
1 Introduction

Beyond conventional microprocessors and DSPs,

reconfigurable (sometimes also called adaptive) pro-

cessors offer a chance at even higher computation

power. These computers allow the structural adapta-

tion of their architecture to the requirements of the

currently executing algorithm. Commonly, a reconfig-

urable compute unit (RCU) is associated with a con-

ventional processor as co-processor or function unit.

In this arrangement, the conventional processor exe-

cutes administrative operations (OS functions, high-

level I/O), while the compute-intensive parts of an

application (so called kernels) are implemented in the

reconfigurable part of the system.

One of the reasons that adaptive computers (ACS)

are still not in widespread use is the difficulty of their

programming. In general, this requires experience

beyond conventional software programming, namely

detailed knowledge in hardware architecture and

design.

Considerable effort has thus been expended to

overcome these problems and raise the abstraction

level of programming an adaptive computer closer to

that of a conventional one. Examples include translat-

ing traditional languages such as C [4,5,11] into effi-

cient hardware/software solutions. In these flows, the

task of a compiler is the partitioning of an application

into hardware (HW) and software (SW) parts and the

generation of interfaces between them. Additionally,

the actual reconfigurations have to be scheduled.

One of the more crucial issues in such an auto-

matic compile flow is the choice of an appropriate

intermediate representation (IR) for the program under

compilation. Such an IR has to be amenable both for

representing as well as for consistently transforming

hardware and software blocks.This paper describes an

newly developed IR which forms the backbone of our

research in hybrid hardware/software compilers.

2 Discussion

Over the years, quite a few IRs have been devised for

hardware generation from high-level languages such

as C. Often, they were adopted from other research

areas, commonly from work dealing with compilation

for parallel computers. The requirements in these

areas are quite similar to the ones for compilers target-

ing adaptive computers.

However, some issues merit special attention in an

ACS compiler: Since most RCUs are particularly

adept at implementing fast data paths, a simple yet

powerful handling of data flow in the IR is highly

desirable.
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HW synthesis projects often employ IRs based on

control data-flow graphs (CDFG) [6] as well as on con-

trol flow graphs (CFG) augmented with def-use chains.

While we could also have taken this approach, it

would have had some limitations: C programs are not

easily represented in CDFGs without additional con-

version steps (e.g., the dismantling of do-while loops

into conditional branches). Furthermore, nodes for high

level constructs such as while loops are entirely miss-

ing and complicate later high-level optimizations (e.g.,

loop restructuring).

Such operations are better performed on a more

control-oriented IR such as a CFG. The corresponding

data flow can be derived this by an analysis of defini-

tions and usage of variables in individual CFG blocks.

Accesses to the same variable are chained together by

def-use chains. This approach can also be exploited in

optimizations for HW realization, e.g., the reduction of

operator and variable bit width [14].

While it appears that such an extended CFG is well

suited for our purposes, this turns out to be false when

attempting to realize transformations on the IR which

also modify the data flow. Such transformations

include, e.g., even steps as simple as loop unrolling.

For these operations, data dependencies are modi-

fied and the chains between variable definitions and

uses have to be updated for all variables affected. Fur-

thermore, the fact that the CFG does not directly repre-

sent data dependencies in the IR requires the

maintenance of a dedicated data structure in the com-

piler.

To alleviate these weaknesses, we advocate the use

of an IR based on the static single assignment form

(SSA) [1] for HW generation. Here, the data dependen-

cies are better integrated with the control representa-

tion.

To establish a context for this discussion, Section 3

gives an overview of the entire compile flow we devel-

oped for the COMRADE system (Compiler for adap-

tive Systems). Section 4 describes the Data Flow

Controlled SSA form (DFCSSA), our proposed SSA

variant. Some examples show the advantages of DFC-

SSA when used for hardware generation. Section 5 dis-

cusses the overhead incurred by DFCSSA over the

traditional SSA form.

3 Compiler architecture

The aim of COMRADE (Figure 1) is the automatic

generation of hybrid HW/SW executables for ACSs

from traditional non-annotated C source code. It is

based on the compiler framework SUIF2 [11] and aug-

ments it by adding the DFCSSA form. The actual con-

version to DFCSSA form takes place after the C source

code has been parsed and been subjected to high level

optimizations as described in [1] (e.g., constant fold-

ing). The succesive compiler passes then all operate on

the DFCSSA representation.

The compiler chooses operations for a later HW

implementation at a representation level similar to that

of C. Here, high level constructs such as while loops

and if branches are still existent in the IR. Now an

annotation pass determines various HW characteristics

(delay, area, etc.) for all atomic operations (e.g., addi-

tions, multiplies etc.). The actual HW/SW partitioning,

which occurs at a later phase, relies on the information

collected here. The HW characteristics of the individ-

ual atomic operations will not be affected by the later

transformations (e.g., loop unrolling, dismantling of

switch statements to if statements). Hence, this step can

proceed at an early compilation stage.

