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Abstract—The Nymble compiler system accepts C code, an-
notated by the user with partitioning directives, and translates
the indicated parts into hardware accelerators for execution
on FPGA-based reconfigurable computers. The interface logic
between the remaining software parts and the accelerators is
automatically created, taking into account details such as cache
flushes and copying of FPGA-local memories to the shared main
memory. The system also supports calls from hardware back
into software, both for infrequent operations that do not merit
hardware area, as well as for using operating system / library
services such as memory management and I/O.

I. INTRODUCTION
Adaptive computing systems (ACS) can improve the

performance of many algorithms by combining a standard
software-programmable processor (SPP) with a reconfigurable
compute unit (RCU). Computing kernels are realized as ded-
icated microarchitectures on the RCU, while the SPP im-
plements just non-performance critical control operations or
operations that cannot be mapped efficiently to the RCU.

However, due to the specialized expertise required from
the developer for an ACS, practical use of ACSs is still
relegated to niche cases: Programming an ACS commonly
requires experience in digital hardware design, computer ar-
chitecture, and specialized programming languages and tool
flows (Verilog/VHDL, place and route, simulation, . . . ). The
skills will be unfamiliar to most software developers.

To open the potential of ACSs up to more users, consider-
able research effort has been invested in automatic compilers
for such heterogeneous computers. Often, these tools are
restricted to describing and generating the actual hardware
accelerators. The software-hardware interfaces as well as the
low-level communication mechanisms must be explicitly man-
aged by the user. True hardware/software co-design tools exist,
but they are often limited to a coarse partitioning granularity
(often at the level of entire functions).

As an alternative, we present our hardware/software co-
compiler system Nymble. Nymble aims not only to compile a
large subset of C to hardware (including, e.g., pointer opera-
tions and irregular control flow in loops), but also automati-
cally create the required software/hardware interfaces. In ad-
dition, Nymble supports advanced features such as pipelining
execution even in the presence of nested loops and automatic
hardware-to-software calls for rarely executed or difficult to
accelerate operations.

II. RELATED WORK
A growing number of design tools can translate (often

differing) subsets of C into synthesizable HDL code [1], [2],

[3]. However, co-compilation of C descriptions into hybrid
hardware/software executables mainly remains the subject of
academic research.

A. COMRADE
COMRADE 2.0 [4] was developed in the SUIF2 compiler

framework [5]. It focused on the compilation of control-
intensive C code into dynamically scheduled accelerators,
providing support for aggressive speculative execution (e.g.,
early cancellation of mispredicted operators). The proposed
compute model included finely granular hardware/software
partitioning (at the level of loops), but these features were
not robustly implemented. COMRADE did support shared-
memory operation between the software-programmable pro-
cessor (SPP) and the reconfigurable compute unit (RCU), with
the latter being able to autonomously perform main memory
accesses. Cache coherency was handled by a combined hard-
ware/software approach: The RCU memory system tracked
dirty cache lines, which were then explicitly invalidated in the
SPP cache under software control. Small arrays were localized
into on-chip memories, which could be moved back to SPP-
accessible memory as specified by the programmer using a
Local Paging Unit (LPU) on the RCU [6].

B. ROCCC
Like Nymble, ROCCC is a C to hardware compiler based

on the LLVM compiler framework. In [7], ROCCC-generated
hardware shows similar performance and 15x higher produc-
tivity relative to hand-written VHDL. However, ROCCC lacks
support for many commonly used C constructs, such as point-
ers, loops other than for, variable-distance shifts, and targets
pure hardware instead of performing hybrid hardware/software
synthesis.

C. LegUp
LegUp [8] is an open-source high-level synthesis system.

Introduced in 2011, it has reached its third major version
release at the beginning of 2013 [9]. LegUp is similar to our
approach as it supports automated partitioning of a C program
(based on programmer directives) into a mixed software/ac-
celerator setup and is also based on the LLVM framework.
However, the architectures of LegUp and Nymble differ on
multiple levels.

