
Revised for FLAME Specification Version 0.1.2

Generator-based Design Flows for Reconfigurable Computing:
A Tutorial on Tool Integration using FLAME

Andreas Koch Ulrich Golze
UC Berkeley, ICSI TU Braunschweig, Abt. E.I.S.

USA Germany
akoch@icsi.berkeley.edu golze@eis.cs.tu-bs.de

High-performance design flows for FPGAs often rely on mo-
dule generators to implement fast sub-circuits. However, the
very flexibility of current generator systems makes their au-
tomatic use by synthesis and floorplanning steps difficult. We
present a common model to express generator capabilities and
design characteristics to client tools. Examples show how an
active query/reply scheme supports a stepwise refinement by
incrementally tightening constraints to narrow down the range
of possible solutions.

1 Introduction
While well known for decades, the use of module generators in
VLSI design flows has recently been exploited with renewed in-
terest. In the ASIC field, commercial products such as Module-
Compiler [1] are achieving good results in terms of design time
and quality. For FPGAs with their limited interconnect resources
and coarse-grain logic blocks, module generators have traditionally
been the tool of choice to quickly provide fast and dense circuits [2]
[3] [4] [5]. Thus, compilation systems for reconfigurable computers
often include module generators as a major processing step.

2 Hindrances
Unfortunately, the very flexibility of parametrized generators makes
their integration with the main design flow (synthesis, floorplan-
ning, place and route) difficult. For example, modern generators
can completely restructure a general circuit description to optimally
match constant inputs. When one of the main flow tools requires
information about such a module, the sheer volume of the design
space covered by each generator (such as behavior, time, area,
power, and layout) precludes a simple enumeration of all alterna-
tives. Thus the use of passive (static) data for library information
becomes impractical. However, existing active interfaces such as
DPCS [6] or ITC/MDS [7] often require non-portable services such
as dynamic loading, specialized compilers or proprietary libraries.

In addition, the common formats for characterizing library ele-
ments, such as EDIF [8], “.lib” [9], and ALF [10], are tailored for
ASICs as target technology. While they allow the detailed speci-
fication of electrical, timing, and geometrical parameters, this ab-
straction level is mismatched for describing designs targeting FP-
GAs: Vendors generally do not make low-level physical informa-
tion available, and the higher-level concepts required for efficient
module embedding (e.g., function, control interface, and sequential
timing etc.) are not covered by existing formats.

Here we present a brief tutorial on how FLAME [13], the Flex-
ible API for Module-based Environments, can be used to resolve
these difficulties by smoothly integrating module generators with
the main design flow. It is currently used in academic as well as
in industrial research on next generation compilation systems for
reconfigurable computers, where it will allow the portable use of
generator-based IP in a variety of tool chains.

3 FLAME
FLAME consists of a common model to express generator (server)
capabilities and module design characteristics to client tools (e.g,
synthesis and floorplanning), an active interface allowing a dialog
between client and server to incrementally make design decisions,
and portable representations for FLAME expressions.

FLAME can be extended by introducing new attributes while
still preserving backwards compatibility. At most, old (non-
extended) specifications lead to solutions with deteriorated quality,
but the system always remains functional.

To facilitate its adoption, a functional FLAME interface has only
simple minimal requirements. In general, several dozen lines of
code should suffice to integrate a new generator into the main de-
sign flow. Afterwards, the interface may be gradually refined to
improve solution quality.

FLAME does not rely on features of a specific implementation
language or execution platform. The programming interface uses
only a small number of procedural entry points and a single frame-
based data structure.

The efficiency of generating and manipulating FLAME data al-
lows the use of the interface in monolithically integrated tools as
well as in loosely coupled systems distributed over a network.
By choosing between three representations (binary, tokenized, and
text) for FLAME data, the EDA developer can match efficiency and
portability to the specific scenario. In the following examples, we
will use the human-readable text representation, which is based on
the well-known frame concept.

4 Active interface
Fig. 1 shows a sample dialog between clients floorplanning) in the
main design flow and servers in the library. The queries by the
clients become increasingly more specific, and only the requested
specifications are being returned. This approach reduces computa-
tion and data transfer times, since only a minimum of information
can be supplied. A memoization mechanism (not shown) serves
to further increase efficiency by answering previously encountered
requests from a cache without forwarding them again to the gener-
ators.

