
Experiences with the Framework Environment

 Cadence Skill/IL

Andreas Koch, Ulrich Golze, Michael Schäfers

Technische Universität Braunschweig

Abteilung Entwurf integrierter Schaltungen (E.I.S.)

W-3300 Braunschweig, Germany

Abstract

This paper describes the experiences made employing Cadence's Skill/IL

Framework extension language for both educational and research purposes.

While the language and its facilities were examined in detail in order to

evaluate it and to create a comprehensive documentation, it was also used to

develop tools simplifying the use of the Design Framework for beginning

students. An introductory course paper for programmers learning Skill/IL has

been prepared [1].

1 Introduction

The IL language and Skill library are used to
tie the diverse components of the Cadence
Design Framework for VLSI design together,
to automate recurring design tasks and to
customize the work environment for the
individual designer. IL is an interpretive
language based upon C and Lisp. Many of its
control constructs are borrowed from C, but
the primary data structures and the dynamic
concept of the language have their roots in
Lisp. We report on a comparative analysis of
the relative strengths and weaknesses of the
language as well as the creation of compre-
hensive and easily accessible documentation
for the prospective programmer [1].

This documentation is not designed as a
reference manual, but as an introduction to the
language and its facilities for the intermediate
to advanced programmer. It has been written

putting special emphasis on concepts such as
dynamic typing, dynamic scoping, run-time
creation of executable code and other aspects
which are not well known to a developer
versed only in traditional procedural pro-
gramming languages.

2 Practical Applications of Skill/IL

In the course of evaluating Skill/IL and
applying it to the VLSI semi-custom design
labs offered by the department E.I.S., nu-
merous programs have been written, ranging
in complexity from a few to a few hundred
lines of code. The programs described in the
following address practical problems dis-
covered while observing how students work
with the Design Framework in order to solve
the exercises required by the course.

2.1 Verification of File Paths - checkPath

One of the most common problems en-
countered when preparing a completed design
for fabrication is the use of absolute path
names to specify master cells. Since the di-
rectory layout and disk organization at the
foundry are almost certainly different from the
one used while entering the design, absolute
path names cannot be used to identify
component cells in a hierarchical design.

checkPath recursively checks all
levels of a design for the occurence of
absolute path names. Any instances on the
current design level containing such names are
highlighted in the GraphicsEditor, instances
on deeper levels in the hierarchy are identified
by listing a logical path through the hierarchy
to the cell in question. In order to eliminate
repeated occurences of the same error
message, the tool keeps track of the cells
already checked. After each custom (non-
library) instance in the current hierarchy level
is checked, it is queried, if a schematic master
representation is available for it. If one exists,
then this representation is added to the list of
cells to check.

2.2 Simple Hierarchical Netlister-listNets

Another tool used successfully is a very sim-
ple hierarchical netlister. This program was
originally developed only to become more fa-
miliar with the structures of the design data-
base. However, it proved its usefulness al-
most immediately by discovering incorrectly
routed ground nets in a design that was
scheduled to be fabricated. The program has
been used since to examine wiring specifics in
student designs which were difficult to trace
in the schematic representation. Its output
consists of the instance whose nets are cur-

rently listed, the net name, its type, its signals
and the actual and formal terminals connected
to it together with their specifics such as
name, I/O direction etc. This tool also tries to
avoid unnecessary repetitions in its output by
marking cells already listed.

2.3 Automating Place and Route - autoPR

The major and most useful program devel-
oped while evaluating Skill/IL is concerned
with the automation of the place and route
process.

This multi-step sequence of operations
transforms a schematic into a layout repre-
sentation. Apart from being tedious, the man-
ual place and route process is also highly error
prone, especially in a training environment.
Our experiences range from incorrectly routed
designs caused by forgotten global net
routings to corrupted data due to incorrectly
specified representation types. In order to
lighten the burden for students as well as for
teaching assistants, a tool was developed
which simplifies the process considerably.

Only a single command has to be typed
in order to initiate the semi-automatic se-
quencing of place and route operations. All
required phases are executed in the correct or-
der using appropriate parameters. The user
only has to indicate his intent to continue ex-
ecution by dismissing numerous status reports
and confirmers presented during the tool run.
Unfortunately, the appearance of these
interactive elements prevents a fully automated
run. Tool execution is suspended until the
user responds to the requests. This tool highly
reduces the possibility of human error during
the place and route process. Since autoPR

uses the openSDA interface to access non-
Skill functionality provided by the Frame-

work, it was very useful in evaluating this
facility (see next section).

A companion utility to autoPR calcu-
lates the estimated chip area of the design after
placement and routing by retrieving boundary
information from the design database and
presenting it in an easily readable manner.

