
Widening the Memory Bottleneck by
Automatically-Compiled Application-Specific
Speculation Mechanisms

Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

1 Introduction

The rate of improvement in the single-thread performance of conventional central
processing units (CPUs) has decreased significantly over the last decade. This is
mainly due to the difficulties in obtaining higher clock frequencies. As a conse-
quence, the focus of development has shifted to multi-threaded execution models
and multi-core CPU designs instead. Unfortunately, there are still many important
algorithms and applications that cannot easily be rewritten to take advantage of this
new computing paradigm. Thus, the performance gap between parallelizable algo-
rithms and those depending on single-thread performance has widened significantly.
Application-specific hardware accelerators with optimized pipelines are able to pro-
vide improved single-thread performance, but have only limited flexibility and re-
quire high development effort compared to programming software-programmable
processors (SPP).

Adaptive computing systems (ACS) combine the high flexibility of SPPs with
the computational power of a reconfigurable hardware accelerator (e.g., using field-
programmable gate arrays, FPGA). While ACSs offer a promising alternative com-
pute platform, the compute-intense parts of the applications, the so-called kernels,
need to be transformed to hardware implementations, which can then be executed on
the reconfigurable compute unit (RCU). Not only performance, but also better us-
ability are key drivers for a broad user acceptance and thus crucial for the practical
success of ACSs. To this end, research for the past decade has focused not only on
ACS architecture, but also on the development of appropriate tools which enhance
the usability of adaptive computers. The aim of many of these projects is to create
hardware descriptions for application-specific hardware accelerators automatically
from high-level languages (HLL) such as C.

Benjamin Thielmann · Jens Huthmann · Thorsten Wink · Andreas Koch
Embedded Systems and Applications Group, Technische Universität Darmstadt, Germany
e-mail: {thielmann,huthmann,wink,koch}@esa.cs.tu-darmstadt.de

1

2 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

To achieve high performance, the parallelism inherent to the application needs
to be extracted and mapped to parallel hardware structures. Since the extraction
of coarse-grain parallelism (task/thread-level) from sequential programs is still a
largely unsolved problem, most practical approaches concentrate on exploiting
instruction-level parallelism (ILP). However, ILP-based speed-ups are often lim-
ited by the memory bottleneck. Commonly, only 20% of the instructions of a pro-
gram are memory accesses, but they require up to 100x the execution time of the
register-based operations [13]. Furthermore, memory data dependencies also limit
the degree of ILP from tens to (at the most) hundreds of instructions, even if support
for unlimited ILP in hardware is assumed [10].

For this reason, memory accesses need to be issued, processed, and dependencies
resolved as quickly as possible. Many proposed architectures for RCUs rely on local
low-latency high bandwidth on-chip memories to achieve this. While these local
memories have become more common in modern FPGA devices, their total capacity
is still insufficient for many applications and low-latency access to large off-chip
memory remains necessary for many applications.

As another measure to widen the memory bottleneck for higher ILP, speculative
memory accesses can be employed [6]. We use the general term “speculative” to
encompass uncertain values (has the correct value been delivered?), control flow
(has the correct branch of a conditional been selected and is the access needed in
this branch?), and data dependency speculation (have data dependencies been re-
solved?). To efficiently deal with these uncertainties (e.g., by keeping track of spec-
ulative data and resolving data dependencies as they occur), hardware support in
the compute units is required. We will describe an approach that efficiently gen-
erates these hardware support structures in an application-specific manner from a
high-level description (C program), instead of attempting to extend the RCU with
a general-purpose speculation block. To this end, we will present the speculation-
handling micro-architecture PreCoRe, the high-level language hardware compile
flow Nymble, and the back-end memory system MARC II, which was tuned to sup-
port the speculation mechanisms.

2 Overview

The development of a compiler and an appropriate architecture is a highly interde-
pendent task. Most of the high-level language to hardware compilers developed so
far use static scheduling for their generated hardware datapaths. A major drawback
of this approach is its handling of variable-latency operators, which forces a stati-
cally scheduled datapath to completely stall all operations on the accelerator until
the delayed operation completes. Such a scenario is likely to occur when accessing
cached memories and the requested data cannot be delivered immediately. Dynamic
scheduling can overcome this issue, but has drawbacks such as its complex execu-
tion model, which results in considerable hardware overhead and lower clock rates.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 3

Furthermore, in itself, it does not address the memory bottleneck imposed by the
high latencies and low bandwidth of external memory accesses.

Due to these limitations, RCUs are becoming affected by the processor/mem-
ory performance gap that has been plaguing CPUs for years [10]. But since RCU
performance depends heavily on exploiting parallelism with hundreds of parallel
operators, RCUs suffer a more severe performance degradation than CPUs, which
generally have only few parallel execution units in a single core.

The quest for high parallelism in ACSs further emphasizes this issue. Control
flow parallelism allows to simultaneously execute alternative precluding branches,
such as those in an if/else construct, even before the respective control condition has
been resolved. However, such an exploitation of parallel control flows may cause ad-
ditional memory traffic. In the end, this can even slow down execution over simpler
less parallel approaches.