The communication interface has been designed to allow asyn-
chronous multi-threaded execution (running multiple generators in
parallel). It its independent of the communication protocols, which
can range from simple function invocations in monolithically inte-
grated systems, spawning external programs (such as Perl scripts)
communicating via pipes, to socket-based exchanges in a system
distributed over the Internet. Note that existing HTTP server tech-
nology can be leveraged off easily by encapsulating FLAME ex-
pressions in HTML.

This could lead to a scenario where IP providers offer access to
their wares from their web sites. Characteristics about each product
could be retrieved free of charge, only when netlist or layout data
would be requested would the customer account be charged.

operand width=16?

1x carry-init, 16x add-2

cout = a b + a cin + b cin
s = a ^ b ^ cin

addsub, add, inc

17 cells, 10.1ns
control=0 for add, =1 for sub

Functions available for XC4000?

Size, speed, and usage of addsub
for 16-bit operands?

Bit-sliced structure of addsub,

Netlist of add-2 slice in EQN format?
Floorplan

Synthesis

Library

Fig. 1: Sample query/reply scenario

5 System architecture
A simple procedural interface consisting of five functions allows
the sending and receiving of queries and replies. TheFLAME Man-
ager (Fig. 2) distributes the queries it receives from its clients to
the servers, collects individual replies, and packages them into a
composite reply which is returned to the client.

Synthesis

Floorplanning

Place&Route

FLAME

Manager

add

mult

logic

dct

FLAME

Interface

Design Data

Module Generator Library

Queries

Replies

Main Design Flow

Fig. 2: FLAME system architecture

As with other EDA data formats, FLAME employs LISP-style
associative lists of symbols (extensible keywords), integers, strings,
and lists. In addition, it allows the seamless embedding of foreign
data (e.g., EDIF netlists or Verilog simulation models).

The human readable text representation is easiest to process even
for simple tools (such as Perl scripts), while a pre-tokenized repre-
sentation can be processed and transferred more efficiently even be-
tween tools implemented in different languages and environments.
For even higher performance, the implementation-language specific
binary representation (generally built using pointers or references)
can be passed between integrated tools using the same language
binding.

FLAME requires a language binding specific for each imple-
mentation language [11]. The binding provides an efficient inter-
nal representation for FLAME data and functions to manipulate it.
Furthermore, it can translate to and from the standard text and pre-
tokenized representations and communicate with the FLAME Man-
ager.

On top of this infrastructure lies a well defined set of attributes to
concisely represent module characteristics. These include, but are
not limited to: behavior, control interface, timing, area, power, bit-
sliced structure, topology, and embedded foreign data (netlists, lay-
out, simulation models). To reduce the number of separate queries,
sets of related attributes are bundled intoviews.

6 Design hierarchy
Fig. 3 shows the FLAME design entities and their relations. A
generatoris a concrete piece of code that creates different views of
a circuit according to parametrized descriptions. Acell is a func-
tional unit that can be generated by the specific generator. Different
cells may supply identical or different functions and interfaces. An
implementationis an actual circuit conforming to the behavior and
interface of the enclosing cell. All implementations of a cell must
have the same function and interface. In general, they differ in more
physical aspects such as layout footprint, logical pitch, topology,
low-level timing (e.g., clock speed, but not pipelining!) and power
consumption. In a software system, cells would be considered mo-
dule interfaces, and implementations module bodies. The cell is
composed fromsub-modules(cell instances) andstacks. Stacks
contain one or morezonesof replicated logic. The smallest de-
sign unit is theslice (sometimes calledmaster-sliceto emphasize
the replication aspect).

...

...

...

addstack

rplup

...

...

...

and3-ripple

...

...

...

ImplementationGenerator Cell Stack Zone Slice

linear-1bpc

linear-0.5bpc

folded-uni-1bpc

serial

addsub bottom

add2

cinit

sub

and4

rpldwn

andstack

tree

add-csa

arith

dct1

busand

not

reg

ram

rom

or

add-rpl

logic ...

...

...

dct

memory

bottom

and

selected by synthesis selected by components and regularity
floorplanning

Fig. 3: FLAME design entities

When the synthesis system is covering its data flow graph with
modules in the library, it selects suitable cells. Since all imple-
mentations in a cell are guaranteed to have the same external in-
terface (which includes, e.g., control specifications and pipelining),
the floorplanner can then perform lower-level optimizations, such
as matching the physical layouts across all modules by selecting
appropriate implementations within the cells [12], while keeping
the synthesized global controller intact.

The next examples show a typical dialog between clients and
servers, beginning with the start of the synthesis run and ending
with floorplanning. Note that the examples have been chosen to
demonstrate basic FLAME concepts, the complete functionality is
described in [13].

