
write data to the same location. The least significant byte of the CGRA address bus is 316.
This is the address information sent by the first PE and is equal to the address requested by
the EtherCAT master (25810-25510). The access is pointed out in the simulation by the second
cursor. The conflict signal is asserted and the design stores the data from the EtherCAT master
into the buffer.
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When no access to the memory is requested, the data stored in the buffer is written back
to the memory. The event is pointed out by the yellow cursor in Figure 7.2, when the ”Data
Reg File” updates its entry at address 310.

The concurrent read requests pointed out by the third blue cursor do not generate a conflict.
The memory returns both data, on the ”cgra data o” bus as well as on the ”ecat data o” bus.

The last EtherCAT write request accesses address 6579610 = 01010416, which enables the
second PE, because the second highest byte is 0116. Thus, this does not affect the memory
address space of the first PE and no effect is seen in the corresponding storage elements.

After testing the functionality of the code, its performance regarding timing and resource
usage must be analyzed. In FPGAs, storage elements are either distributed Random-Access
Memorys (RAMs) or Block RAMs (BRAMs). The first type of storage strategy is useful in
case of small designs and it usually gives better performance regarding speed. In case of large
memories however, using LUTs as storage elements would require much hardware resources
and would generate a slow design, due to routing. However, if asynchronous read is required,
then distributed RAM shall be used [52].

The Vivado tool is able to conduct an analysis and decide which solution is optimal when
choosing between distributed RAM and BRAMs. However, in order to be able to do that, the
user must write the HDL code in such a manner that the tool would recognize the structure.

In the beginning, the interface was written without taking into consideration the BRAMs,
but only the functionality. All the registers were initialized through synchronous reset. The
corresponding resource usage is shown in Table 7.1. This design was used when runing the
simulation shown in Figure 7.2.

After removing the reset signals from most of the storage elements, the resource usage
reduced significantly. This paragraph is really short. I wanted to show that this was a separate
test-case though. Should I add it to the previous one?

In both cases described above, distributed RAM was used as a storage element for the
memories. In order to be able to use BRAMs, the format of the code must be updated.
The EtherCAT master and the CGRA can access the memory at the same time. Thus, the
corresponding hardware element must be dual port. The HDL format required for instantiating
such BRAMs can be vizualized in Figure 7.3.

The resource usage in this case is strongly improved when it comes to number of LUTs.

After implementing the solution using dual port BRAMs, the functionality must be checked
again. Accroding to Xilinx, access collisions might occur in case of dual port RAMs if three
conditions are met simultaneously. One of them specifies that both access ports have different
clock signals [53]. Because this is not the case for this design, reading data from an address
written simultaneously by the other port does not flag a collision.

When it comes to timing performance, the following time constraint was defined in order
to obtain data regarding the maximum allowed frequency: “create clock -period 10.000 -name
clk -waveform 0.000 5.000 [get ports clk i]”. The results are shown in Figure 7.3.

The resource usage and timing performance given in this Chapter are in favour of the
solution implying BRAMs. However, in case small memory area is required, the approach
using distributed RAMs might give better results. An important thing to be underlined is the
effect of the HDL format on the synthesized design. In this case, the less complex code leads
to a higher resource usage. Additionally, initializing the memory content using a synchronous
reset also has a big impact on the area.
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Design
Approach

Total
Delay

LUTs FF BRAMs

Xilinx format code, BRAMs 3.857 177 108 3.5
Shortest Code, without reset 6.394 2422 204
Shortest Code, with reset 4.849 19134 33140

Table 7.1: Resource usage of the implemented interface to CGRA, using different programming
approaches.

Figure 7.3: Different code techniques. Right, taking into account only functionality and faster
programming. Left, format sugested by Xilinx for instantiating BRAMs.
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Chapter 8

Conclusion

8.1 Comparison to available solutions

8.2 Further improvements

8.3 Project Summary
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