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ABSTRACT

We present a low-level infrastructure for use by high-
level language to hardware compiler back-ends. It consists
of the highly parameterizable, technology-independent mod-
ule library Modlib and the LMEM framework for localiz-
ing variables in fast on-chip memories. Modlib not only
supports all high-level language operators (including mem-
ory accesses), but also provides a wide spectrum of usage
modes: covering static and dynamic scheduling, specula-
tive predicated execution, pipeline balancing, and explicit
canceling of mis-speculated computations. We examine the
performance of the infrastructure for a number of automat-
ically compiled kernels, including an MD5 kernel that sig-
nificantly profits from using LMEM.

1. INTRODUCTION

Adaptive computing systems (ACS) combine a software-
programmable central processing unit (CPU) and a reconfig-
urable compute unit (RCU) to run compute-intense kernels
as hardware implementations on the RCU.

However, actual application development for an ACS re-
quires both hardware (HW) and software (SW) design skills
and, for the RCU, is often performed in dedicated HW de-
scription languages (HDL) at a low level. We have been
working on the COMRADE flow aiming to compile con-
ventional ANSI C programs into hybrid HW/SW solutions
[15].

When creating HW from C, a central issue is the map-
ping of language operators to actual HW units. Current
solutions range from a simple direct 1:1 mapping to HDL
operators to intermediate parametrized module generator li-
braries. Furthermore, beyond the C operator semantics, the
mapping to HW units also has to deal with issues such as
time (combinatorial delay, fixed or variable sequential la-
tency) and control interfaces for scheduling (e.g., static, dy-

namic; predicated; speculative; explicit cancellation of mis-
speculated operations [5] [8], etc.). Although not immedi-
ately obvious, memory accesses (pointer and array opera-
tors) also need to be covered.

In this paper, we present two low-level building blocks
of our approach: Modlib, a mostly technology-independent
general-purpose module library covering all C operators.
LMEM is an infrastructure supporting fast localized on-
chip memories providing the compiled RCUs with high-
bandwidth low-latency data access.

The specific contributions of this work are the highly
flexible Modlib library and the light-weight memory-
localization infrastructure LMEM. Modlib remains compet-
itive with more limited prior approaches such as GLACE
[25], even when generating dynamically scheduled modules.
Modlib can insert queues to achieve looser coupling within
the data paths, a feature will be examined in conjunction
with LMEM for accelerating the MD5 algorithm. The re-
sults compare favorably with some of the best manually op-
timized designs.

2. RELATED WORK

High-level language to HW compilers have widely varying
feature sets. In many cases, they concentrate on the efficient
translation of just a limited subset of the input language’s
feature set. For C, this might include only non-nested loops
with fixed bounds and step sizes, or no irregular control
flow (e.g., break, continue) in loops, only streaming access
to memory, etc. Such compilers generally make do with a
simple static scheduling of operators and often do not con-
sider variable-latency operations such as cached memory ac-
cesses. Beyond the scheduling, the compilers also differ in
the kind of operators and data types supported.

Some examples of this more limited approach (which,
despite its restrictions, can still yield sizable productivity
gains over pure RTL HDL designs) are: Celoxica Handel-
C [23], ROCCC [6], and SPARK [7], which do not sup-
port division at all. Synfora PICO Express [31], which
does not support floating point. CompiLogic C2Verilog [27]



(acquired by Synopsys) implements division and modulo
only as single-cycle combinatorial logic, possibly leading to
low operating frequencies. Floating point operators, while
present, have low throughput. UCLA xPilot [3] compiles
the C division operator directly into a HDL division opera-
tor, also leading to high-delay combinatorial HW.