Both LegUp and Nymble support hardware/software co-
execution with different SPPs. However, LegUp assumes sep-
arate memory spaces for SPP and RCU, requiring explicit
copying of data and incompatible pointers (e.g., for PCIe-based
systems), while the Nymble infrastructure allows fully shared



memories and the transparent exchange of virtual addresses
between SPP and RCU.

Nymble offers a finer partitioning granularity, as it can
generate hardware for single-entry regions of a function, as
opposed to the whole-function granularity used in LegUp.
Furthermore, Nymble supports calling software functions from
within hardware kernels, preserving the current accelerator
state.

In LegUp, control flow is modeled by an FSM whose
states correspond to the basic blocks of the function. The
instructions contained in each basic block form a dataflow
graph that is scheduled independently from other blocks. In
Nymble, the basic block structure is eliminated in favor of
a combined control-dataflow graph (CDFG) for each natural
loop nesting level. Scheduling at this per-loop scope potentially
exposes more instruction-level parallelism (e.g., computing
control conditions in parallel to speculative data operations).

Both compilers offer loop pipelining using an iterative
modulo scheduler. LegUp’s implementation can only operate
on loops comprised of one basic block, while Nymble’s is
more general and can handle loops with internal control flow.

The LegUp memory system makes extensive use of the
on-chip RAM blocks for storing local variables, but is limited
to one concurrent memory access per accelerator. Nymble
benefits from the MARC II configurable memory system
[10] that allows multiple concurrent read/write accesses (with
configurable coherency between them), and can relocate scalar
global variables to local hardware registers for increased
performance. Furthermore, scalar local variables are eliminated
via exhaustive inlining and LLVM’s memory-to-register pro-
motion pass. In Nymble, arrays can be held in on-chip memo-
ries in an automated fashion: They are manually indicated by
the programmer in the software part, and then automatically
mapped into the shared virtual address space of SPP and RCU.

D. Garp CC
The Garp CC compiler [11] provides automatic partitioning

of C programs to run on a MIPS processor augmented with a
coarse-grained reconfigurable array (CGRA, having 32b arith-
metic/logic operators as primitives). It is based on the SUIF
compiler infrastructure [5] and uses a modified GCC toolchain.
Garp CC attempts to perform the partitioning without user
intervention by considering all loops as hardware kernels,
and then incrementally excluding paths that are not suitable
or beneficial for calculation on the reconfigurable hardware.
Excluded paths would then be executed in software, either
directly or by performing a hardware-to-software execution
switch. These switches had a coarser granularity than in
Nymble, since a switch back into hardware execution could
occur only into the closest loop header, not back into the body
of the loop. The intermediate representation used in Nymble is
similar to Garp CC’s dataflow graph. Garp CC also employs
a shared-memory architecture, with the SPP and RCU even
sharing the data caches. The underlying CGRA can have three
incomplete memory operations in-flight, but can issue only one
memory access per cycle due to only a single address bus being
present in the fabric. As discussed above, Nymble’s MARC II
memory interface allows more parallel memory accesses to its
distributed caches.

III. NYMBLE COMPILER
Nymble is both a tool for the co-compilation of C code

into hybrid hardware/software applications for execution on
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Fig. 1. Adaptive Computing System (ACS)

an Adaptive Computing System (ACS), as well as a frame-
work for research on application-specific microarchitectures.
An example for the latter is PreCoRe [12], [13], [14], the
automatic synthesis of application-specific hardware for data-
value speculation. Nymble stands in the tradition of Garp CC
[11] and Nimble [15] for generating (mostly) statically sched-
uled microarchitectures using shared-memory communication
between SPP and RCU, but is significantly more advanced
than both, e.g., with regard to parallel memory accesses and
fine granularity hardware/software partitioning.

A. Hardware/Software Co-Execution Model
Nymble’s hardware/software co-execution model requires

a tight coupling between SPP and RCU. Communication
must be possible in low-latency as well as high-bandwidth
modes, but is not required to support both modes in parallel.
The low-latency mode is used to transfer small-volume live
variables and parameters as memory mapped registers for
software/hardware and hardware/software execution switches.
The high-bandwidth mode is for bulk data exchange and
realized as high-performance shared memory. The model and
its architectural implications is discussed in greater detail in
[16].