The source for the operator HW characteristics is

the module generator system GLACE [12], which also

provides estimates in addition to the module netlists.

Access to these services is offered by the interface

FLAME [10]. In addition to the HW characteristics, the

partitioning relies on profiling results for its decisions.

At this time, we use a dynamic profiling approach, but
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Fig. 1: Compile flow



intend to switch to data-independent static profiling

[3,17] in the future.

As stated previously, the partitioning concentrates

on compute kernels which generally consist of (possi-

bly nested) loops. However, a loop nest is not consid-

ered atomically for hardware realization on the RCU.

Instead, the partitioning algorithm may decide to only

consider inner loops or even only specific execution

paths within a loop. The latter capability is very power-

ful, since it allows the acceleration of loops that contain

HW-infeasible operations (e.g., high-level I/O such as

printf for an error message). As long as only HW-feasi-

ble paths are actually taken at run-time, execution can

remain in HW. Of course, once the exceptional condi-

tion does occur, the original instructions still have to be

executed in SW.

To this end, all candidates (loops and individual

paths) for a possible HW execution will be duplicated

in the CFG at the path selection compiler stage. This

occurs using a technique similar to that used in Gar-

pCC [5]. By inserting new nodes at the fork and join

points, the choice between HW and SW execution of

the kernel can be made at run-time. Consider the exam-

ple shown in Figure 3: Two nested loops are dupli-

cated. Nodes 7 and 9 act as fork points and hold the

run-time HW/SW mode switches, while nodes 9 and 10

act as join points.

In addition to this run-time switchability, the dupli-

cation also allows us to fall back on the original SW

version at compile-time if a later compiler stage deems

a HW implementation infeasible after all. This might

occur, e.g., if an individual kernel does not fit on the

RCU anymore when all other candidates have been

considered, or if the use of a HW kernel would lead to

inefficient reconfiguration scheduling (configuration

thrashing).

Figure 3 also shows that the duplication algorithm

not just duplicates the outermost loop, but also all inner

loops recursively. Thus, the size of the HW kernel can

be grown as appropriate starting from the innermost

duplicated loop and working outwards.

Appropriate interfaces will be added on both the

HW and SW sides at the fork and join nodes. E.g., the

SW side of a SW-to-HW fork node will hold code to

transfer live SW variables to HW registers. At the HW

side, the same information is used to actually generate

these CPU writable registers.

The final compiler pass translates the CFG from its

DFCSSA form into an actual HW data path for the tar-

get RCU. These data paths are then scheduled and pro-

cessed by lower-level tools [9].

4 Representation in SSA form

The hybrid HW/SW compiler we propose relies

heavily on a suitable IR: The IR must be able to easily

represent the source language at multiple abstraction

levels as well as efficiently describe data and control

flow even when subjected to complex transformations.

As already stated previously, the latter demand makes

the def-use-chain representation undesirable. Before

continuing to explain our DFCSSA variant, we will

now introduce some of the basics of the original SSA

form.

When representing a program in SSA form, every

write access to a variable leads to the creation of a new

name for the destination variable. E.g., in Figure 2, the

assignments to variable a become definitions of a_1
and a_2. At nodes where multiple control flows join in

the CFG, it must be determined which of the multiple

definitions to use when a variable is read. To this end,

so-called Fi statements are inserted to merge the appro-

b = M[ x ];
a = 0;

if( b < 4)

a = b;

c = a + b;

(a) (b)
b_1 = M[ x_0 ];
a_1 = 0;

if( b_1 < 4)

a_2 = b_1;

a_3 = fi(a_2,a_1);
c_1 = a_3 + b_1;

Fig. 2: CFG (a) and CFG in SSA-Form (b)
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priate variable definitions. In the example, the defini-

tion of a_3 is created by a Fi statement which resolves

the value from the definitions a_2 and a_1.

Even in this basic state, the SSA form is advanta-

geous when aiming for HW implementation of the

CFGs. One effect is the shortening of individual vari-

able life times, which can lead to the removal of data

dependencies. The example code in Figure 4 shows the

usage of variable i in two independent loops. After the

conversion into SSA form, a later compiler pass can

easily recognize that these two loops can be executed

independently. Since no other data dependencies exist,

the two loops could also execute in parallel.

5 DFCSSA form

For COMRADE, we extended the original SSA.