Compilers using dynamic scheduling can better handle
irregular control flow (e.g., variable loop iteration intervals)
and variable latency operators (e.g., stall just operators data-
dependent on a cache-missed memory load instead of the en-
tire RCU). For the module library, this generally implies the
need for more sophisticated hand-shake protocols indicating
data availability and operator readiness. Examples of com-
pilers creating dynamically scheduled HW are CASH [2],
Molen [26], Xilinx CHiMPS [28], and COMRADE [15] [5]
[8]. While all of these tools use dynamic scheduling, they
differ widely in their actual HW generation: The Verilog
back-end of CASH does not support pipelined and floating
point operators. Molen creates FIFOs between its HW op-
erators (of which no details have been published). CHiMPS
first translates the C input into the intermediate representa-
tion CTL and then directly exports the required operators as
HDL code (operator internals have not been published).

Our own compiler COMRADE has been relying on the
GLACE library [25], which provides a very flexible bi-
directional interface [17] between compiler and module li-
brary: The compiler could not only request the genera-
tion of technology-optimized pre-placed netlists, but also re-
ceive information on area, throughput/latency/delay as well
as control protocols. However, despite the flexibility and
performance of GLACE modules, their development was a
painstaking manual process that had to be performed for
each new target technology. With improvements in auto-
matic synthesis and layout tools, this effort is no longer gen-
erally worthwhile (this will be further discussed in Sec. 7).
GLACE modules also lacked a standardized control inter-
face, instead describing the existing interface to the com-
piler and having it generate an appropriate micro-sequencer
[16]. In practice, the flexibility offered in this fashion was
never truly exploited and needlessly complicated the com-
piler back-end (which theoretically had to cope with arbi-
trarily complex control protocols).

None of the HW generation approaches discussed above
support as wide a spectrum of both operator functionality as
well as advanced features such as operator cancellation (mo-
tivated in the next Section). However, it is relatively sim-
ple to encapsulate existing generators in Modlib-conforming
wrappers. We have already demonstrated this with various
netlists created by the Xilinx CoreGen tool.

LMEM is our implementation of memory localization.
Similar to [30], it allows the user to explicitly request on-
chip storage of arrays. Then, using an approach similar
to [22], LMEM integrates all distributed memories into the

system memory map to make them accessible to the CPU.
We have refined upon the prior work by adding a dedicated
hardware unit for paging data between main and localized
memories. In Sec. 7, we will examine how the Modlib HW
operators interact with the high-bandwidth storage enabled
by the local memories in context of a real application.

3. SPECULATIVE PREDICATED EXECUTION

Since support for dynamic scheduling with predicated spec-
ulative execution is one of the main advances in Modlib over
GLACE, this section gives a brief overview of how a com-
piler can actually exploit these features. We will use our
COMRADE framework as an example.

The RCU HW kernels generated by COMRADE are
dynamically scheduled (to reach COMRADE’s aim of ef-
ficiently compiling even control-intensive irregular code).
Fundamentally, this is achieved by a classic data flow model
with activate tokens (ATs) indicating the presence of data
items on operator inputs. Control flow is modeled by op-
tionally predicating the execution of operators (shown by an
incoming control edge in Fig. 1). Speculative execution is
supported and occurs when data predecessors already have
ATs, but the control predecessor is not yet ready.
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if (i < n)

  a = x + y;

else

  a = x / y;
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Fig. 1. Speculative execution of alternative branches of an
if: (a) C source; (b) speculative predicated data flow.

For the sample code in Fig. 1(a), this is shown in Fig.
1(b). The multiplexer (mux) merges the two alternative data-
path branches, with the control condition (the less than op-
erator) allowing only one path’s AT to advance to the mux.
The mis-speculated result on the other branch has to be e-
liminated. COMRADE explicitly models this deletion of
data using cancel tokens (CTs) which erase ATs (and the as-
sociated data item) when they meet. Since COMRADE uses
dynamic scheduling, tokens must be buffered to keep execu-
tion of the different paths in sync. Modlib supports two such
mechanisms, both of which can be used by COMRADE.

