
Abstract This paper presents a compiler sys-
tem for adaptive computing. Our appraoch
increases the flexibility and usability in a
way that allows to port the system to different
targets with a minimal effort. Built on an
existing design flow, we try to reach a new
level of functionality by analyzing and parti-
tioning C programs at the highest possible
description level. We show that the analysis
on this level is more efficient than on lower
ones due to the exploitability of more expres-
sive programming constructs. The improved
analysis results combined with a new SSA
based algorithm for data path creation can
lead to a higher solution quality of the final
system configuration.

Keywords: hardware/software partitioning,

adaptive systems, compiler systems, recon-

figuration scheduling

1 Introduction

Traditionally, arithmetic performance of

computing systems is increased by faster or

more processors. Adaptive systems, on the

other hand, accelerate programs by executing

parts of the algorithm on adaptive hardware.

These elements can be dynamically reconfig-

ured during the program run. Some existing

research projects in adaptive systems have

already demonstrated the advantages: Cou-

pling a MIPS II processor with a special

FPGA [BaGS94] in the project BRASS of

the University of Berkeley [Wawr00] has

resulted in speed-ups of 2 to 10 (simulated).

An example of a real system is the Nimble

project at Synopsys [Harr98] which was per-

formed in cooperation with the University of

Berkeley and our department [Koch96].

2 Nimble Design Flow

One of the aims of Nimble is to generate exe-

cutable software and hardware as quickly as

pure software compilation, and not as slowly

as the hardware synthesis common today.

Such HW/SW programs should be compiled

in a time frame of ten minutes instead of sev-

eral hours. Figure 1 shows the design flow of

Nimble. The core compiler, which is the

focus of this paper, reads a program

Advances in Compiler Construction

for Adaptive Computers

Nico Kasprzyk

Tech. Univ. of Braunschweig (E.I.S.)

Gaußstr. 11

D-38106 Braunschweig

Germany

Andreas Koch

Tech. Univ. of Braunschweig (E.I.S.)

Gaußstr. 11

D-38106 Braunschweig

Germany

described in a high-level programming lan-

guage. The compiler then analyses the pro-

gram, partitions it into hardware and

software, and generates data paths for the

reconfigurable hardware (RL). In parallel,

the software part is instrumented with func-

tions for configuring and exchanging with

the RL. This extended software part is finally

output as C-code.

The data paths are pre-placed by a dedi-

cated tool developed specifically for this pur-

pose. Routing is performed by the standard

Xilinx M3 suite. Afterwards, the bit streams

for the RL are compressed and converted

into linkable object files. The final program

is the result of linking the SW C-code and

the HW object files.

3 Compiler Architecture

The current compiler [BaGS94] partitions

the application into software and hardware

and produces Data Flow Graphs (DFG) for

the latter. Although it works satisfactorily

and obtains good results, it has potential for

improvements. Particularly, the heuristics for

the selection of program partitions for hard-

ware, as well as the generation of data paths

can profit from further work. One weakness

is that the characteristics of target RL were

not considered in sufficient detail. As an

example, the sizes of the hardware compo-

nents were determined only by looking at

SW operations, not the HW functions actu-

ally available. E.g., if the library for one type

of RL contains a „left shift“ cell which might

be unavailable on another RL architecture

then the compiler would not be able to han-

dle this. Additionally, certain analysis phases

C−Code (SW part)

C−Code

Data paths (HW part)

Compiler/Partitioner

C−Compiler/Linker

Program

Placer/Router

.bit−>.o converter

Bit stream for the FPGA

Object−Code

Figure 1: HW/SW design procedure in Nimble

High−Level−Optimizations

HW−Annotation/
Static Profiling

Hyperblock−Generation

HW/SW−Duplication

Conversion
SSA−>Data path

Kernel−Scheduling

FLAME

in case of
too wide

Data Paths

C−Code (SW part)

C−Code

Data Paths (HW partl)

SUIF2−
Passes

Figure 2: The Compiler C_fas

rely on outdated methods. This paper dis-

cusses multiple routes of approach to

expunge these misfeatures and improve the

system as a whole.