3 Evaluation Results

It is in the nature of things that many powerful
features offered by the system are taken for
granted and are not consciously appreciated.
Errors and misfeatures, however, are imme-
diately noted. This should be remembered if
the following criticism seems overly harsh.

The creation of the introductory docu-
mentation brought disappointments as well as
pleasant surprises. While desirable features
seem to be missing, other language capabili-
ties are unfortunately underrated and hidden in
the standard documentation. This includes
run-time creation of executable code and de-
bugging facilities. Without prior knowledge
of symbolic programming languages such as
Lisp, the programmer is sure to miss many of
its finer points.

3.1 Interpretive Nature

The interpretive nature of Skill/IL facilitates an
incremental style of development, since the
effects of program changes can be immedi-
ately observed without going through a
lengthy compile-link cycle. This also enables
a designer to interactively create short, spe-
cialized "one-shot programs" to simplify the
current design task.

3.2 Syntax

Skill/IL syntax is easy to learn and to use. The
language is easily accessible to CAD pro-

grammers. This is achieved by hiding the un-
derlying Lisp interpreter by a parser able to
understand a dialect based on C, a language
most prospective users are familiar with. The
application of Skill/IL as the interactive com-
mand language of the Cadence Design
Framework profits from the short, concise
commands unburdened by "syntactic sugar".

3.3 Dynamic Typing and Scoping

Dynamic typing and scoping combined with
automatic garbage collection, also provided by
the Skill/IL Lisp core, eliminate the need for
many "administrative" operations such as the
explicit declaration of variable types, scopes
and memory organization. Since uncon-
strained use of these features leads to a higher
risk of run-time errors, Skill/IL offers type
checking primitives that can be used to verify
type integrity on critical points during pro-
gram execution. For example, Skill/IL func-
tions can check their actual parameters against
an argument template every time they are cal-
led. The availability of type information at
run-time also makes the design of overloaded
functions possible.

3.4 Interprocess Communication

The Skill/IL model for interprocess communi-
cation simplifies the integration of existing
tools. While not using the more powerful OS-
native IPC facilities (such as Unix shared
memory and message queues), the method
used by Skill/IL has the advantage that almost
any existing tool that accepts or produces in-
formation using character streams (either from
files or interactively) can be embedded in the
Framework without necessitating changes in
the tool itself.

3.5 User Interface

The Framework user interface is accessible to
custom programs using Skill functions. While
this user interface is not state of the art
(neither in handling nor in appearance), it
satisfies the requirements of an interactive
session. The Skill programmer can choose
from a variety of user interface components in
order to present and obtain information in the
most appropriate and user-friendly manner.

3.6 Design Database Access

Skill/IL provides transparent access to infor-
mation stored in the system-wide design da-
tabase. There is no need for specialized data
definition/manipulation or query languages,
all operations take place within Skill/IL by
using functions and operators.

3.7 Documentation

Skill/IL suffers from an incomplete and faulty
documentation which severely complicates
working with the system [2]. Many of the
language capabilities are not covered. For ex-
ample, the creation of relations between ob-
jects in the design database using Groups as
well as the Skill/Framework interface using
openSDA remain undocumented. Even if
documentation is provided, it often contains
errors of a severity exceeding simple typos.
Function descriptions are simply incorrect or
contain an insufficient amount of information.
In many cases, function effects can only be
determined by trial and error.

3.8 Combination of C and Lisp

The combination of C and Lisp can sometimes
lead to undesired results. The IL function

getchar , for example, has a totally different
effect than the C function of the same name.

3.9 Run-Time Modification of Code

While IL has the capability to retrieve and
modify the definition of existing functions at
run-time, its practical use is hampered by the
fact that the majority of Framework-defined
functions is write protected. This makes the
customization of existing functions using
"head" and "tail patching" impossible.

This restriction gains an even greater
importance when considering that much of the
Framework functionality exists only in the
form of openSDA services. The granularity
of these services is very coarse, they are often
not optimally suited to solve a given problem.

An example is the program for semi-
automatically performing the place and route
process. This program controls the process on
its own. However, a human user must still
intervene from time to time to close status re-
port windows whose display brings the au-
tomatic execution to a grinding halt. The in-
formation presented in these windows is often
of no interest to the average user. If the single
steps of the place and route process were a-
vailable as "pure" finely structured IL rou-
tines, these unnecessary interruptions could
be easily avoided. By calling the sufficiently
specialized functions, the process could run
uninterrupted. Only when an error occured,
the user would have to intervene.