In the static case, CTs wait for associated ATs at the
end of each alternative branch (see Fig. 2(a)). Modlib im-
plements this behavior by generating token buffers in the
predicated operators if requested by the compiler back-end.
Their use allows the datapath to compute ahead of the con-
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Fig. 2. Token flow for (a) static CTs and (b) dynamic CTs.

trol evaluations, e.g., to speculate across loop iterations.
Alternatively, CTs may be propagated in reverse data

flow direction to meet incoming ATs. In this dynamic
case, the token handshaking protocol becomes more com-
plex (e.g., AT and CT enter an operator simultaneously).
However, since the CTs are now also moving, they have a
greater potential to abort the execution of an already exe-
cuting operator whose result-to-be would be eliminated any-
way. Similarly, an idle operator in the mis-speculated branch
would not even be started and the CTs just passed upwards
to its data predecessors. We generalize both behaviors with
the term operation cancellation when scheduling using dy-
namic or static CTs. A more detailed discussion of the token
flow model would exceed the scope of this paper.

4. MODLIB

Implementation-wise, Modlib consists of technology-
independent Verilog modules, mostly containing RTL de-
scriptions. All modules provide a flexible universal interface
and are highly parameterized and thus suitable for a broad
range of HW compilers.

All ANSI-C operators, including 32-bit and 64-bit inte-
ger as well as floating point and type conversion operators
are supported. For compilers with advanced word-width
analysis capabilities, other widths may also be specified.
The library is easily extensible, both in terms of adding new
implementations for existing operators as well as new oper-
ators themselves. This also extends to wrapping externally
generated technology-dependent IP blocks in Modlib inter-
faces. For Xilinx devices, Modlib encapsulates optimized
division, modulo, floating-point and type-conversion gener-
ated by the CoreGen tool in this manner. Other target tech-
nologies could be treated in a similar fashion.

Beyond C-level operators, the library also contains prim-
itives required for datapath synthesis. These include the
buffer module nop, the multiplexer module mux and the con-
stant module const. For dynamic scheduling, special mod-
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Fig. 3. Modlib Module Interface

ules allow token combination (and, or) and token generation
(initial op, always op).

Modlib also wraps the interface from the HW kernel to
the rest of the system in a portable manner: I/O register mod-
ules inreg and outreg are automatically memory-mapped into
the CPU address space and allow data exchange under soft-
ware control. Similarly, the HW datapath can request soft-
ware intervention by instantiating and writing to an irqreg
module. Memory accesses are encapsulated in memread and
memwrite modules.

The parameters supported by the Modlib modules can
roughly be divided into three groups. The first affects the
operator function directly and encompasses the bit-width,
or signedness of data or the number of inputs and select
scheme (one-hot or encoded) of a multiplexer. The second
group deals with the buffering of data, allowing the inser-
tion of transparent queues or fixed-depth shift registers. The
third group controls token handling and can indicate static
or dynamic CTs and predication. In all cases, if a feature
is not required, it will not be generated in HW. Thus, Mod-
lib is also applicable for building simple statically scheduled
datapaths.

The main advantage of Modlib over its predecessors,
though, is a very flexible customizable control interface,
available regardless of the combinational or sequential na-
ture of an operator, its pipelineability, or its actual imple-
mentation (RTL or netlist). This allows Modlib to be used in
the wide spectrum of HW compilation strategies mentioned
in Sec. 1 and will be examined in greater detail next.

4.1. Full Module Interface

In addition to the customary clock, enable and reset signals,
the full Modlib interface (shown in Fig. 3) has zero or more
data inputs. For unary operators, this will always be the port
A, binary operators use A and B, n-ary operators (n > 2)
pack all inputs into a wider A port by concatenating their
bit-widths. Output data (if any) is available at the R port.

When all predecessors an operator is data- or memory-
dependent on have completed, asserting the START input
starts the operator. In a dynamically scheduled system,
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START could, e.g., be connected to an and operator combin-
ing all ATs incoming from data and memory predecessors.
START ACK will go high to acknowledge the started state.
Note that since only data and memory dependences are con-
sidered here, the operator may be started speculatively.