7 Library functions
As the first compilation step, the synthesis tool will request an in-
dex of all cells available in the target technology (possibly includ-
ing technology independent cells). This step would be considered
“loading the library” in a static-file based approach. To this end, the
client will issue the following query, which is then distributed to all
servers:

(QUERY 1 1
(VIEW "behavior"

(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")))

In this example, we assume the existence of two generators offer-
ing applicable cells. Cell behavior is currently specified using either

arithmetic or logic expressions in infix notation, or as a procedure
prototype. The reply to the “behaviore” query lists the generators
and their cells together with behavioral descriptions and logical in-
terfaces.

(REPLY 1 1
(VIEW "behavior"

(STATUS QUERYOK)
(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")

(GENERATOR "arith" 2

(CELL "muldiv" 3
(INTERFACE (LOGICAL (INPUT (("A" "B")))

(OUTPUT (("P" "Q")))))
(BEHAVIOR ("muldiv"

(FUNCTION (INFIX "P=A*B")
(INFIX "Q=A/B"))))

(CELL "addsub" 1
(INTERFACE (LOGICAL (INPUT (("A" "B")))

(OUTPUT (("SD")))))
(BEHAVIOR ("addmode"

(FUNCTION (INFIX "SD=A+B")))
("submode"

(FUNCTION (INFIX "SD=A-B")))))

(GENERATOR "logic" 1

(CELL "and" 1
(INTERFACE (LOGICAL (INPUT (("A" "B")))

(OUTPUT (("Y")))))
(BEHAVIOR ("and"

(FUNCTION (INFIX "Y=A&B")))))

(CELL "parity" 1
(INTERFACE (LOGICAL (INPUT (("A")))

(OUTPUT (("Y")))))
(BEHAVIOR ("parity"

(FUNCTION (PROC "parity(A,Y)")))))
)))))

Observe that theaddsubcell can compute either the sum or the
difference of its inputs, whilemuldivsimultaneously computes the
product and quotient of its inputs on separate outputs. With this
functional information, synthesis can now proceed to cover the data
flow graph.

8 Cell control, area, and timing
When the covering requires trade-off information for a particular
cell, a “synthesis” view is requested for it. The query includes
the required constraints for parameters such as target technology,
operand widths, data types and constant values (where applicable).

(QUERY 1 2 (VIEW "synthesis"
(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")
(GENERATOR "arith" 0

(CELL "addsub" 0
(INTERFACE (LOGICAL

(INPUT (("A" "B") (WIDTH 16) (SIGNED)))
(OUTPUT (("SD") (WIDTH 16) (SIGNED))))))

)))

This query will retrieve detailed information on a 16-bit version of
the adder/subtracter. The resulting reply contains the control speci-
fication for the cell as well as the area and time points for different
physical implementations.

(REPLY 1 2 (VIEW "synthesis"

(STATUS QUERYOK)
(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")

(GENERATOR "arith" 2
(STATUS QUERYOK)
(UNIT (TIMESCALE -10))

(CELL "addsub" 1
(STATUS OK)

(INTERFACE
(LOGICAL

(INPUT (("A" "B") (WIDTH 16) (SIGNED)))
(OUTPUT (("SD") (WIDTH 16) (SIGNED))))

(PHYSICAL
(INPUT (("A" "B")

(WIDTH 16) (SIGNED) (DATA)))
(OUTPUT (("SD")

(WIDTH 16) (SIGNED) (DATA))))
(INPUT (("nAdSb"))

(WIDTH 1) (UNSIGNED) (CONTROL)))

(BEHAVIOR
("addmode" (FUNCTION (INFIX "SD=A+B"))

(UCODE (LEVEL (("nAdSb") 0))))
("submode" (FUNCTION (INFIX "SD=A-B"))

(UCODE (LEVEL (("nAdSb") 1)))))

(IMPLEMENTATION "softcarry-1bpc" 1
(TIMING (("addmode" "submode")

(FIXED
(REQUIRED () 0 0 0)
(ARRIVAL () 0 405))))

(AREA ("4LUTS" 32 32 800)))

(IMPLEMENTATION "softcarry-0.5bpc" 1
(TIMING (("addmode" "submode")

(FIXED
(REQUIRED () 0 0 0)
(ARRIVAL () 0 395))))

(AREA ("4LUTS" 32 32 800)))))))