The first change affects the location of the Fi state-

ments in the CFG nodes. In the original SSA form, Fi
statements to resolve variable definitions were placed

in all nodes where control flow edges join. In DFC-

SSA, however, we place Fi statements only in join

nodes where the variable values are actually read, and

even then only for the specific variables read. Consider

the following example: In the original SSA form, the

sample program shown in Figure 5 would result in the

IR depicted in Figure 7. Fi statements are inserted at all

joining edges, even though some resolved variables

(a_4) are not used anymore in the program. This is

avoided in the DFCSSA form, where redundant Fi
statements do not occur anymore (Figure 6).

The insertion of Fi statements right at the point

where a variable is used can temporarily increase the

number of Fi statements over that in the common SSA

form. This behavior is also shown in Figure 6 by sev-

eral uses of the variable i. The Fi statements for the def-

initions of i_1 and i_3 have the same arguments.

However, this seemingly wasteful structure actually

has advantages (ability to backtrack similar to a use-

def-chain) for later optimization steps. Furthermore, it

for( i=0; i< 10; i++ ) {
  a[i] = 0;
}
for( i=0; i<10; i++ ) {
  b[i] = 0;
}

Fig. 4: Example program 1

Fig. 5: Example program 2

i = 0;
a = 0;
do {
  if(i<15) {
    if(i<10) a = 1;
  } else     a = 2;
  c = a+1;
  i=i+1;
} while( i < 100 );

a_1=1; a_2=2;

a_3=fi(a_0,a_1,a_2,a_3);

while(i_2<100);

c_1=a_3+1;
i_4=fi(i_0,i_2);

if(i_1<15)

if(i_3<10)

i_1=fi(i_0,i_2);

i_2=i_4+1;

a_0=0;
i_0=0;

i_3=fi(i_0,i_2);

Fig. 6: DFCSSA representation

a_2=1; a_3=2;

a_4=fi(a_2,a_1);

a_5=fi(a_4,a_3);
c_1=a_5+1;
i_2=i_1+1;
while(i_2<100);

if(i_1<10)

i_1=fi(i_0,i_2);
a_1=fi(a_0,a_5);

if(i_1<15)

a_0=0;
i_0=0;

Fig. 7: Common SSA representation



does not affect the size of the generated HW, since Fi
statements with the same or supersets of existing argu-

ment lists will be merged into a single Fi statement in

the creation of a data flow graph (DFG) from the CFG

in DFCSSA form. These effects are quantitatively

examined in Section 7.

5.1 Partial processing

As described previously, only those parts of the CFG

actually feasible for HW implementation will be pro-

cessed further in the custom flow. The SW part will be

extracted and handed to a standard SW C compiler for

translation to object files.

With this intent, the DFCSSA translation can be

concentrated only on those parts of the CFG that will

end up in HW. Thus, COMRADE is working with a

partial DFCSSA representation which keeps the SW

regions of the CFG untouched. The same idea also

applies to other transformations (e.g., matching opera-

tor and variable bit widths to the specific data at hand),

which are also limited to the HW parts.

6 Translation to a DFG

Since the DFCSSA form implicitly represents the data

dependencies of a program, the actual creation of a data

flow graph is simplified.

Initially, Fi statements with identical argument lists

will be merged (Section 6.1). Then, the translation pass

connects the definition of each variable with all of its

uses (reads). The resulting DFG now contains all oper-

ation of the original CFG. Only Fi statements, which

are artifacts from the translation into DFCSSA form,

have to be handled separately. Mirroring their purpose

of selecting one value from a number of alternatives,

they are realized as multiplexers. Thus, the Fi statement

for a_3 in Figure 6 is mapped to a multiplexer as

shown in Figure 8.

Such a realization allows the exploitation of fine-

grained parallelism in that all of the data input values

into the multiplexers can be calculated in parallel. This

also has a speculative character, since, as soon as the

control input sel has stabilized, the calculations on the

unselected inputs can be aborted.

Using Figure 8 as an example, if the value for sel is

valid after 12 clock cycles and selects a_0 as output for

the multiplexer, the final multiplexer output value

would be available at a time of 15 cycles. Other, possi-

bly longer running calculations (such as that of a_3)

can be safely aborted.

6.1 Efficient multiplexer synthesis

One property of the DFCSSA form is the resolution of

a variable value from multiple definitions right before a

read of the variable. In HW terms, this approach can

reduce the multiplexer delay and also the compilation

time itself because an explicit multiplexer optimization

is no longer required.

As an example, if the CFG shown in Figure 7

would be naively translated into a DFG, a cascade of

three multiplexers (Figure 9a) would result. Obviously,

a faster realization using a balanced tree is possible

(Figure 9b). However, starting with the original SSA

form, this faster HW could only be achieved after run-

ning a dedicated multiplexer balancing compiler pass.