Satisfied control dependences are handled similarly us-
ing the START CTRL and CANCEL inputs. Assertion of
START CTRL indicates a satisfied control condition. The op-
erator is now executing non-speculatively (if it is already
running) or will be started non-speculatively once the data
and memory dependences are satisfied. START CTRL ACK ac-
knowledges the assertion of START CTRL in the usual man-
ner.

Asserting the CANCEL input indicates an unsatisfied con-
trol condition (expressed as a CT) and has multiple possible
effects: If it is asserted when an operator is already exe-
cuting speculatively, it terminates the operator without a re-
sult being output. If the operator has already completed and
buffered a result, that result is discarded. If the operator has
not yet been started, its data predecessors can be informed
that their results will no longer be required by the canceled
operator when it asserts the CANCEL STATE output. If the
canceled operator was the only successor of its predeces-
sors, their operation can also be terminated or be prevented
from even starting. The predecessors’ acceptance of the CT
is indicated by all of them asserting (via an and operator)
the CANCEL STATE ACK input. Only then is the CT removed
from the current operator, otherwise it stays buffered. This
will also be the case if the compiler back-end requests a HW
kernel without the backward propagation of CTs (dynamic
CTs), instead keeping them stationary in the canceled opera-
tor and waiting for incoming ATs to extinguish (static CTs).
As shown in Sec. 7, dynamic CTs can lead to shorter execu-
tion times, but static CTs requires less HW area. An asserted
CANCEL ACK output indicates that the operator has accepted
the incoming CT.

The operator will assert the RESULT READY output to in-
dicate the availability of a result on the R output, in effect
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Fig. 5. Experimental Target Platform Virtex-5

creating an AT. The corresponding input RESULT ACK indi-
cates that all data successors have consumed the result (an
and operator combining their START ACK outputs) and it no
longer needs to be buffered in the operator.

In nested control structures, canceled condition opera-
tors propagate the CT to nested conditions in the hierar-
chy by asserting the CANCEL STATE CTRL output, acknowl-
edged as usual using CANCEL STATE CTRL ACK. This allows
the cancellation of many levels of speculative execution at
once when a high-level condition has been evaluated [8].

Modules interfacing with the rest of the system (CPU,
shared memories) of course have other, platform-specific
ports connecting it to central processor buses, interrupt, or
memory controllers.

4.2. Module-internal Structure

Fig. 4 gives an overview over some of the internal struc-
tures of a Modlib module wrapper. The intrinsic operation
(e.g., an RTL operator or embedded IP block) consumes the
incoming operands. Its output can optionally be buffered
in a transparent output queue to decouple the execution of
the module from stalled data successors. Also optionally,
the output can be delayed for a fixed number of cycles in a
configurable shift register. This can be used both for balanc-
ing pipeline paths with unequal latency as well as enabling
higher clock-frequency operation by retiming in the logic
synthesis tool. Again, if these features are not requested
by the user (the compiler back-end), they will be optimized
away in synthesis.



5. TARGET ARCHITECTURE

Modlib has so far been used on target platforms with Xilinx
Virtex II Pro and 5FX FPGAs. The evaluation in Sec. 7 is
based on experiments on the 5FX-based Xilinx ML507 de-
velopment board. For purposes of this discussion, the archi-
tecture (shown in Fig. 5) consists mainly of the HW kernel,
the CPU (PPC440), and shared memories (both BlockRAM
on- and DDR2-SDRAM off-chip).

All accesses to the external memory are performed
through the flexible MARC interface [19], attached by the
high-bandwidth low-latency FastLane+ back-end [20] to the
SDRAM. MARC provides the HW kernel with multiple
memory ports, offering both caches for efficient irregular,
and buffered streams for efficient regular access patterns.
The HW kernel itself consists of the instantiated Modlib
modules for the operators as well as a controller (we ex-
amine different control schemes in Sec. 7).