The “synthesis” view reveals more information about theaddsub
cell. Namely, it has an additional control inputnAdSb, which is
used to switch between addition and subtraction. The manner in
whichnAdSbis actually used is described by theUCODEattribute:
Since the cell is purely combinational, the operation is controlled
by simply changing the level to “0” for addition, and “1” for sub-
traction. addsubis available in two implementations which vary
in timing and area. softcarry-0.5bpcis laid out using a looser
logical pitch. Both addition and subtraction have the same data-
independent timing, which is specified in terms of required times
(on inputs) and arrival times (on outputs). Since theTIMESCALE
was set to 0.1ns, the value 405 actually stands for a worst-case com-
binational delay of 40.5ns from all inputs to all outputs1. Area is
measured in one or more technology-specific units defined in an ex-
ternal technology file. In the example, both implementations use 32
of the 800 available “4LUTS” of the target chip.

Above and beyond this simplified example, FLAME allows the
specification of sequential delays (latencies) for pipelined modules.
In addition, a more precise delay model using path-based timing
is available. The FLAME control specification also extends to
cover complex multi-cycle control flows (such as loading operands
and opcodes into a programmable unit), variable execution times,
and interleaved execution cycles (e.g., simultaneously loading new
operands while unloading a result).

1For brevity, required and arrival times were not specified on a per-port
basis, which would more accurately reflect the precise timing of a ripple-
carry adder.

For the queried cell, the synthesis tool now has sufficient in-
formation (area-time spectrum for the various implementations) to
compare different flow graph coverings. Furthermore, the descrip-
tion of the cell control interface allows the synthesis of suitable
control logic driving it.

9 Implementation structure
To allow the floorplanning tools to exploit the regular bit-sliced na-
ture common to many basic datapath modules [14], FLAME defines
a structural view into a cell implementation. In queries, theINTER-
FACEhas to be constrained as for the “synthesis” view. For brevity,
we are showing the structure of an 8-bit AND gate here instead of
the adder/subtracter.

(QUERY 1 3 (VIEW "structure"
(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")
(GENERATOR "logic" 0

(CELL "and" 0
(INTERFACE (LOGICAL

(INPUT (("A" "B") (WIDTH 8) (SIGNED)))
(OUTPUT (("Y") (WIDTH 8) (SIGNED)))))

(IMPLEMENTATION "basic" 0)))))

Note that we are now operating at the implementation scope.

(REPLY 1 3 (VIEW "structure"
(STATUS QUERYOK)
(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")

(GENERATOR "logic" 1
(STATUS QUERYOK)

(CELL "and" 1
(STATUS QUERYOK)

(INTERFACE
(LOGICAL

(INPUT (("A" "B") (WIDTH 8) (SIGNED)))
(OUTPUT (("Y") (WIDTH 8) (SIGNED))))

(PHYSICAL
(INPUT (("A" "B")

(WIDTH 8) (SIGNED) (DATA)))
(OUTPUT (("Y")

(WIDTH 8) (SIGNED) (DATA)))))

(IMPLEMENTATION "basic" 1
(STATUS OK)
(STRUCTURE

(SLICEDLINEAR

(SLICES
(SLICE "and2" 1

(LEAF (INTERFACE (PHYSICAL
(INPUT (("a" "b")

(WIDTH 1) (UNSIGNED) (DATA)))
(OUTPUT (("y")

(WIDTH 1) (UNSIGNED) (DATA)))
)))))

(STACKS
(STACK "andstack" 1

(INTERFACE (PHYSICAL
(INPUT (("Op1" "Op2")

(WIDTH 8) (SIGNED) (DATA))
(OUTPUT (("AndOut")

(WIDTH 8) (SIGNED) (DATA))))))
(VERTICAL

(ZONE "and2" 8
(VCONNECT

((("Op1" 0 1) ("a"))

(("Op2" 0 1) ("b")))
((("y") ("AndOut" 0 1)))
()

)))))

(HORIZONTAL
(LINEAR "andstack")
(HCONNECT

(0 1 ("A" 7 0) ("Op1" 7 0))
(0 1 ("B" 7 0) ("Op2" 7 0))
(1 0 ("AndOut" 7 0) ("Y" 7 0)))))

))))))

This reply reveals that the selected implementation consists of a
singleslicenamed “and2” that implements a 2-bit AND gate. (Fig.
4.a). The entire implementation is assembled by vertically iterating
(tiling) this slice 8 times (iteration numbers0 . . . 7, Fig. 4.b) to form
thestack“andstack”. This stack is instantiated once, and connected
to the module primary ports as appropriate to assemble the entire
module (Fig. 4.c).