In contrast, the DFCSSA form as in Figure 6 cre-

ates a a single Fi statement only when required (due to

a read). Since at that point the precise number of inputs

to the multiplexer is known (four in the example), a

perfectly matching HW instance can be generated

atomically using the module generators. Furthermore,

since they might be able to exploit architectural fea-

tures of the target RCU aimed at efficiently implement-

ing wider multiplexers, the resulting HW could be even

faster and smaller than the balanced tree of 2-input

multiplexers shown in Figure 9b.

sel

5clks 20clks10clks15clks12clks

a_3

MUX

a_1 a_2 a_3a_0

Fig. 8: Realization of fi statements as multiplexer
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6.2 Parameter transfer from SW to HW

Often, one input of the multiplexers resulting from the

Fi statement is a value transfer from a SW variable to a

HW register. Assuming that the program code in Fig-

ure 5 (but without the initialization of i and a) is

intended for HW execution, the multiplexer for a_3
would have one external input from the SW part, and

four HW-internal inputs (Figure 10). A buffer register

accepting the parameter from SW would be used only

once in this example. namely for the value transfer at

the beginning of the HW execution.

This can be optimized, however: In our HW archi-

tecture, most operators are being followed by a register

for pipelining purposes. In these cases the original

buffer input register can be removed and the parameter

value is directly written into the real hardware register

that will be used during the computation.

6.3 Input selection

The sel input of the multiplexers is primarily controlled

by a datapath-external FSM. The construction of that

FSM is also amenable to various optimizations. E.g.,

while it would be possible to simply model the FSM in

a fashion closely following the original program flow,

this would complicate exploitation of the speculative

execution technique described in Section 6.

An alternative approach is used in the Pegasus IR

[4], which also uses a specialized variant of the SSA

form. There, the multiplexers’ select inputs are gener-

ated using expressions associated with the correspond-

ing Fi statements: If that expression evaluates to True,

the first data input of a 2-input Fi statement is selected,

otherwise the second data input is propagated. This

approach is primary useful for Fi statements with two

inputs. In Pegasus, these multiplexers (and their select-

ing expressions) are merged later, requiring an extra

data flow analysis step.

Furthermore, the simple representation used by

Pegasus is unable to accommodate the N-input Fi state-

ments (N>2) which are the usual case in a DFCSSA

representation. As a solution, we abandon the node-

local information in favor of a kernel-wide data struc-

ture from which arbitrarily complex conditions can be

extracted. This data structure is based on a control

dependence graph (CDG) [15] and covers the condi-

tionals of all Fi statements in the CFG. Due to its global

nature, inter-statement optimization and analysis

passes are also simplified.

7 Overhead incurred in DFCSSA

The price the DFCSSA form pays for the advantages

described in the previous sections is an increase in the

number of Fi statements. However, we will now dem-

onstrate that this does not affect the quality of the gen-

erated hardware due to the way the DFG is created.

For a set of sample applications, Figure 11 lists the

numbers of Fi statements both for the SSA and DFC-

SSA forms. The total number of statements of the

fr
om

 c
pu

MUX MUX

REG

REG

a_3

REG

a_1 a_2 a_3 a_1 a_2 a_3
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Fig. 10: Multiplexer optimization

Application #statements

w/o SSA

SSA-Form

#fi statements

DFCSSA

#fi statements

DFCSSA

#fi statements,

optimized

Increase

unoptimized

Increase

optimized

adpcm 171 12 10 7 -16% -41%

pegwit 2154 163 221 135 26% -17%

jpeg 5027 469 697 441 48% -6%

fft 104 16 19 11 19% -31%

pgp 12520 1284 1574 1051 22% -18%

bytemark 539 32 42 25 31% -22%

wavelet 312 30 51 25 70% -17%

Fig. 11: Overhead for DFCSSA form



entire application before transformation to any SSA

form is also shown. For counting purposes, a statement

is any C assignment, loop, branch, and label. As can be

seen, the DFCSSA form initially requires a larger num-

ber of Fi statements that the original SSA form. How-

ever, after optimizing Fi statements with identical

arguments and reusing previously merged Fi statements

as subexpressions (in the case of argument supersets),

the total number of Fi statements decreases consider-

ably (even below those of the original SSA form).

Thus, the overhead of DFCSSA over SSA materializes

in a temporary increase in memory consumption.

8 Conclusion

With DFCSSA, we have introduced a new variant of

the classical SSA form which we find very well suited

for hybrid hardware/software compilation tasks. It

allows a more concise representation of the program

structure as well as fast optimizations with low admin-

istrative overhead. The main disadvantage compared to

SSA, the increased compile-time memory require-

ments, is only temporary and no longer applies after

preparing the program representation for hardware

generation.
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