The platform runs under a full-scale Linux operating
system. Since the HW kernel has full master-mode access
to the SDRAM main memory, it just needs to receive a few
words of parameter data from the CPU under software con-
trol and then handles memory data on its own. It indicates
the completion of the operation (or requests a service such as
memory allocation from the CPU) using the FastPath low-
latency signaling scheme [20].

To improve memory bandwidth and latency even fur-
ther, the architecture also integrates FPGA on-chip mem-
ory shared between CPU and HW kernel. The CPU can ex-
plicitly request the high-speed paging of data between these
on-chip memories and the main memory, also using a dedi-
cated HW block (Local Paging Unit, LPU). This infrastruc-
ture will be used to make localized memories available to
the compile flow and is discussed in the next Section.

6. MEMORY LOCALIZATION

Prior to this work, COMRADE-generated HW kernels re-
lied solely on MARC/FastLane+ for high-performance ac-
cess to system memory (shared with the processor). Up to
four simultaneous memory accesses can be handled by this
setup, which completely exploits the physical bandwidth of
the used memory chips. However, aggressive loop paral-
lelization and pipelining techniques often require even more
bandwidth to achieve the optimum initiation intervals.

Memory localization works around the bottleneck of a
single shared memory by providing the HW kernel with par-
allel accesses to independent memories (see Sec. 5 for the
actual HW architecture). These on-chip memories, while
small compared to the main memory, can be accessed by the
HW kernel with a much larger degree of parallelism. The
processor can also access these on-chip memories, both us-
ing software-programmed reads/writes, as well as initiating

bulk data transfers between them and from/to main memory
using the Local Paging Unit (LPU).

COMRADE is exploiting these capabilities using the
LMEM subsystem. As shown in Sec. 7, the speed-ups for
a non-trivial sample application are significant. The LMEM
prototype implemented for this work currently has three lim-
itations: First, the programmer has to indicate in the source
program which data structures (specifically, arrays) are to be
localized in the on-chip memories. Second, at most one read
and one write access in the code is allowed per localized
array. Third, the LPU is explicitly programmed to initial-
ize the localized memories from main memory before start-
ing the HW kernel, and to write back modified data after it
has completed. Future work will thus be directed at mak-
ing LMEM more intelligent and automatically perform the
necessary analyses and code generation.

7. EXPERIMENTAL RESULTS

A. Performance Overview
We will first compare Modlib with both static and dy-

namic CTs to GLACE using six benchmarks compiled from
C. GfMultiply is part the Pegwit elliptic curve cryptography
application. susan performs edge detection on gray scale
images, sha 3 realizes the Secure Hash Algorithm. They
are part of the MiBench [24] and CHStone [10] suites, re-
spectively. fcdf22 2 computes a 2-D wavelet transform for
image compression [18]. To test specific features, we use
the synthetic kernels memcpy 8 (array copy, unrolled x8)
and vecmult 10 (vector multiplication, unrolled x10).

For each the examples, Tab. 1 shows the simulated ex-
ecution time, area requirements (shown separately for the
required control logic) as well as post-P&R maximum clock
speeds. The synthesis and mapping tools used were Syn-
opsys Synplify Premier DP 9.6.2 and Xilinx ISE 11.4. All
kernels easily achieve the default system clock frequency of
100 MHz of our ML507-based platform. Furthermore, note
that despite its limited portability and flexibility, versions
of the kernel using hand-optimized GLACE modules could
achieve maximum clock speeds on average 8.8% faster than
those of the fastest Modlib configuration tested (using static
CTs). However, since the lower clock speed of the rest of
the system components (CPU, PCI and memory controller,
etc.) sets an upper bound on the kernel clock speed, the
speed advantage of GLACE alone is not relevant when con-
sidering the system-level performance. Area-wise, Modlib
modules (with static CTs) are in average 6.7% smaller than
their GLACE counterparts since inter-module synthesis can
take greater advantage of boundary optimization than possi-
ble on the embedded structural netlists.