B. ACS Architecture
Adaptive Computing Systems (ACS) provide the capabil-

ities required for Nymble’s co-execution model. Ideally, they
would be realized in a fashion similar to Garp [11], which had
common caches between the SPP and RCU. More common,
however, are architectures as shown in Figure 1, with only
the main memory actually being shared. However, current
developments in reconfigurable systems-on-chip, such as the
Xilinx Zynq-7000 series of devices [17], indicate a trend
towards tighter integration. While Zynq-7000 does not yet
support fully bidirectional cache-coherency between the SPP(s)
and RCU, the required extensions to the AXI bus protocol have
already been specified by ARM [18] and are expected to be
implemented in future reconfigurable devices.

C. Concrete ACS Implementations
Such an ACS architecture can be implemented in many

different fashions. As an example, Figure 2 shows how the
Xilinx ML507 prototyping board with its Virtex 5 FX FPGA
can be used to realize an ACS. While the embedded superscalar
PowerPC 440 SPP cores of the FX-family device do not
allow shared caches between SPP and RCU, shared main
memory can be implemented very efficiently: The RCU has
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a dedicated FastLane+ high-bandwidth interface to the DDR2-
SDRAM controller, which is considerably more efficient than
the stock PLB-based memory interface commonly used on
V5FX FPGAs.

In conjunction with other hardware measures and a cus-
tomized version of a full-scale Linux operating system, RCU-
SPP signaling latency using our FastPath kernel modifications
has been improved by up to 23x, even over a Linux kernel
extended with real-time patches. Furthermore, supported by
our AISLE extensions, the RCU can access the shared memory
in the same virtual address space as software on the SPP. All
of these enhancements are described in greater detail in [16].

A hardware kernel executing on the RCU usually does
not connect directly to the raw FastLane+ memory interface.
Instead, the MARC II [10] memory system is inserted between
the kernel and FastLane+ (Figure 2) to provide multiple
caching/streaming memory ports with configurable coherency
and organization (e.g., stream buffer size, cache lines and line
length, etc.).

D. Compile Flow

TABLE I. LLVM TRANSFORMS/ANALYSIS PASSES USED IN
NYMBLE[19]

Name Description

-simplifycfg Removes dead or unnecessary basic blocks.
-lowerswitch Transforms switch instructions to a sequence of branches.
-loop-simplify Guarantees that natural loops have a preheader block, their

header block dominates all loop exits, and they have exactly
one backedge.

-sccp Sparse conditional constant propagation.
-instcombine Algebraic simplifications.
-dce Dead code elimination.
-mergereturn Transform function to have at most one return instruction.
-basicaa, -scev-aa Alias information for load and store instructions based on

program independent facts and scalar evolution analysis.
LoopInfo Mapping of basic blocks to natural loops.
DominatorTree Dominance relation for basic blocks.

Nymble has been under continuous development for more
than four years. Until recently, it relied on the Scale compiler
framework [20] for its front- and middle-end operations. It has
now been moved successfully to the LLVM infrastructure [21]
for machine-independent passes in the compile flow (shown in
Figure 3).

We modified the clang C/C++ front-end (Fig. 3.a) to
accept custom pragma directives. clang translates input pro-
grams annotated by these pragmas to the LLVM intermedi-
ate representation (IR). The pragmas are then interpreted to
define the hardware/software partitioning (Fig. 3.b), extract
the future hardware part into a separate function, and guide
the interface synthesis (see Sec. III-F1). Next, a series of
LLVM optimization passes (Fig. 3.c, Table I) are applied in
order to simplify and normalize to the hardware function.
From its IR, the hierarchical CDFG for the actual hardware
microarchitecture is constructed (Fig. 3.d, detailed in Sec.
III-G), and optimized for hardware synthesis using non-LLVM
passes (Fig. 3.e, described in Sec. III-H). As shown in Fig.
3.f, the optimized CDFG is scheduled using either ASAP or
modulo scheduling [22], and exported as RTL Verilog for
logic synthesis. Independently from this high-level hardware
synthesis, the software parts of the program are patched with
the hardware/software interface operations to realize our co-
execution model (see Sec. III-F3). The completed software
parts are then compiled to an executable using the traditional
LLVM software flow (Fig. 3.h).