3.1 SUIF2 Compiler System

For this work, we use the SUIF2 compiler

system SUIF2 of the University of Stanford

[LamM99]. The intermediate representation

of program code used by SUIF2 is quite clear

and easily expandable. Its modular concept

allows quick modifications that are only

local in scope. This differentiates it from

other well-known compilers such as GCC

[GCC00], whose intermediate representa-

tion was more optimized for performance

than for clarity.

We have also evaluated the SGI-Pro64-Com-

piler [SGI00] because it supports important

structures for us (hyperblocks, SSA form of

control flow graphs). But the appropriate

methods are unfortunately supplied only on a

very low-level intermediate representation

that is very close to the executable program.

In contrast to [BaGS94], we want to perform

optimizations and partitioning on a very high

level of program representation. In this

approach, we differ from the current Nimble.

3.2 Work on High-Level Representations

A high-level representation can express

information, which becomes lost or distorted

in lower forms. In these cases, it has to be

tediously reconstructed by complicated anal-

ysis algorithms. The example in Figure 3

demonstrates this: All three cases of the

SWITCH statement can be speculatively exe-

cuted in parallel since the cases are data-

independent and do not have to be processed

sequentially (BREAK). In a lower-level

machine-oriented representation (shown at

the bottom of Figure 3), the same informa-

tion becomes available only after additional

analysis steps are executed.

3.3 Optimization Steps

Our first optimization steps rely on proven

machine-independent methods. We employ

Scalarization [CaMT94], Software Pipelin-

ing [Much97], Code Movement and other

techniques described in [BaGS94]. In this

manner, we reduce memory accesses in

loops and attempt to create inside loops hav-

ing a high degree of instruction level paralel-

lism.

3.4 Selection of Hardware Building
Blocks

Next, the compiler selects operations for a

later hardware implementation on the high-

level representation. This is feasible since

HW operations will not be affected by lower-

level transformations. For evaluating the

HW-suitability of SW operations, we rely on

switch(anzahl) {
 case 1: a=1; break;
 case 2: b=1; break;
 case 3: c=1; break;
}

Figure 3: Different representations

if (anzahl==1) goto tmp_label1;
if (anzahl==2) goto tmp_label2;
if (anzahl==3) goto tmp_label3;
goto tmp_label4;
tmp_label1: a = (1); goto tmp_label5;
tmp_label2: b = (1); goto tmp_label5;
tmp_label3: c = (1); goto tmp_label5;
tmp_label4:;
tmp_label5:;

estimation data available through the

FLAME interface [Koch00]. This flexible

interface allows access to hardware-specific

libraries, and offers hardware-relevant data

such as area and time requirements of opera-

tions, availability of synthesizable compo-

nents as well as chip resources. Partitioning

relies mainly on the data collected in this

step.

After annotating the operations with this

HW information, the program representation

is now extended to a control flow graph

(CFG). A disadvantage of a CFG on such a

high level is that we must consider more

types of operations as nodes of the CFG.

Thus, additional control structures exist

beyond simple branches (e.g., SWITCH, FOR,
WHILE statements). However, the advantages

described in section 3.2 outweigh this. Fur-

thermore, the CFG needs to be generated

only once and adapts to later modifications

automatically. The generation of such a CFG

is supported by available modules in SUIF2.

3.5 Profiling

A static profiling pass follows the annotation

of the operations. Here, paths of the CFG are

marked with their execution frequency. Note

that we consciously decided against a

dynamic profiling approach.

The papers [BaLa93] and [WuLa94] show

that static profiling is sufficient for the deter-

mination of the most frequented program

regions: in the average, 80% of the 20%

most-used blocks were determined, in pro-

grams from the SPEC benchmarks and vari-

ous UNIX commands. We can improve this

already satisfying result in our hyperblock

selection by the fact that we incrementally

optimize the appropriate threshold value

(both defined later).

3.6 Hyperblocks

Now that all necessary information for a fur-

ther processing is available, we proceed as

described in [BaGS94]. We pick regions

from the CFG which are especially suited for

HW execution. In our case, we concentrate

on loops. Before we execute further transfor-

mations, these regions are duplicated. If they

later turn out to be unsuited for execution in

hardware, we can go back to the original

untransformed version.