For comparing the different sequencing schemes, we
now consider the control overhead of the kernels separately
(disregarding the datapath). Going to dynamic CTs, control



Kernel Runtime FPGA Area Max. Freq. (MHz)
#Cycles Total #Slices Sequencer #Slices

dCT sCT GL dCT sCT GL dCT sCT GL dCT sCT GL
gfMultiply 1688 1688 1656 972 775 1106 162 98 241 157 174 131
susan 453 464 454 3462 2442 3496 651 350 498 107 108 110
sha 3 501 501 537 1208 897 911 180 72 132 131 157 183
fcdf22 2 1591 1591 1591 1268 975 968 198 105 134 132 146 178
memcpy 8 380 380 378 1621 1276 1104 214 123 141 149 147 200
vecmult 10 247 247 245 2249 2110 2009 340 203 319 118 119 120

Table 1. Kernel runtime, area consumption and maximum frequencies for Modlib with dynamic CTs (dCT), static CTs (sCT),
and GLACE (GL) on a Virtex-5 FX.

area increases on average by 23% over the GLACE version.
However, the dynamic CT-sequencer in Modlib is signifi-
cantly more powerful and decouples the operators of con-
verging data flows (see next Section). Using static CTs in
Modlib, the controller area shrinks by 34% compared to
GLACE, while still allowing the looser coupling. When di-
rectly comparing static and dynamic CT-controllers in Mod-
lib, the first are on average 21% smaller and 7% faster (in
terms of max. clock speed).

For these examples, the different techniques take very
similar numbers of clock cycles to execute. We will consider
the impact of the different techniques for variable initiation
intervals (due to different length control paths, Sec. 7.B )
and loosely coupled datapaths (Sec. 7.C) next.

B. Dynamic CTs vs. Static CTs
Dynamic CTs can speed-up execution over static CTs

when a computation has converging paths of differing
lengths (e.g., very short if, very long else). Such an oc-
currence can be induced e.g., by nested ifs, irregular con-
trol break/continue, or by a high-latency operator in one
of the parallel paths. While this could be compensated for
by balancing all paths, it quickly becomes inefficient if there
are many such irregularities (common in general-purpose C
code): All loop initiation intervals would be set to the length
of the longest path. Fig. 6 gives an example, using a slow
divider with 34 cycles of latency in the else path.

s

i

LESS THAN
for (i=0; i<6; ++i)
  if (i != 5) {
    s += i;
  } else {
    a = i + 10;
    b = a*90+1+i;
    c = b / 89;
    s += c;
  }

data edge control edge

(a) (b)

==1 ==0

s

b

i 6

89

ADD

DIV

ADD

MULTIPLEXER

Fig. 6. Mismatched length in converging paths: (a) C
source; (b) hardware.

When using dynamic CTs, the divider is executed only

for i = 5, and canceled in all prior iterations, leading to a
run-time of 70 cycles for the entire loop as a hardware ker-
nel. Static CTs, while allowing smaller and faster modules,
also cancel mis-speculated computations less aggressively
(they remain stationary at mux inputs). The mux becomes
available for new data only if prior results incoming on all
of its input branches have either been selected or canceled.
In this case, the total runtime would increase to 101 cycles,
a slow-down by 44% over dynamic CTs. Since Modlib sup-
ports both styles of cancelling, dynamic CTs can be used
just where advantageous, with static CTs being the default
for low-complexity code.

C. Transparent Output Queues
Since Modlib contains variable-latency operators (e.g.,

cached memory accesses), traditional static pipeline bal-
ancing methods cannot always be used. Instead, Modlib
operators can be parametrized to insert transparent queues
into their output to allow for a looser coupling between op-
erators. These queues can be very efficiently synthesized
onto the primitive shift register blocks on most modern FP-
GAs. As a simple example for their impact: In an image
processing application (contrast-stretching), even enabling
very shallow queues of just 16 entries alleviates the effect of
cache misses by allowing only part of the datapath to stall,
leading to a 17% speed-up (116 vs. 136 cycles per loop iter-
ation).