E. Nymble Microarchitecture Template
After our experiments in COMRADE with the fully dy-

namic COCOMA scheduling model, we wanted to explore the
alternate use of a simpler, mostly statically scheduled model
for code with simple control flow and few (if any) variable-
latency operators (VLO).

When designing an IR for the high-level hardware synthe-
sis, two choices are commonly explored for the representation
of data- and control flow as well as hierarchically nested
control structures. One alternative transforms the operations
in each basic block into separate DFGs (shown in Fig. 4.a
and Fig. 5.a), and expresses the control flow using an external
FSM triggering/enabling each basic block DFG (this is the
approach used by LegUp). A second choice flattens the basic
blocks and their control flow into a single CDFG (shown in
the .b subfigures, respectively).

The CDFG-based approach allows for potentially higher
parallelism, as the individual DFGs may (at most) execute the
operations of a single basic block in parallel. An example of
this situation is shown in Fig. 4, where the CDFG allows
the speculative side-effect free computation of both of the
conditional branches in parallel with the computation of the
control condition (the longer-latency division). When using
separate DFGs, the division has to complete before the relevant
branch can be executed (with side-effects, if necessary). On the
other hand, if the branches have different latencies, the CDFG-
based approach will need to always consider the longest one as
the latency of the conditional. Such a scenario is shown in Fig.
5. Here, the separated DFGs are advantageous, since the condi-
tional will be executed non-speculatively and only the DFG of
the selected branch will determine the total latency. As Nymble
is targeted specifically at the generation of efficient hardware
for code with simple control flow, we chose the CDFG-based
approach to expose more parallelism. For code with more
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complex control (or wildly differing branch latencies), we can
always fall back to COCOMA to schedule it dynamically. This
is potentially even more powerful than separate DFGs, since
COCOMA does support speculative execution of conditionals
with different latencies, as well as early aborts of misspeculated
branches. However, these capabilities induce a significantly
higher hardware overhead.

Since we always incur the latency of the longest path
through a conditional, we can easily extend our microarchi-
tecture to fully pipelined execution by balancing the branch
latencies (inserting register stages into the shorter branch).
However, this approach becomes more complicated when
extended to loops, as now all loop back-edges in the CDFG
have to be balanced to the longest path through the loop
body. The length of this path determines the number of cycles
between successive iterations, also called the Initiation Interval
(II) of the loop. We could keep extending this straightfor-
ward balancing approach to nested loops, but would then be
faced with extremely large IIs (longest latency path through
all nested loop bodies), which would quickly obliterate any
performance gain we could hope for through pipelining. In
order to avoid this effect, we do not fully flatten the operations
of our hardware kernel into a single CDFG, but generate a
hierarchy based on the nested loop structure: Each loop will be
turned into a separate CDFG, with innermost loops executing
in a fully pipelined fashion, while outer loops are stalled until
inner loops complete. Note that this approach is amenable to
transformations such as loop fusion to reduce the number of
loops while increasing the number of operations within loops.
The latter could then profit from the increased parallelism
enabled by our per-loop CDFGs.

Our microarchitecture is not completely statically sched-
uled. Since we need to employ caches for efficient access to
the shared main memory, we have to handle VLOs. To this
end, we schedule memory operations for their expected latency
(which varies for the different ACS platforms), and stall the
entire computation if we detect violated latency constraints
at run-time (e.g., due to a cache miss). A small dynamically
scheduled controller, separate from the control FSM for the
statically scheduled CDFG, is responsible for handling these
occurrences. It is also able to deal correctly with multiple par-
allel latency constraint violations (e.g., separate cache misses
for parallel memory accesses). The same mechanism is used to
support VLOs as well as software service calls from hardware
(see Sec. III-F2).