Furthermore, we can use the software ver-

sion of a loop if we must interrupt the hard-

ware execution, e.g., when the execution hits

a HW-infeasible statement in a HW loop. In

this case, the SW version performs the corre-

sponding iterations. Specific reasons for

exits from a HW-loop include the call of

functions which are not or only very ineffi-

ciently realizable in hardware. This generally

also applies to floating point operations, for

which the processor usually possesses a ded-

Block1

Block2

Block3 Block4

Block5

Block6

HB

Block5’

Figure 4: Hyperblock with tail duplication

icated FPU, or I/O instructions which manip-

ulate HW inaccessible to the RL.

In order to select paths in the loops as

regions for hardware execution, they must be

evaluated in terms of their „quality“. This

quality value is proportional to the execution

frequency of a path and anti-proportional to

the HW-area required. All paths with a qual-

ity value above a threshold are combined

into a HW block.

If such a block has multiple entry points,

we must switch several times between hard-

ware and software execution. These switches

require time for data exchange between proc-

essor and RL. To avoid this, we rely on the

theory of hyperblocks [Mahl96]. These are

blocks of the CFG with only one entry point

but several exits.

In Figure 4 one recognizes that Block5 was

copied to Block5’ outside of the hyperblock

HB. Without this so-called tail duplication,

the hyperblock HB would possess several

inputs (Block1 -> Block2, Block4 -> Block5).

If there are several nested loops, which

could be selected as hyperblocks exist, this

represents a special challenge for our algo-

rithm. In that case, the loops are duplicated

in order from outer to inner loops. Contrary

to [BaGS94], we do not consider a contained

loop as an independent block. Instead, it is

considered as normal control flow and evalu-

ated as described before with the hyperblock

selection algorithm. Thus, we can select from

a larger quantity of potential HW-data paths.

3.7 Static Single Assignment Form

After the selection of hyperblocks for HW-

execution, these program parts are trans-

formed in a way that leads to easily imle-

mentable blocks for the target RL. The

representation as a DFG is particularly suita-

ble for our algorithm. An important prerequi-

site is the detailed analysis of the data

dependencies of the different variables in the

selected blocks. We use a relatively new

development from the research in compiler

construction in contrast to [BaGS94]. Instead

of definition-use-chains of variables used

previously, we convert the CFG for the

selected blocks into the static single assign-

ment form (SSA) [Much97]. When a CFG is

represented by the SSA form, there is only

one definition and one use for each variable.

Thus, we can considerably simplify different

optimizations on this part of the CFG. Sam-

ple optimizations using the SSA form are

described in [Appe98]. Additionally,

dependencies between arguments are

resolved. Consider the following program

fragment

for(i=1; i<100; i++) a[i] = 0;
for(i=1; i<100; i++) b[i] = 0;

There is no reason to actually use the same

index variable in both loops. In the SSA

form, this dependency does not exist and

both loops may be executed in parallel. In

particular, we use the array SSA form from

[KnSa98], which also handles dependencies

between different array items. The resulting

hardware data paths do not access memory

more frequently than absolutely necessary.

From the CFG in SSA form, the DFGs

can be easily produced. This is a further

advantage especially for our application:

Each definition of a variable represents a

node of the DFG. An edge of this graph goes

from the definition of a variable to its use.

DFGs without multiplexers are built from

CFGs without branches. We have to insert

multiplexers in the DFG and also into the

resulting HW data path if joining branches

exist in the CFG. These locations of multi-

plexers are indicated by the location of -

functions in the nodes of the SSA form. The

decision conditions of these multiplexers are

easily derivable from the dominance struc-

ture of the CFG [Much97].

3.8 Data Path Scheduling

When we have computed all data paths, we

can now decide whether each data path actu-

ally fits on the target hardware. Otherwise,

we must repeat the generation of hyperblocks

with a smaller threshold value (section 3.4).

Finally, if all data paths fit individually on

the target hardware, we can decide further

whether it is worth to pack several data paths

on the RL at the same time. Helpful for this

task is a data path load graph (Figure 5)

which indicates the use of data paths as a

function of the control flow. The figure

shows a possible partitioning of the data path

load graph. In the example shown, the entire

loop from data_path4 to data_path6 fits at one

time on the RL. Thus, unnecessary reconfig-

uration times are avoided.