A direct attempt to address the negative effect of long memory access latencies
and insufficient memory bandwidth is the development of a sophisticated multi-
port memory access system with distributed caches, possibly supported by multiple
parallel channels to main memory [17]. Such a system performs best if many in-
dependent memory accesses are present in the program. Otherwise, the associated
coherency traffic would become a new bottleneck. Even though this approach helps
to benefit from the available memory bandwidth and often reduces access latencies,
stalling is still required whenever a memory access cannot be served directly from
one of the distributed caches.

Load value speculation is a well-studied, but rarely used technique to reduce the
impact of the memory bottleneck [19]. Mock et al. were able to prove by means of
a modified C compiler, which forced data speculation on an Intel Itanium 2 CPU ar-
chitecture where possible, that performance increases due to load value speculation
[22] of up to 10% were achievable. On the other hand, the Itanium 2 roll-back mech-
anism, which is based on the Advanced Load Address Table (ALAT), a dedicated
hardware structure that usually needs to be explicitly controlled by the program-
mer [20], produces performance losses of up to 5% under adverse conditions with
frequent misspeculations.

Research on data speculation methods and their accuracy has produced a broad
variety of data predictors. History based predictors select one of the previously
loaded values as the next value, solely based on their occurrence probability. Stride
predictors do not store absolute values, but determine the offset between the suc-
cessive loaded values. Here, instead of an absolute value, the most likely offset is
selected. In this manner, sequences with constant offset between elements can be
predicted accurately. Both techniques have proven to be beneficial and do not re-
quire long learning time, but both fail to provide good results for complex data se-
quences. Thus, more advanced techniques, such as context-based value predictors,
predict values or strides as the function of a previously observed data sequence [24].
Performance gains are achievable if the successful prediction rate is high, or if the
penalty to recover from misspeculations is very low.

The load value speculation technique is especially beneficial for statically sched-
uled hardware units, since now even the variable-latency cached read operations

4 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

give the appearance of completing in constant time (by returning a speculated value
on cache misses). This allows subsequent operations to continue to compute spec-
ulatively, instead of stalling non-productively. As the predicted values may turn out
to be incorrect, the microarchitecture must be extended to re-execute the affected
parts of the computation with correct operands (replayed), and commit only those
results computed from values that were either correctly speculated or actually re-
trieved from memory. In this approach, memory reads are the sole source of specu-
lative data, but intermediate computations may be affected by multiple reads. Even
a correct speculation might be poisoned by a later incorrectly speculated read value.
Ideally, only those computations actually affected by the misspeculated value need
to be replayed. While this could be handled at the granularity of individual opera-
tors, it would require complex control logic similar to that of dynamically scheduled
hardware units. As an alternative, our proposed approach will manage speculation
on groups of operators organized as Stages, which are similar to the start cycles in a
static schedule.

It is important to note that by continuing execution speculatively, an increased
number of memory read accesses is issued and then possibly replayed onece or sev-
eral times, increasing the pressure on the memory system even more. Additionally,
data dependency violations are likely to occur in such an out-of-order execution of
accesses and also need to be managed. We propose prioritization and data depen-
dency resolution schemes to address these issues a run-time.

The speculation support mechanisms, collectively named PreCoRe, are
lightweight extensions to a statically scheduled datapath; they do not require the
full flexibility (and corresponding overhead) of datapaths dynamically scheduled
at the level of individual operators. PreCoRe focuses on avoiding slow-downs of
the computation compared to a non-speculative version (by not requiring additional
clock cycles due to speculation overhead), even if all speculations would fail con-
tinuously. The PreCoRe microarchitecture extensions are automatically generated
in an application-specific manner using the Nymble C-to-hardware compiler. At
run-time, they rely on the MARC II memory subsystem to support parallel mem-
ory accesses and handle coherency issues. Together, these components provide an
integrated solution to enable efficient speculative execution in adaptive computing
systems.

3 The PreCoRe Speculation Framework

PreCoRe (predict, commit, replay) is a new execution paradigm for introducing load
value speculation into statically scheduled data paths: Load values are predicted on
cache misses to hide the access latency on each memory read request. Once the
true value has actually been retrieved from the memory, one of two operations must
happen: If the previous speculatively issued value matches the actual memory data,
PreCoRe commits all dependent computations which have been performed using
the speculative value in the meantime as being correct. Otherwise, PreCoRe reverts

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 5

those computations by eliminating speculatively generated data and issuing a re-
play of the affected operations with corrected values. To implement the PreCoRe
operations, three key mechanisms are required. First, a load value speculation unit
is needed to generate speculative data for each memory read access within a single
clock cycle. Second, all computations are tagged with tokens indicating their spec-
ulation state. The token mechanism is also used to commit correct or to eliminate
speculative computations. Third, specialized queues are required to buffer interme-
diate values, both before they are being processed as well as to keep them available
for eventual replays. All three key mechanism will be introduced and discussed in
this section.