F. Interface Synthesis
Interface synthesis deals with both software-to-hardware as

well as hardware-to-software interfaces.
1) Software-to-Hardware Interface: Using the #pragma

HARDWARE on/off directives, which we added to the clang
front-end (see Sec.III-D), we can mark arbitrary single-entry
regions within a function for execution as hardware acceler-
ators. The pragmas result in the creation of special marker
instructions at the region entry and all of its exits when the
clang generates LLVM-IR for the middle-end.

In the partitioning pass, we traverse the CFG in reverse
postorder, and collect the basic blocks beginning from the entry
marker until we reach an exit marker. If the markers are not at
the beginning of a basic block, their block is split accordingly.
Calls to other functions from within the marked blocks are



i n t f unc ( i n t op , char ∗X, i n t N) {
i n t j ;

#pragma HARDWARE on
f o r ( j = 0 ; j < N; j ++) {

char tmp = X[ j ] ;
i f ( op )

tmp ++;
e l s e

tmp−−;
X[ j ] = tmp ;

}
#pragma HARDWARE o f f

re turn j ;
}

Fig. 6. Sample function with partitioning directives
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exhaustively inlined 1.
We then leverage LLVM’s CodeExtractor utility class to

extract these blocks into a new hardware function. The SSA
property in the LLVM-IR makes it easy to find values that cross
the boundaries of the hardware part. Values originating from
outside the accelerator are passed as arguments to the hardware
function. Values that have uses outside of the accelerator
become “out” arguments that point to a stack slot written inside
of the hardware function.

Applied to the example function in Fig. 6, the CodeEx-
tractor will determine that the original function’s arguments
are used in the hardware accelerator, and that the value %j.0
(resulting from the source variable j) is alive after leaving
the accelerator. The hardware function (shown in Figure 9)
therefore has the signature func_hw(i32 %op, i8 %X, i32
%N, i32 %j.0.out), with the last argument being an out
argument.

2) Hardware-to-Software Interface: Our co-execution
model supports the call of software functions from the hard-

1If a call cannot be inlined, we declare the call site as a hardware-to-software
call (see Sec. III-F2)

ware accelerator (so-called software services). This can be
used to allow software co-execution for calls to functions that
cannot or should not be inlined into the hardware accelerator.
Another beneficial scenario is to replace long, but seldom
used operations with a software service, aiming to keep the
initiation interval of the common case short in the accelerator.
Fig. 8 shows this approach for speed-up the common case
of 5.b. If the accelerator and software service exchange data
only explicitly via passed variables (instead of arbitrary shared
memory locations), such calls have only very low overhead, as
the accelerator cache(s) need not be flushed to main memory
(see Fig. 7.a).

The extraction of a software service function is similar to
the extraction of the hardware function surrounding it: We
introduced the directives #pragma SOFTWARESERVICE on/off
in clang to declare which parts of the hardware function should
execute in software. Again, the function arguments represent
the values that are alive across the HW/SW boundaries. From
a scheduling perspective, the software services are considered
to be VLOs and halt the accelerator until control returns to
hardware (see Sec. III-E).

3) Accelerator Invocation Protocol: The normal control
flow between software and hardware is shown in Figure 7.a.
A dotted line denotes that, while the control has switched
from the software or hardware, the state of the registers is
maintained, so that execution can continue later. The hardware
function arguments and the addresses of global variables
used in the accelerator are passed in via registers (one for
each argument/address), which is denoted by an arrow in the
example.

At HW_start, control is transferred from the software to the
hardware, while the software maintains its current state. Once
the accelerator has finished, it raises an interrupt2, denoted
by HW_end. The values of out-arguments have been set by
the accelerator and are read from the associated registers.
Afterwards, the state of the hardware is reset to a known initial
state.

In the presence of software services, the protocol is ex-
tended as follows (see Fig. 7 b)): For a hardware-to-software
call, the accelerator writes the arguments of the software
service to registers. The hardware execution is halted and its
state is preserved. If necessary, a cache flush is issued (if the
called service cannot be proven to be free of memory reads).
The ID of the requested software service is passed along with
the interrupt. Software then reads the appropriate arguments
from the registers, and the service function is executed. On its
return, the service’s out-arguments are written to accelerator
registers. If the service cannot be proven to free of memory
writes, the accelerator’s cache(s) are invalidated and hardware
execution resumes.