The algorithm for partitioning the data path

load graph must also consider whether it is

really worthwhile to implement all possible

data paths in hardware. E.g., if the loop spec-

ified above would not fit perfectly on the RL

and additionally had a high execution fre-

quency, then it could be advantageous to

implement only two of the data paths in

hardware and one purely in software. Thus,

one would avoid „thrashing“ between the

two RL configurations. Previous work shows

that numerous improvements are possible

particularly in this area. This will be empha-

sized in our of further research.

4 Summary

We described an improved approach for a

compiler which partitions a high-level lan-

guage program automatically for partial HW

execution on adaptive systems and generates

suitable hardware data paths from CFGs. On

the basis of existing solutions, we introduced

new techniques for a more balanced parti-

tioning and improving data path quality.

Further research will actually quantify the

advantages in relation to the current system.

References:
[Appe98] Appel, A., Modern Compiler Implementa-

tion in C, Cambridge University Press, 1998

[BaGS94] Bacon, D. F., Graham, S. L., Sharp O. J.,

Compiler Transformations for High-Performance

Computing, ACM Computing Surveys 26(4),

1994

[BaLa93] Ball, T., Larus, J., Branch Prediction for

free, Proc. of the Conf. on Prog. Language Design

and Implementation, 1993

φ

data_path1

data_path2

data_path3 data_path4

data_path5

data_path6

data_path7

data_path8

data_path9

partition 1

partition 2

partition 3

Figure 5: Data path load graph

[CaHW00] Callahan, T., Hauser, R., Wawrzynek, J.,

The GARP Architecture and C Compiler, IEEE

Computer 33(4), 62-69, April 2000

[CaMT94] Carr, S., McKinley, K. S., Tseng, C., Com-

piler Optimizations for Improving Data Locality,

In Proceedings of the Sixth International Confer-

ence on Architectural Support for Programming

Languages and Operating Systems, San Jose, CA,

October 1994

[GCC00] GCC Homepage, http://www.gnu.org/soft-

ware/gcc/gcc.html

[Harr98] Harr, R., The Nimble Compiler Environment

for Agile Hardware“, Proc. ACS PI Meeting,

http://www.dyncorp-is.com/darpa/meeting/

acs98apr/Synopsys\%20for\%20WWW.ppt, Napa

Valley (CA) 1998

[HaWa97] Hauser, J. R. and Wawrzynek, J., GARP A

MIPS processor with a reconfigurable coproces-

sor, Proceedings of IEEE Workshop on FPGAs

for Custom Computing Machines (FCCM), Napa,

CA, April 1997

[KnSa98] Knobe, K., Sarkar, V., Array SSA Form and

its use in Parallelization, POPL, San Diego 1998

[Koch96] Structured Design Implementation - A

Strategy for Implementing Regular Datapaths on

FPGAs. In International Symposium on Field

Programmable Gate Arrays, Monterey, CA., Feb.

1996

[Koch00] Koch, A., FLAME: A flexible API for Mod-

ule-based Environments - Users Guide and Man-

ual, http://www.icsi.berkeley.edu/~akoch/

research.html#FLAME, Berkeley (CA), 2000

[LamM99] Monika Lam, An Overview of the SUIF2

System, ACM SIGPLAN ’99 Conference on Pro-

gramming Language Design and Implementation,

http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/

tutorial99.ps

[Mahl96] Mahlke, S., Exploiting instruction level par-

allelism in the presence of conditional branches,

PhD Thesis, University of Illinois at Urbana-

Champaign, 1996

[Much97] Muchnik, S. S., Advanced Compiler design

implementation, Morgan Kaufmann Publishers,

Inc., San Francisco, CA, 1997

[SGI00] SGI Pro64, http://oss.sgi.com/projects/Pro64/

[Wawr00] J. Wawrzynek, The BRASS Research

Project, http://brass.cs.berkeley.edu/

[WuLa94] Wu, Y., Larus, J. R., Static Branch Fre-

quency and Program Profile Analysis, In 27th

IEEE/ACM Symposium on Microarchitecture

(MICRO-27), 1994