D. Combining Modlib and LMEM
To study the various techniques in context of a larger

hardware kernel, we examine the MD5 message digest al-
gorithm [29]. In brief, MD5 handles a message in 512b
chunks. Each chunk is then processed in four rounds, each
having 16 computation steps. Due to the block-chained na-
ture of the algorithm, blocks from a single message can only
be processed sequentially. However, if multiple independent
messages have to be processed (e.g., for a cryptanalytic at-
tack), parallelism, e.g., in the form of pipelining could be
used to improve throughput, which can be estimated using
Eq. 7.1.

Throughput [Mbps] :=
512b · Frequency [MHz]

#Cyc. per Chunk
(7.1)
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We use COMRADE to compile the processing of the
512b chunks into an accelerated hardware kernel, using loop
unrolling to create 64 function blocks, each containing the
appropriate three-cycle sub-pipeline for computing one of
the intermediate hash values a through d for one of the 16
32b words making up the entire message. Fig. 7 illustrates
the generated architecture.

When using pipelining to process different messages in
parallel, the datapath requires access to 16 32b words of data
each clock cycle for optimum throughput. Since the main
memory on the ML507 platform cannot deliver at this rate,
we advise COMRADE to localize the messages in fast on-
chip BlockRAM using the LMEM infrastructure. Specifi-
cally, we request on-chip storage for up to 1024 messages.
Since the corresponding hashes are also localized in Block-
RAMs, we require a total of 20 BlockRAMs. BlockRAMs
are dual-ported, we can thus run the Local Paging Unit in
parallel to the hardware kernel to keep the BlockRAMs filled
with new messages. We have also enabled transparent out-
put queues in the modules to improve throughput.

The speed-up of using queues over an implementation
without them is Sk = n·k

3·k+n−3 , where k is the number of
messages to process, n = 64·3 = 192 is the pipeline latency
and 3 is the minimum initiation interval of the pipeline.
The selected queue depth q is an upper bound for k, un-
til q ≥ n (the buffers are deep enough to hold the entire
pipeline length). Then, an arbitrary number of messages can
be processed pipeline-parallel without a drop in through-
put. Of course, throughput would also drop if the LPU takes
longer to refill the localized memories with k new messages
than the kernel requires to process a set of k messages.

Tab. 2 shows the achievable throughput for different k.
Note that we have scaled q to keep up with k. While the

increasing complexity of the queues leads to a drop in clock
speed, the throughput steadily improves. Furthermore, we
need an additional 14 cycles of pipeline latency for HW/SW
communication, increasing the total latency to 206 cycles.
Also, for this kernel architecture, increasing k is not the only
way to run the pipeline at full throughput. Once k exceeds
64 (the number of function blocks), successive chunks of
the same message could be fed to the pipeline at full speed
(since the loop carried data dependence on the prior chunk’s
intermediate hash values is now satisfied). This is also
known as C-slow execution [21], here with C = k = 64.

When decreasing q below the pipeline length, execution
times will increase dramatically, with a corresponding drop
in throughput. As seen in Fig. 8, the slow-down for k =
1024 would be 1.97 for q = 32, and 62.28 for q = 0 (not
using any queues).
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Tab. 2 compares the performance of a number of
COMRADE-generated hardware kernels for Modlib with
dynamic and static CTs, for strictly sequential or pipelined
operation, and with different queue depths. Unfortunately,
only the kernels with a queue depth of 0 fit into our tar-
get FPGA (the Virtex-5 XC5VFX70T), which offers up to
11,200 slices. For greater queue depths up to 128, the
largest available Virtex-5 VFX FPGA (the XC5VFX200T)
with 30,720 slices would suffice. Although the largest kernel
(having a queue depth of 192) does not require more slices in
total than offered by the XC5VFX200T, the mapping report
here shows an overmapping of distributed memory LUTs
(36,480 available, 44,423 required). However, shortage on
FPGA area will not be problem in the near future: the exist-
ing Virtex-6 and the announced Virtex-7 FPGAs offer up to
120k and 300k slices, respectively. To be able to compare
our results on a Virtex-5 basis, we show estimated Virtex-5
values for queue depth 192. The number of slices presented
is estimated from the LUT and FF requirements as shown in
the interim mapping report; for this estimation we assume
the same packing density obtained for queue depth 128. We
further assume the frequency to match the queue depth 128
value of 100 MHz.