G. Transforming LLVM IR to CDFGs
LLVM IR is an assembly-like intermediate representation

in static single assignment (SSA) form, organized as basic
blocks that form a CFG. Our CDFG is comprised of operation
nodes and edges modeling the dataflow between them. All
control flow is converted to conditional dataflow and predicated
operations, making our IR similar to the one used in the Garp
CC compiler [11]. In this section, we use the code of Fig. 9 and

2Note that we have significantly reduced IRQ processing latency in our
ACS [16].



entry:

 br label %for.cond

for.cond: 

 %j.0 = phi i32 [ 0, %entry ], [ %inc2, %for.inc ]

 %cmp = icmp slt i32 %j.0, %N

 br i1 %cmp, label %for.body, label %for.end.exitStub

T F

for.end.exitStub: 

 store i32 %j.0, i32* %j.0.out

 ret void

for.body: 

 %arrayidx = getelementptr inbounds i8* %X, i32 %j.0

 %0 = load i8* %arrayidx, align 1

 %tobool = icmp ne i32 %op, 0

 br i1 %tobool, label %if.then, label %if.else

T F

if.then: 

 %inc = add i8 %0, 1

 br label %if.end

if.else: 

 %dec = add i8 %0, -1

 br label %if.end

if.end: 

 %tmp.0 = phi i8 [ %inc, %if.then ], [ %dec, %if.else ]

 %arrayidx1 = getelementptr inbounds i8* %X, i32 %j.0

 store i8 %tmp.0, i8* %arrayidx1, align 1

 br label %for.inc

for.inc: 

 %inc2 = add nsw i32 %j.0, 1

 br label %for.cond

Fig. 9. CFG of the hardware function from Fig. 6
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its resulting CDFG in Fig. 10 as example for the transformation
process.

We construct a graph for each natural loop (as determined
by LLVM’s loop analysis), beginning with the most deeply
nested loops.

The first step is to perform a simple dataflow analysis
on the basic blocks. For each basic block, we calculate the
condition that controls its execution in the original program.
Such a condition is a propositional formula whose elements
are the condition values used by branch instructions. In the
example, we would, e.g., determine true for the entry block,
%cmp as the condition for the block for.body, and %cmp ∧¬
%tobool for if.else.

Then, all LLVM values and instructions are translated to
the appropriate operations in the CDFG while iterating over
the basic blocks of the current loop. The mapping of LLVM
values to CDFG operations is stored in a symbol table per
graph. Beyond nodes for common arithmetic and load/store
operations (1), our IR contains several special nodes.

Multiplexers are constructed for SSA Phi instructions and
come in two flavors: The first one is denoted by mux and is
used to model conditional dataflow resulting from branches
in the original program (2a). These operations have pairs of
inputs, specifically a data input and a one-hot predicate input.
Upon activation, the mux operation forwards the single data
input whose predicate input is true. Additional operations that
calculate the predicate value are constructed based on the
analyzed condition of the predecessor block referred to in the
phi instruction (2b). Note that in the example, the “!” symbol
represents a logical negation.

The second kind of multiplexer is used to model the flow
of values across loop iterations and is labeled as mux’ in the
example (3). The left input takes an initial value in the first
iteration. The right input is passed through the operation in all
subsequent iterations. This kind of node is also known as the
“θ” operation in dataflow representations [23]. In the example
CDFG, the two diagonal dashes indicate the boundary between
loop iterations.

Loop and SoftwareService nodes represent nested graphs.
Pairs of transfer nodes model the exchange of values from and
to nested graphs (4a), and into/out-of the accelerator (4b). If
a value contained in a different loop is used, the operation is
looked up from the corresponding graph’s symbol table and
connected by a pair of these transfer nodes.

The stateful operations (load, store, loop, software service)
have an additional predicate input that controls their execu-
tion (5). The operations calculating the predicate value are
constructed based on the analyzed condition of the containing
block or the loop’s header block, respectively. Special memory
dependency edges are inserted between load and store opera-
tions and nested loop nodes in case we cannot prove that they
are independent by means of LLVM’s alias analysis (6).