3.1 Load Value Speculation

Evidently the benefit achieved by speculation is highly dependent on the accuracy
of the load value prediction. Fortunately, data speculation techniques have been well
explored in the context of conventional processors [28, 3].

It is not possible in the spatial computing paradigm (with many distributed loads
and stores) to efficiently realize a predictor with a global perspective of the execution
context. This is the opposite of processor-centric approaches, which generally have
very few Load Store Units (LSU) that are easily considered globally. On an RCU,
the value predictors have a purely local (per port) view of the load value streams.
This limited scope will have both detrimental and beneficial effects: On one hand,
a predictor requires more training to accumulate enough experience from its own
local data stream to make accurate prediction. On the other hand, predictors will
be more resilient against irregular data patterns (which would lead to deteriorated
accuracy) flowing through other memory ports.

Using value speculation raises the question of how to train the predictors, specif-
ically, when the underlying pattern database (on which future predictions are based)
should be updated: Solely if a speculation has already been determined as being cor-
rect/incorrect? Since this could entail actually waiting for the read of main memory,
it might take considerable time. Or should the speculated values be assumed to be
correct (and entered into the pattern database) until proven incorrect later? The latter
option was chosen for the PreCoRe, because a single inaccurate prediction will al-
ways lead to the re-execution of all later read operations, now with pattern databases
updated with the correct values. The difference to the former approach is that the
predictor hardware needs to be able to rollback the entire pattern database (and not
just individual entries) to the last completely correct state once a speculation has
proven to be incorrect. One of the overarching goals of PreCoRe remains to support
these operations without slowing down the datapaths over their non-speculative ver-
sions (see Section 6).

6 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

3.1.1 Predictor Architecture

I2

...

In

I1

I0

I'2

...

I'n

I'1

I'0

LR
U

()

D
0

D
1

..
.

D
m

M
u

lt
ip

le
xe

r
Value

History
Table

VHP

C0 ... CmC1

+ Weight

max()

sel()

D
at

a
Le

ar
n

P
re

d
ic

te
d

D
at

a

D
a

ta
R

e
q

u
es

t

(2n×ld(m) × m×c)

Value History
Pattern

ShadowMaster

Cm -> Probability of value Dm

Dm -> Stored values

In -> Last confirmed value index

I'n -> Last speculative value index

m -> Number of stored values

n -> Length of stored value sequence

c -> Number of bits for storing probability

Fig. 1 Local history-based load value predictor

The value predictors (shown in Figure 1) follow a two-level finite-context
scheme, an approach that was initially used in branch prediction. The predictions
exploit a correlation of a stored history of prior data values to derive future values
[28]. The precise nature of the correlation is flexibly parametrized: The same base
architecture is used to realize both last value prediction (which predicts a future
value by selecting it from a set of previously observed values, e.g., 23-7-42-23-7-42)
and stride prediction (which extrapolates a new value from a sequence of previously
known strides, e.g., from the strides 4-4-8-4, the sequence 0-4-8-16-20-24-28-36-
40 is predicted). A PreCoRe value prediction unit operates parallel last-value and
stride sub-predictors in tournament mode, where a sub-predictor is trusted until it
mispredicts, leading to a switch to the other sub-predictor. Since both sub-predictors
use the same micro-architecture (with exception of the correlation computation), we
will focus the discussion on just one mode, namely the value-speculation.

The predictor not only keeps track of the last m different values D1, . . . ,Dm in
a least-recently-used fashion in its pattern database D, but also maintains the n-
element sequence I1, . . . , In in which these values occurred (the Value History Pat-
tern, VHP). Each of the n elements of I is an dlog2 me-bit wide field holding an index
reference to an actual value stored in D. I is used in its entirety to index the Value
History Table (VHT) to determine the most likely of the currently known values:
Each entry in the VHT expresses the likelihood for all of the known values Di as a
c-bit unsigned counter Ci, with the highest counter indicating the most likely value
(on ties, the smallest i wins). The VHT is thus accessed by a n · dlog2 me-bit wide

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 7

address and stores m ·c bits wide words. On start-up, each VHT counter is initialized
to the value 2c−1, indicating a value probability of ≈ 50%.

To handle mispredictions, we keep two copies of the VHP as I and I′: I is the mas-
ter VHP, which stores only values that were already confirmed as being correct by
the memory system. However, the stored values may be outdated with respect to the
actual execution (since it might take awhile for the memory system to confirm/refute
the correctness of a value). The shadow VHP I′ (shown with gray background in the
figure) additionally includes speculated values of unknown correctness. It accurately
reflects the current progress of the execution. Values will be predicted based on the
shadow VHP until a misprediction is discovered. The computation in the datapath
will then be replayed using the last values not already proven incorrect. A similar
effect is achieved in the predictor by copying the master VHP I (holding correct
values) to the shadow VHP I′ (basing the next predictions on the corrected values).
[25] explains the predictor in greater detail and shows a step-by-step example of its
operations.