and2 ya
b

0

1

2
Op2[2]

AndOut[1]

Op1[2]

Op2[1]
Op1[1]

Op1[0]
Op2[0]

a

b

a

b

b

a y

y

y AndOut[0]

AndOut[2]

AndOut[7:0]

Op2[7:0]

Op1[7:0]

Y[7:0]

A[7:0]

B[7:0]

(a) Slice(b) Stack

(c) Module

iteration number

an
ds

ta
ck

Fig. 4: Regularity and structure

While this example might seem like overkill for such a trivial
circuit, the expressiveness allows advanced optimizations for more
complex structures (possibly including sub-modules). E.g., it is
possible to re-assemble a hierarchical module in context of the gen-
erated floorplan by substituting different sub-modules into its hi-
erarchy. This could be used to select slower but smaller modules
once it has been discovered during floorplanning that the top-level
module is not on the critical path of the circuit.

10 Implementation topology
The “topology” view provides the information required for floor-
planning. The query is constrained in the same manner as for the
“structure” view.

(QUERY 1 4 (VIEW "topology"
(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")
(GENERATOR "arith" 0

(CELL "addsub" 0
(INTERFACE (LOGICAL

(INPUT (("A" "B") (WIDTH 4) (SIGNED)))
(OUTPUT (("SD") (WIDTH 4) (SIGNED)))))

(IMPLEMENTATION "softcarry-1bpc" 0)))))

The reply describes the floorplan footprint and logical pitch (mea-
sured inbits-per-cell height(bpc)) for the first implementation, this
time in a 4-bit version (Fig. 5).

(REPLY 1 4 (VIEW "topology"
(STATUS QUERYOK)
(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")

(GENERATOR "arith" 2

1,3

1,00,0

0,3

C0

C1

S0

S1

S2
A2

A3

A1

A0

B0

B1

B2

B3

SD0

SD1

SD2

SD3C3

1 bpc

S3

C2

Fig. 5: Adder/subtracter topology

(STATUS QUERYOK)
(UNIT (TIMESCALE -10))

(CELL "addsub" 1
(STATUS QUERYOK)

(INTERFACE
(LOGICAL

(INPUT (("A" "B")
(WIDTH 4) (SIGNED)))

(OUTPUT (("SD")
(WIDTH 4) (SIGNED))))

(PHYSICAL
(INPUT (("A" "B")

(WIDTH 4) (SIGNED) (DATA)))
(OUTPUT (("SD")

(WIDTH 4) (SIGNED) (DATA))))
(INPUT (("nAdSb"))

(WIDTH 1) (UNSIGNED) (CONTROL)))

(IMPLEMENTATION "softcarry-1bpc" 1
(STATUS QUERYOK)
(TOPOLOGY (MATRIX

(SHAPE (RECT 2 4))
(PORT ((("A" 15 0) ("B" 15 0))

(PITCH 1 1) (FOLDING LINEAR) (COORD 0 0)))
(PORT ((("Y" 15 0))

(PITCH 1 1) (FOLDING LINEAR) (COORD 1 0))))))
))))

All data ports have a logical pitch of 1 bpc. However, the inputs
are assumed to be placed at the left edge of the circuit (column 0),
while the output is located at the right edge (column 1). Matching
logical pitch is important especially in FPGAs, where mismatched
pitch would cause long delays due to the increased wiring.

11 Simulation
Each implementation must be available in a “simulation” view. In
general, the data returned will be a behavioral HDL model encap-
sulated in a FLAME expression. For example, the query
(QUERY 1 5 (VIEW "simulation"

(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")
(GENERATOR "logic" 0

(CELL "and" 0
(INTERFACE (LOGICAL

(INPUT (() (WIDTH 4)))
(OUTPUT (() (WIDTH 4)))))

(IMPLEMENTATION "basic" 0
(INSTANCE "andgate4")
(FORMAT "verilog"))))))

will initiate the generation of a Verilog HDL module named
andgate4for the 4-bit AND. The Verilog is embedded into FLAME
as demonstrated by the reply:

(REPLY 1 5 (VIEW "simulation"
(STATUS QUERYOK)
(TECHNOLOGY "Xilinx" "XC4000" "XC4010" "-3")
(GENERATOR "logic" 1

(STATUS QUERYOK)
(CELL "and" 1

(STATUS OK)
(INTERFACE

(LOGICAL
(INPUT (("A" "B")