As our execution model facilitates loop pipelining, two
issues must be addressed: First, memory dependencies are
bidirectional. For the example, this implies that the read
operation cannot be scheduled before the store operation of the
previous iteration (inter-iteration RAW dependency). Second,
we support unstructured control statements in the original C
program, such as a return from within a nested loop. This
extends predicates at the current nesting level to include condi-
tion values from inner loops, which are exchanged analogously
to data values by inter-loop transfer nodes. Similar care must



void func2 ( unsigned char ∗X) {
# pragma HARDWARE on

f o r ( i n t j = 0 ; j < 9 ; j ++)
i f (X[ j ] == 0xFF )

break ;
# pragma HARDWARE o f f

}

lessmux 

mux 

add

1

0

9

load

add

eq

255

end

or

true

and

from outer

X

Fig. 11. Sample code and CDFG of a for loop requiring guard conditions.

be taken for loops with data-dependent exit conditions, such
as the example shown in Fig. 11: We have to ensure that
the stateful load of X[j] is only executed if the previous
iteration did not abort the loop due to X[j] == 0xFF. To this
end, execution of the load node is conditional not only on
the current iteration’s loop predicate, but also on the previous
iteration’s exit condition (shown in the dashed area of the
figure).

H. Hardware-Specific Optimizations
In addition to the machine-independent optimizations per-

formed by LLVM, we apply a number of hardware-specific
optimizations in the Nymble back-end:

1) Operator Chaining: Simple operations (e.g., adds, sub-
tracts, shifts, etc.) are so short that multiple of them may be
chained within a single clock cycle. However, since this opti-
mization relies on timing estimates for the different operators,
overly ambitious chaining may lead to a slow-down during
actual design implementation (map, place, route).

2) Memory Port Multiplexing: While the MARC II mem-
ory system (see Sec. III-C) supports distributed parallel caches,
actually using a separate cache for each individual static
access site in the program would be excessive. The number
of actual caches is limited by two measures: First, since only
a single of the hierarchical CDFGs for nested loops can be
active at the same time, distributed caches are shared among
different CDFGs. Second, a larger CDFG may contain so many
access sites that it is no longer economical to provide each of
them with a separate cache. As an area-performance trade-
off, we can set an upper bound on the number of distributed
caches (specific for the current target platform) and re-use
caches for multiple access sites within a single CDFG. This
is transparent to the datapath, as each access site is treated
as a VLO and dynamically scheduled (see Sec. III-E). The
datapath is restarted only if all required accesses have actually
been completed, regardless of their static scheduling.

3) Local Memory: In general, Nymble memory accesses
are cached to external DDR1/2/3-SDRAM memory (see Sec.
III-C). However, the system also supports automation for
directly using the on-chip BlockRAMs. This not only allows

further speed-ups, but also reduces area (since BlockRAMs
do not require the caching/coherency mechanisms). To this
end, the user can mark arrays for BlockRAM storage. The
compiler will then automatically create BlockRAM read and
write operations instead of cache ports for each array ac-
cess. Furthermore, since BlockRAMs on the target devices
(currently Xilinx Virtex 5 and 6) have only two ports, these
must be time-multiplexed if a CDFG has more accesses to the
array. The required multiplexing and scheduling logic will be
automatically created by the compiler.

Pointers present a more difficult problem: Once static
LLVM alias/“points-to” analysis has determined that a pointer
points only to a single BlockRAM-stored array, it will be
mapped to that BlockRAM too, using either an exclusive or
shared BlockRAM memory port. If a pointer points to multiple
BlockRAM-stored arrays, all of these arrays will be stored
in the same BlockRAM (start addresses are automatically
assigned by the compiler). Finally, if a pointer can point both
to main memory and to arrays for which on-chip storage has
been requested, the latter request is ignored and the array will
be held in main memory.

Note that the automation provided by Nymble extends to
localizing arrays that are shared between SPP and RCU: Once
Nymble determines that arrays are live between software and
hardware, specialized data-movement units are synthesized by
the compiler which, when the entering and exiting of the
accelerator, copy the contents of the local arrays from/to the
main memory shared with the SPP.