The predictor is characterized by the two parameters n and m. The first is the
maximum length of the context sequence, the second the maximum number of dif-
ferent values tracked. The state size of VHT and VHP (and thus the learning time
before accurate predictions can be made) grows linearly in n and logarithmically in
m. Note that in a later refinement, optimum values for n and m could be derived by
the compiler using profile-guided optimization methods.

3.2 Token Handling Mechanisms

The PreCoRe mechanisms are inserted into the datapath and controller of a stati-
cally scheduled hardware unit. They are intended to be automatically created in an
application-specific manner by the hardware compiler. With the extensions, cache-
misses on reads no longer halt execution due to violated static latency expectations,
but allow the computation to proceed using speculated values. Variable latency reads
thus give the appearance of being fixed-latency operators that always produce/accept
data after a single cycle (as in cache-hit case).

In this manner, predicted or speculatively computed values propagate in the data-
path. However, only reversible (side effect-free) operations may be performed spec-
ulatively to allow replay in case of a misprediction. In our system, write operations
thus form a speculation boundary: A write may only execute with operand values
that have been confirmed as being correct. If such a confirmation is still absent, the
write will stall until the confirmation arrives. Should the memory system refute the
speculated values, the entire computation leading up to the write will be replayed
with the correct data.

This is outlined in the example of Figure 2.a. Here, the system has to ensure
that the data to be written has been correctly predicted in its originating READ node
(the sole source of speculated data in the current PreCoRe prototype) before the
WRITE node is allowed to execute. This is achieved for the READ by comparing

8 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

Stage 1

Stage 2

Stage 3

Stage 5

data flow token flow

commit token c fail token f

validation speculative queue

a)
q

Stage 4

Token
Logic

c c cf

f

Stage 1

Stage 2

Stage 3

Stage 5 b)

D
e

la
y

Stage 4

Ai Bi Ci READ

SUB SUB

NOP MUL

NOP ADD

WRITE

SUB SUB

MULNOP

NOP ADD

WRITE
qq

Ai

q

Bi

q

Ci

q

READ
q

Fig. 2 Datapath and speculation token processing

the predicted read result, which is retained for this purpose in an output queue in
the READ node, with the actual value received later from the memory system. Until
the comparison has established the correctness of the predicted value, the data to
be written (which was computed depending on the predicted read value) is held
in an input queue at the WRITE node. This queue also gives the WRITE node the
appearance of a single-cycle operation, even on a cache-miss.

Figure 2.b sketches the extension of the initial statically scheduled datapath
with PreCoRe: Explicit tokens track the speculativity of values and their confir-
mation/refutation events. This is indicated by additional edges that show the flow of
tokens and validation signals.

As an example, if the READ node has confirmed a match between predicted and
actual data values, it indicates this by sending a Commit-Token (shown as C in the
Figure) to the Token Logic. However, to reduce the hardware complexity, this to-
ken is not directly forwarded to the WRITE node waiting for this confirmation, as
would be done in operator-level speculation. Instead, the speculativity is tracked per
data path Stage (corresponding to the operators starting in the same clock cycle in
a static schedule). Only if all operators in a Stage confirm their outputs as being
correct, is the C-Token actually forwarded to the WRITE operator acting as spec-
ulation boundary, confirming as correct the oldest WRITE operand with uncertain
speculation status. Speculated values and their corresponding C- and F-Tokens (in-
dicating failed speculation) always remain in order. Thus, no additional administra-
tive information, such as transaction IDs or similar, is required. Tokens are allowed
to temporarily overtake their associated data values up to the next synchronization
point (see Section 3.3) by skipping Stages that lack speculative operators (READ
nodes). The speculation output status of a Stage depends on that of its inputs: It will

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 9

be non-speculative, if no speculative values were input, and speculative, if even a
single input to the Stage was speculative. In the example, Stages 2. . . 4 do not con-
tain READs, the C-Token can thus be directly forwarded to the WRITE in Stage 5,
where it will be held in a token queue until the correctly speculated value arrives
and allows the WRITE to proceed. In parallel to this, pipelining will have lead to the
generation of more speculative values in the READ, which continue to flow into the
subsequent Stages.