Interpreting the results shown in Tab. 2, the very regu-
lar MD5 algorithm does not profit from dynamic CTs (here,



Design Device #Mess- Runtime Speed- Queue Freq. #Slices Lat- Throughput Throughput
ages [Cycles] up Sk Size [MHz] [V5 eqv.] ency [Mbps] [Mbps/Slice]

dyn. CT sequential Virtex-5 1 205 1.0 0 120 10,204 192 300 0.03
dyn. CT pipelined Virtex-5 16 247 13.0 16 100 19,689 192 3,317 0.17
static CT sequential Virtex-5 1 205 1.0 0 134 8,584 192 335 0.04
static CT pipelined Virtex-5 16 251 13.0 16 120 15,491 192 3,916 0.25
static CT pipelined Virtex-5 32 299 21.6 32 119 15,946 192 6,521 0.41
static CT pipelined Virtex-5 64 395 32.3 64 120 16,752 192 9,955 0.59
static CT pipelined Virtex-5 128 587 42.9 128 100 20,266 192 11,165 0.55
static CT pipelined Virtex-5 1,024 3,275 60.3 192 100∗ 26,976∗ 192 16,009∗ 0.59∗

MD5 32 u pipe [32] Stratix II 32 65 16.7 - 66 11,957 34 32,035 2.68
Heliontech IP [11] Virtex-5 1 66 - - 174 279 66 1,349 4.84

Table 2. MD5 HW Kernel performance on Virtex-5 and performance comparison. ∗Values for queue size 192 are estimated.

they just increase area and slow down the clock speed).
But dynamic scheduling with static CTs is competitive with
carefully hand-optimized designs for MD5 [32] [13] [4] [14]
[11]. A MD5 SW implementation on a 3 GHz Pentium
4 processor achieved 165 Mbps and was outperformed by
all investigated HW implementations at much lower fre-
quency. For brevity, we just show the designs with maxi-
mum throughput (32,035 Mbps) and most efficient area use
(4.84 Mbps/slice). Altera Stratix II ALMs were converted
to Virtex-5 slices using the formulae in [1].

Our own best automatically compiled kernel achieves
16,009 Mbps with an area efficiency of 0.59 Mbps/slice.
In these terms, we achieve 12 % of the performance of the
hand-optimized Heliontech design. Regarding the through-
put, our best kernel achieves 50 % of the performance of the
hand-optimized MD5 32 u pipe design.

8. CONCLUSION AND FUTURE WORK

We examined some of the low-level infrastructure for high-
level language to HW/SW co-compilers in context of the
COMRADE framework. Modlib, which is publically avail-
able at [9], has proven quite successful in being much eas-
ier to maintain while offering far greater flexibility than our
previous approach of GLACE. It can achieve a similar qual-
ity of results (when restricted to a similar feature set), but
is much more adaptable to both to different scheduling and
execution models, as well as different target technologies.
Modlib is currently used not only in C to HW compilation,
but also in a compiler generating deep computing pipelines
for Geometrical Algebra computations [12].

The new LMEM infrastructure for memory localization
has also been successful in obtaining first experimental re-
sults on possible speedups on our target platform. The
compiled MD5 accelerator has performance comparable to
highly optimized manual implementations. Future work will
focus on easing the use of LMEM by automating both the
analysis as well as synchronization code generation steps
(programming the LPU).
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