IV. EXPERIMENTAL EVALUATION
For evaluating the Nymble system, we examined the

CHStone benchmark suite [24]. We used the architecture
of the Xilinx ML507 prototyping board as the base of our
ACS (especially the memory system and SPP-RCU interface).
However, the results presented here were determined from
post-layout simulations, as the Virtex 5 FX70 device present on
the ML507 was too small for some of the larger benchmarks.
Our “virtual” ACS substitutes the larger FX200 FPGA, which
can easily hold all of the generated circuits. We performed true
hardware/software co-simulation, with the software parts of the
applications executing natively on the x86 simulation host and
communicating with the simulated RCU via shared memory.
The simulations do include exact cycle-accurate models for
memories and cache behavior.

TABLE II. HARDWARE PARTITIONS IN THE BENCHMARK PROGRAMS

Benchmark HW pragmas around... in loop

dfadd/mul/div float64 add/mul/div yes
mips do-while loop in main no
adpcm adpcm main no
gsm Gsm LPC Analysis no
motion motion vectors no
blowfish BF cfb64 encrypt yes
sha sha stream no

Pragma directives bracket the call sites of the actual bench-
mark routines, leaving initialization and the self test code to be
executed in software where possible (see Table II). In the cases
where the hardware region is in a loop, we accumulated the
cycle counts of all invocations including the respective cache
flushing phases.

Table III shows the cycle counts for accelerator execu-
tion, clock frequencies (post-placement), area requirements,



TABLE III. BENCHMARK RESULTS ON VIRTEX 5

Baseline Chaining

Benchmark Cycles Freq. [MHz] Slices BRAM RP muxed Cycles Freq. [MHz] Slices BRAM RP muxed
dfadd 5940 96.93 10758 90 1 17 4481 98.63 9475 99 2 15
dfmul 2366 87.14 9542 97 1 10 1770 95.62 8479 99 2 9
dfdiv 6762 99.89 18233 88 1 11 5925 98,92 17774 113 2 10
mips 53996 105.73 9385 93 1 41 42545 102.57 8791 99 2 28
adpcm 133003 72.73 20468 127 2 89 109714 66.97 19554 159 4 60
gsm 33973 81.18 15480 116 3 52 31553 79.63 15635 110 3 52
motion 1223 70.72 22742 215 3 68 1142 70,69 21055 233 4 57
blowfish 1845551 77.57 10221 98 2 86 1237477 87.07 10111 131 4 52
sha 737735 101.50 18043 112 1 22 555349 97.82 16917 133 2 18

RP = Number of read ports to the MARC2 controller muxed = Maximum number of memory accesses multiplexed to any read port

and memory system configuration (number of read and write
ports). For the memory system configuration, we also indicate
the maximum degree of time-multiplexing of each distributed
cache port. For the larger applications, only this multiplexing
allowed the accelerators to fit into the FX200T, a fully spatial
approach (one distributed cache port per access site) would not
have been feasible. However, the memory port multiplexing
reduces the clock rate. On the other hand, performance can
be gained for some applications by using chaining, which can
reduce cycle counts. Due to inaccuracies in the current Nymble
delay estimators, however, some chained circuits suffer from
a lowered clock frequency.

V. CONCLUSION AND FUTURE WORK
The Nymble compile flow is able to handle a wide spec-

trum of applications from the CHstone benchmark suite, reach-
ing from DSP over cryptography to an entire microprocessor,
and demonstrates the feasibility of fine-grained hardware/soft-
ware partitioning with automatic interface synthesis. However,
the flow does have significant potential for optimization, both
in the performance and area domains.

Details that will be addressed include both peephole issues,
such as sub-optimal control paths (e.g., wasted cycles between
computation and use of a predicate) and improved accuracy of
the chaining delay estimator, as well as system-level topics.
One example for the latter is the analysis performed to allow
selective cache flushes/invalidates when switching between
hardware/software execution modes, which currently is very
pessimistic. A more detailed analysis (e.g., combined with
per-function annotation of C library calls) could significantly
reduce the costly cache operations.
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