If the initial speculation in the READ node failed (the output value was discovered
to be mispredicted), all data values which depended on the misspeculated value have
to be deleted, and the affected computations have to be replayed with the correct
no-longer speculative result of the READ. This is achieved by the Token Logic rec-
ognizing that the misspeculated READ belonged to Stage 1, and thus the entire Stage
is considered to have misspeculated. All Stages relying on operands from Stage will
be replayed. The F-Token does not take effect immediately (as the C-Token did), but
is delayed by the number of Stages between the the speculated READ and the WRITE
at the speculation boundary. In the example, the F-Token will be delayed by three
Stages, equivalent to three clock cycles of the datapath actually computing. If the
datapath were stalled (e.g., all speculative values have reached speculation bound-
aries, but could not be confirmed yet by memory accesses because the memory
system was busy), these stall cycles would not count towards the required F-Token
delay cycles. Delaying the effect of the F-Token ensures that the intermediate val-
ues computed using the misspeculated value in Stages 2 . . . 4 have actually arrived
in the input queues of the WRITE operation in Stage 5, and will be held there since
no corresponding C- or F-Token for them was received earlier. At this time, the
delayed F-Token arrives at the WRITE and deletes three sets (corresponding to the
three intermediate Stages) of potentially incorrect input operands from the WRITE
input queues and thus prevents it from executing. The replay of the intermediate
computation starts immediately once the last attempt has been discovered to have
used misspeculated values. Together with the correct value from the READ (retrieved
from memory), the other nodes in Stage 1 re-output their last results (which may still
be speculative themselves!) from their output queues and perform the computations
in Stages 2. . . 4 again. A more detailed example of token handling is given in [26].

3.3 Queue Management for Speculation

First introduced in the previous Section, operator output queues (re-)supply the data
to allow replay operations and are thus essential components of the PreCoRe archi-
tecture. Note that some or all of the supplied values may be speculative Data values
are retained until all outputs of a stage have been confirmed and a replay using
these values will no longer be required. Internally, each queue consists of separate
sub-queues for data values and tokens, with the individual values and tokens being
associated by remaining strictly in order: Even though tokens may overtake data val-
ues between Stages, their sequence will not be changed. In our initial description,

10 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

forwarded
values

available
values

SpecRead ReadWrite

Outgoing

OverwriteIndex

replay region

forward
fail token

speculative
values

confirmed
values

Incoming

commit

fail

remove

replay

b)

a)

d)

c)

e)

f)

Fig. 3 Value regions in speculative queue

we will concentrate on the more complex output queues. Input queues are simpler
and will be discussed afterwards.

Figure 3 gives an overview of an output queue, looking at it from the incoming
(left side) and outgoing (right side) perspectives.

On the incoming side, values are separated into two regions: speculative values
(a) and confirmed values (b). Since all data values are committed sequentially and
no more committed data may arrive once the first speculative data entered the queue,
these regions are contiguous. Similarly, outgoing values are in different contiguous
regions depending on their state: (d) is the region of values that have already been
forwarded as operands to a consumer node and are just retained for possible replays,
(c) are the values that are available for forwarding. Conventional queue behavior is
realized using the Write pointer to insert newly incoming speculative data at the start
of region (a), and the Read pointer to remove a value from the end of region (d) after
the entire Stage has been confirmed. Two additional pointers are required to imple-
ment the extra regions: Looking into the queue from the outgoing end, SpecRead
determines the first value which has not been forwarded yet at the end of region (c),
and OverwriteIndex points to the last confirmed value at the beginning of region (b).

On misspeculation in a predecessor Stage (indicated by an incoming F-Token),
the speculative values making up region (a) are discarded by setting Write back to
OverwriteIndex. If the queue does not hold confirmed values (regions (c) and (d)
are empty), the F-Token is passed on (f) through the output queue into subsequent
Stages.

Confirmed values are forwarded to the consumer nodes but retained in the queue
for replays (moving from region (c) into region (d) by manipulation of the SpecRead
pointer). If operators in the same Stage request a replay, SpecRead is reset to Read,
making all of the already forwarded but retained values available again for re-
execution of subsequent stages, with (f) now acting as a replay region (e). Retained

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 11

CacheCacheCacheCache

READ 3READ 2WRITE READ 1

CacheCacheCacheCache

READ 3READ 2WRITE READ 1

R
X

C

R
X

C

R
X

C

a) b)

re-execute/skip signal MARC II coherency bus RXC Re-execution CAM

MARC II MARC II

Fig. 4 Resolution schemes for RAW memory dependencies

values are removed from the queue only if all operators in the Stage have confirmed
their execution (and thus ruled out the need for a future replay). This final removal
is achieved using the Read pointer. For a detailed example of the output queue op-
eration, please refer to [26].

Input queues have a similar behavior, but do not need to confirm speculative data
(that was handled in their predecessor’s output queue).

3.4 Dynamic Resolution of RAW Dependencies

The speculative PreCoRe execution scheme enables the prefetching of memory
reads: A read which might originally be scheduled after a write, is allowed to exe-
cute speculatively before the write has finished. This reordering potentially violates
a read-after-write (RAW) memory data dependency. Thus, all of the memory read
accesses potentially depending on the write must remain in speculative state until
the memory write access itself has been committed. Static points-to/alias analysis
in the compiler can remove some of the potential dependencies and guarantee that
reads and writes will be to non-overlapping memory regions (allowing out-of-order
prefetching). However, in most realistic cases, such guarantees cannot be assured
at compile time. Instead, dynamic detection and correction of dependency violation
due to speculatively prefetched reads must be employed to handle the general case.
PreCoRe supports two such mechanisms.