(DATA) (UNSIGNED) (WIDTH 4)))
(OUTPUT (("Y")

(DATA) (UNSIGNED) (WIDTH 4))))
(PHYSICAL

(INPUT (("A" "B")
(DATA) (UNSIGNED) (WIDTH 4)))

(OUTPUT (("Y")
(DATA) (UNSIGNED) (WIDTH 4)))))

(IMPLEMENTATION "basic" 1
(STATUS QUERYOK)
(INSTANCE "andgate4")
(FORMAT "verilog")
(SIMULATION !@#$ "verilog"

‘timescale 100 ps / 10 ps
module andgate4(Y,A,B);

output [3:0] Y;
input [3:0] A, B;
assign Y[3:0] = #25 (A[3:0] & B[3:0]);

endmodule
!@#$))))))

From the union of all generated HDL models, the main flow tools
can assemble a top-level model for the entire circuit.

12 Netlists
After floorplanning, the last steps consist of the actual generation
of annotated netlists in various formats or refinements (e.g., netlist,
placed, routed). For this task, standard formats such as EDIF or a
structural HDL are used and embedded into the FLAME represen-
tation. They are retrieved via the same query and reply mechanism
as the other views.

13 Summary and conclusion
In this paper, we presented a brief tutorial on using FLAME, a
portable mechanism for inter-tool communication with an empha-
sis on module generators. We introduced the FLAME approach of
representing and exchanging design data, and demonstrated some
of its capabilities using selected examples.

FLAME provides a way to use generator-based IP in a variety of
synthesis and floorplanning tools, thus allowing the free exchange
of design flow components. While it allows the description of com-
plex structures in great detail, it can also be used to quickly integrate
a newly developed component tool into the main system, e.g., to a
evaluate a new module generator in context.

In a larger scope, FLAME supports the seamless use of third-
party IP either locally or by communicating with generators at a
remote vendor site using HTTP-encapsulated messages. The cur-
rently employed ad-hoc generator interfaces support these capabil-
ities only to a very limited degree.

References
[1] Synopsys Inc., “Module Compiler User Guide”,EDA software docu-

mentation, Mountain View (CA) 1997
[2] Xilinx Inc., “X-BLOX Reference”, EDA software documentation,

San Jose (CA) 1995
[3] Dittmer, J., Sadewasser, H., “Parametrisierbare Modulgeneratoren fü

r die FPGA-Familie Xilinx XC4000”,Diploma thesis, Tech. Univ.
Braunschweig (Germany), 1995

[4] Chu, M., Weaver, N., Sulimma, K., DeHon, A., Wawrzynek, J.,
“Object Oriented Circuit Generators in Java”,Proc. IEEE Symp. on
FCCM, Napa Valley (CA) 1998

[5] Mencer, O., Morf, M., Flynn, M.J., “PAM-Blox: High Perfor-
mance FPGA Design for Adaptive Computing”,Proc. IEEE Symp.
on FCCM, Napa Valley (CA) 1998

[6] Silicon Integration Initiative, “Delay and Power Calculation using
DCL”, http://www.si2.org/dcl, Austin (TX) 1998

[7] Silicon Integration Initiative, “Message Dictionary Specification”,
http://www.si2.org/dcl, Austin (TX) 1998

[8] Electronics Industry Association, “EDIF Version 4 0 0”,ANSI/EIA
682-1996 Standard, Washington (DC) 1996

[9] Synopsys Inc., “Library Compiler User Guide Version 3.5”,EDA doc-
umentation, Mountain View (CA) 1997

[10] Open Verilog International, “Advanced Library Format for ASIC
Cells & Blocks”,ALF Reference Manual Version 1.0, Los Gatos (CA)
1997

[11] Koch, A., “FLAME/Java User’s Guide”,
http://www.icsi.berkeley.edu/˜ akoch/research.html#FLAMEJ,
Berkeley, 1998

[12] Koch, A., “Regular Datapaths on Field-Programmable Gate Arrays”,
Ph.D. thesis, Tech. Univ. Braunschweig (Germany), 1997

[13] Koch, A., “FLAME: A Flexible API for Module-based Environ-
ments – User’s Guide and Manual”,http://www.icsi.berkeley.edu/˜
akoch/research.html#FLAME, Berkeley, 1998

[14] Koch., A., “Module Compaction in FPGA-based Regular Datapaths”,
Proc. 33rd Design Automation Conference (DAC), Las Vegas (NV)
1996