3.10 Error Checking

Error checking is also an aspect that suffers
from the use of openSDA services as Frame-
work interface. Since this function does not
provide meaningful status values, it is im-
possible to verify the successful completion of

an intended operation. Thus, a Skill/IL pro-
gram cannot recognize and act upon an error
status occuring during the execution of an
openSDA service. Inconsistently, not all of
the operations necessary for the place and
route process are provided as openSDA ser-
vices, some exist as "pure" IL functions. This
combination of two different interfaces can
increase program complexity and decrease
program legibility.

3.11 Debugging

Debugging capabilities for IL programs are
adequate but not up to date. After considering
that especially Lisp based environments have
a long history of advanced graphic interactive
debugging tools, an improvement of the IL
facilities seems in order.

3.12 Run-Time Efficiency

In view of the increasing use of Skill/IL for
the implementation of larger programs, the
availability of a compiler would be desirable.
After interactively developing and testing a
program, the final version could be compiled
for run-time efficiency.

3.13 String Handling

Skill/IL internal string handling is somewhat
disappointing. While almost all C functions
are available, Cadence discourages the use of
strings due to memory management difficul-
ties. This is no problem for programmers fa-
miliar with IL or Lisp, since equivalent func-
tionality is provided by symbol operations.
However, to better accomodate IL novices fa-
miliar with C in general and the extensive use
of strings in particular, less restrictive string
handling in IL would be useful.

3.14 Base Language

Also, the IL base language itself has room for
improvement. Examples include a more flexi-
ble for -statement (able to decrement and use
steps different from one) as well as extending
the operations for function definitions. Speci-
fically, the extension of argument templates to
cover optional and keyword parameters could
improve program robustness.

3.15 Design Database Capabilities

Apart from reliability problems, the single
greatest weakness of the system are the ma-
nipulation capabilities for the design database.
While dbAccess internally does have a rich
repertoire of access and modification func-
tions, the majority of these is not available to
the programmer. When one of these functions
is called, the system responds with an "un-
defined function" error message. An example
for some restrictions caused by this policy is
that dbAccess is able to query a signal for
global scope, but unable to create a global
signal using public functions, since the ap-
propriate routines are not callable by the pro-
grammer. The implementation of the class
hierarchy of the design database schema is in-
consistent. For example, rectangles have at-
tributes that are meaningful only for arcs. A
consistently object-oriented approach to in-
heritance would have avoided these discre-
pancies.

3.16 Further Remarks

The whole system is not particularly robust.
Many functions do not perform sufficient
checks on their actual parameters. When con-
fronted with inappropriate parameters, the
range of possible system responses is wide.
In the best case, functions produce unusable

results, such as invisible arcs or unreadable
labels. In the worst case, the whole Design
Framework terminates abnormally. Even if a
function checks its parameters and discovers
an invalid value, the program reacts unpre-
dictably. While almost all Skill/IL functions
are documented to return an error status as
function result, many functions abort program
execution immediately upon encountering an
invalid parameter. This can lead to inconsis-
tencies.

An example for this behaviour are the
functions dealing with the movement, deletion
and copying of objects. These functions ac-
cept a list of objects to be processed as a pa-
rameter. They handle these lists sequentially,
one object at a time. If an invalid object is
contained in the middle of such a list, the
functions terminate immediately, leaving the
design in an undefined state. Those objects
preceding the invalid object in the list were
processed, those following were not. Even if
a function does not terminate the program on
error, the return status can be unreliable, too.
The property function, for example, re-
turns t (no error), even if the operation failed.

Aside from these problems caused by
inappropriate parameters, some functions
cause unexpected effects even when operating
with valid arguments. An example for this
behavior is the function doughnutSlice ,
which, when passed a small (but legal) radius
as parameter, forces the unsuspecting user at
run-time to manually increase the global
#SIDES property.

These criticisms are rather broad in na-
ture and concern wide areas of the Design
Framework. Apart from these general com-
ments, numerous individual problems exist
concerning single functions. An example for
such a problem are the errors in the distance

calculations of getNeighbor . Considering
todays state of software technology, however,
insufficiencies of this type seem to be un-
avoidable in a program as complex as the
Design Framework.

4 Conclusion

Skill/IL conceptually provides powerful and
flexible tools for extending and automating the
framework. Many of its weaknesses can be
traced to programming errors during its im-
plementation. A careful examination of the
Design Framework's Skill/IL component
could be used to eliminate most of these errors
without making fundamental changes in the
basic system design. The language capabilities
could easily be enhanced by making more of
the internal functions available to the pro-
grammer and documenting them appropriate-
ly.

Bibliography

[1] Koch, A., Integrationssprachen in VLSI-
Design-Frameworks am Beispiel von
Cadence Skill/IL, Diploma Thesis, Ab-
teilung E.I.S., Technische Universität
Braunschweig, 1992.

[2] Cadence Design Systems, Skill Language
Reference Manual, Version 2.1, 1989.