Universal Replay: This approach is a straightforward, low area, but sub-
optimal extension of the existing PreCoRe commit/replay mechanisms: All RAW
dependency-speculated reads re-execute as soon as all writes have completed, re-
gardless of whether an address overlap occurred. The number of affected reads is

12 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

only limited by the PreCoRe speculation depth, which is the number of potentially
incorrectly speculated intermediate results that can be rolled back. In PreCoRe, the
speculation depth is determined by the length of speculation value queues on the
Stages between the possibly dependent read and write nodes.

In practice, Universal Replay is less inefficient as it appears at first glance: As-
suming that the data written by all write operations is still present in the cache, the
replays will be very quick. Also, in the scheme, all writes are initially assumed to
induce a RAW violation. If a write is only conditionally executed, the potentially
dependent reads can be informed if the evaluation of the control condition prevents
the write from executing at all. This is communicated from each write to the reads
using a Skip signal (see Figure 4.a). If all writes have been skipped, there no longer
is a risk of a RAW violation, and the data retrieved by the reads will be correct
(and can be confirmed as such). On the other hand, the replays in this scheme can
become expensive if the write data has been displaced from the cache, or if the re-
played computation itself is very complex. Thus, it is worthwhile to examine a better
dependency resolution scheme.

Selective Replay: This more refined technique avoids unnecessary replays by
actually detecting individual read/write address overlaps on a per-port basis and
replays only those RAW-speculated reads that were actually affected by writes. To
this end, read ports in the memory subsystem are extended with dedicated hardware
structures (RXC, see Section 5.3) to detect and signal RAW violations. Combined
with the Skip signal to ignore writes skipped due to control flow, replays are only
started for specific read nodes if RAW violations did actually occur.

3.5 Access Prioritization

PreCoRe fully exploits the spatial computing paradigm by managing operations on
the independent parallel memory ports supplied by the MARC II memory subsys-
tem (see Section 5). However, internally to MARC II, time-multiplexed access to
shared resources, such as buses or the external memory itself, becomes necessary.
By carefully prioritizing different kinds of accesses, the negative performance im-
pact of such time-multiplexing can be reduced. PreCoRe influences these priorities
not only to best use the available bandwidth on the shared resources for useful ac-
cesses, but also to employ spare bandwidth to perform prefetching. A number of
techniques is used to manage access priorities.

The simplest approach consists of statically allocating the priorities at compile
time. In PreCoRe, the write port always executes with the highest priority, since
it will only be fed with non-speculative data and will thus always be useful. Read
operations placed early in the static schedule will be assigned a higher priority than
read operations scheduled later, so their data will already be available when later
stages execute. In Figure 5.a, READ1 thus executes with higher priority than READ2.

Figure 5.b shows a scenario where the address of READ2 is dependent on the
result of READ1. In PreCoRe, READ1 will provide a value-speculated result after a

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 13

Stage 1

Stage 2

Stage 3

Stage n

Stage 1

Stage 2

Stage 3

Stage 4

Stage 1

Stage 2

Stage 3

Stage 4

a) b)

Stage 1

Stage 2

Stage 3

Stage 4 c)

Static Priority Value-Speculation Priority

Queue-Balancing Priority Control-Speculation Priority

d)
select

Ai Bi Ci Ai

Ai Ai
Bi Bi Ci

READ 1
q

READ 1
q

READ 1
q

READ 1
q

GAg

NOP NOPSUB

SUB

SUB

CMP

MUX

MUL READ 2
q

READ 2
q

READ 2
q

READ 2
GAg

q

WRITE

WRITE

Bi

WRITE

Di

Ci

Fig. 5 Scenarios for priority-based shared resource arbitration

single clock cycle, which READ2 will use as address for prefetching. However, in
doing so, it will hog the shared MARC II resources performing a potentially useless
access (if READ1 misspeculated). These resources would have been better used to
execute the non-address speculated READ1 of the next loop iteration, which is an
access that will always be useful. Value-speculation priority dynamically lowers
the priority of accesses operating on speculated addresses and/or data values, thus
giving preferential treatment to accesses using known-correct operands.

In some situations, the simple static per-port priority can even lead to a loss of
performance. This occurs specifically if the outputs of multiple reads at the same
stage converge at a later operator. An example for this is shown in Figure 5.c. Here,
the static priority would always prefer the read assigned to the lowest port number
over another one in the same Stage. Assuming READ1 had the lower port number, it
would continue executing until its output queue was full. Only then would READ2
be allowed to fetch a single datum. A better solution is to dynamically lower the pri-
ority of reads already having a higher fill-level of non-speculated values (=actually
fetched from memory) in their output queues.

14 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

As described above, performance gains may be achieved by allowing read oper-
ators to immediately reply with a speculated data value on a cache-miss. Orthogo-
nal to this data speculation approach is speculating on whether to execute the read
operator at all. Such control-speculation is performed on software-programmable
processors using branch prediction techniques. While this approach is not directly
applicable in the spatially distributed computation domain of the RCU (all ready
operators execute in parallel), it does have advantages when dealing with shared
singleton resources such as main memory/buses: For software, branch prediction
would execute only the most likely used read in a conditional, while the RCU would
attempt to execute the reads on all branches of the conditional in parallel, leading to
heavy competition for the shared resources and potentially slowing down the overall
execution (on multiple parallel cache misses).

To alleviate the problem, we track which branch of a parallel conditional actually
performed useful computations by recording the evaluated control condition. The
read operators in that branch will receive higher priorities, thus preventing reads in
less frequently-taken branches from hogging shared resources. To this end, we use
decision tracking mechanisms well established in branch prediction, specifically the
GAg scheme [29], but add these to the individual read operators of the parallel
conditional branches (see Figure 5.d). The trackers are connected to the controlling
condition for each branch (see [17] for details) and can thus attempt to predict which
branch of the past branching history will be useful next, prioritizing its read oper-
ators. In case of a misprediction, all mistakenly started read operations are quickly
aborted to make the shared resources available for the actually required reads.

To exploit the advantages of the different schemes, they are all combined into a
general dynamic priority computation.

Pdyn(r) = (Wq ·Pq(r)+(1−Wq) ·Phist(r)) ·2−(Wspec·IsSpec(r))

The dynamic priority Pdyn(r) for each read operator r is thus computed from the
queue-balancing priority Pq(r), the control-speculation priority Phist(r) based on its
GAg predictor, and its speculative predicate IsSpec(r), which is = 1 if r is dynam-
ically speculative for any reason (input address speculated and not yet confirmed,
control condition not yet evaluated, still outstanding writes for RAW dependency
checks), and = 0 otherwise. This predicate will be used to penalize the priority of
speculative accesses. Wx are static weights that can be set on a per-application basis,
potentially even automatically by sufficiently advanced analysis in the compiler. Wq

is used to trade-off between queue balancing and control history prediction, while
Wspec determines the priority penalty for speculative accesses. See [27] for a more
detailed discussion and an evaluation of the performance impact of these parame-
ters.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 15

4 The Nymble C-to-Hardware Compiler

To discuss the integration of PreCoRe into the Nymble compile flow, we will first
give an overview of the initial C-to-hardware compilation process. It relies on clas-
sical high-level synthesis techniques to create synthesizable RTL descriptions of the
resulting statically scheduled hardware units.

4.1 Control-Data Flow Graph Generation

We use a simple program computing the factorial function (Listing 1) as running
example for the compilation flow.

Listing 1 Sample program for hardware compilation

i n t f a c t o r i a l (i n t n) {
i n t a = 1 ;
i n t i ;

f o r (i =1 ; i<n ; ++ i }
a = a ∗ i ;

re turn a ;
}

The Nymble front-end relies on traditional compiler techniques (specifically,
those of the Scale framework [9] [7]) to lex and parse the input source code, per-
form machine-independent optimizations, finally representing the program as Con-
trol Flow Graph (CFG) in Static Single Assignment (SSA) form [1]. Figure 6 shows
the SSA-CFG of our sample program. SSA-CFGs are a commonly used interme-
diate representation in modern software compilers and well suited for the actual
hardware compilation.

In SSA form, each variable is written only once, but may be read multiple times.
Multiple assignments to the same variable create new value instances (versions of
the variable, often indicated by subscripts). A Φ function selects the current value
instance when multiple value instances converge at a CFG node. This happens, e.g.,
for conditionals for the true and false branches, or for the entering and back-edge of
a loop.

Given the abundance of flip-flops on most current reconfigurable devices, the
value instances of the SSA form could be mapped directly to hardware registers
(but also see comment below). To build the computations between the registers, the
data-flow from source variables through operators to destination variables has to be
extracted. This is easily achievable in SSA form, since a value can originate only

16 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

from one specific assignment. The flow of values is expressed as a Data Flow Graph
(DFG), shown in Figure 7 for the example.

While it would suffice for the synthesis of the datapath of the hardware unit (by
mapping the operators to compute nodes and the edges to appropriate wiring), the
control flow (e.g., the loop termination condition) must still be considered when
synthesizing the controller. This is achieved by extending the DFG with control
edges (shown as dotted lines in Figure 8, labeled on which boolean value of the
controlling condition they activate). Control edges carry the boolean results of con-
ditions to either activate specific nodes (e.g., the end node indicating the completion
of hardware execution) or to lect which value instance to pass through the multi-
plexers representing the Φ functions. For the loops shown here, the Φ functions at
the loop heads are controlled by a dedicated init node that outputs true on its control
edge if loops are being entered for the first time, and false otherwise.

As a refinement of mapping SSA value instances to registers, it is possible to
remove purely intermediate variables and replace them by simple wiring to their
computing operator in the DFG, instead of allocating a hardware register to hold the
intermediate result.

a0 = 1
i0 = 1

a1 = Φ(a0,a2)
i1 = Φ(i0,i2)

a2=a1*i1

i2=i1+1

i1 < n

return a1

truefalse

Fig. 6 SSA-CFG of sample program

4.2 Operation Scheduling

An acyclic CDFG could be mapped directly to a purely combinational datapath,
evaluating the entire computation in a single clock cycle. However, this approach

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 17

a0

0

a1

i2

*

a2

0

i0

Φ(…)

i1

Φ(…)

+

1

return

<

n

Fig. 7 Data Flow Graph (DFG) of sample program

a0

0

a1

i2

*

a2

0

i0

Φ(…)

i1

true

Φ(…)

+

1

return

<

false

n

true
false

end

true

init

Fig. 8 Control-Data Flow Graph (CDFG) of sample program

would lead to slow clock frequencies and not allow the execution of loops. Thus,
the conventional solution is to distribute the computation over multiple clock cycles,
leading to both faster clocks as well as allowing cycles (with inserted registers). In a
simple implementation of this approach, a hardware registers could be inserted after
each operation. Note that further optimizations from high-level hardware synthesis
might deviate from this scheme (e.g., packing multiple operators into a clock cycle
by operator chaining [21]).

18 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

After realizing the computation in sequential logic, the question remains how to
control its execution (e.g., when to assert the registers’ load inputs to accept newly
computed values). This decision is called scheduling and can be performed both
statically (at compile time) or dynamically (at execution time).

Dynamic scheduling does have numerous advantages: It can easily handle
variable-latency operators, such as cached memory accesses, as the decision to store
the read value is made only when the read port has indicated that the datum is
available. Similarly, conditionals with differing computation times in their true and
false branches can also consider the specific path taken at execution time to load
the newly computed values at the correct time. Due to these advantages, dynamic
scheduling has been used in a number of hardware compilers, such as COMRADE
[5], CHiMPS [23], or CASH [2].

On the other hand, the additional logic required to make scheduling decisions at
run-time potentially carries a large area overhead, especially when complex control
flows have to implemented. In static scheduling, the times when to load newly com-
puted values into registers and when to start new operations are determined at com-
pile time. This is easy for fixed-latency operators, and the case of imbalanced con-
ditional paths can be addressed by padding the shorter path with additional registers
to the length of the longer path, equalizing the lengths. However, variable-latency
operators pose a significant problem. In practice, they are assumed to execute in a
fixed expected latency (e.g., single cycle on a cache hit). Dedicated logic detects at
execution time when this assumption does not hold (e.g., on a cache miss), and halts
(stalls) the entire datapath until the outstanding datum is actually available. Only
then is execution allowed to proceed, giving the rest of the datapath the impression
that variable latency operators always provide their results within a fixed time. As an
advantage, the control logic for orchestrating the execution of a statically scheduled
hardware unit can be implemented in a compact and fast fashion (often just using
multi-tapped shift registers). Hardware compilers using static scheduling include
GarpCC [4], ROCCC [8], and the base microarchitecture in the Nymble flow.

4.3 Hardware Synthesis in Nymble

With the fundamentals of the hardware synthesis now established, this section will
consider some of the details of the Nymble compilation process in greater detail.
Nymble actually partitions the SSA-CFG into a hierarchical CDFG, with each loop
appearing as a single variable-latency node in the parent CDFG. In this manner, ar-
bitrarily nested loop structures are supported. This is shown in Figure 9: The top
level CDFG is the entire factorial function, which accepts a parameter n from soft-
ware. At this level, the loop has been encapsulated as a single operation. When it
detects the loop termination condition, it signals the end of hardware execution to
the hardware/software interface layer [16] and passes back the computed factorial
from hardware to software.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 19

Top-Level Level 0

0

*

0

Φ(…)Φ(…)

+

1

return a

false

<

n

true
false

end

true

true

Loop 1 Level 1

SW → HW IO

HW → SW IO

init

Fig. 9 Hierarchically scheduled CDFG for sample program

Since we compile for the ACS target to a fully spatial hardware implementa-
tion with no operator reuse, we can employ a variant of the classical As-Soon-As-
Possible (ASAP) static scheduling algorithm [21], adding just minor extensions to
obey explicit constraints (discussed in Section 4.4).

Start times of operations are computed from the start times and expected laten-
cies of their predecessor operations. Outer loops are stalled until nested inner loops
explicitly signal their completion to the outer loop.

INITOR

St
ag

e
 II

II
St

ag
e

 0
St

ag
e

 I

Reg 2

Reg 1

Reg 0

Start

WRITE

SUB

Ai READ

Stall Controller

(State Machine)

Enable
Access
Finish

Fig. 10 Synthesized controller for a non-speculative datapath

20 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

The hardware controller, sketched in Figure 10, consists of a simple sequencer
Reg 0. . . Reg 2 that just asserts the start signals (if required) of operators scheduled
in the same cycle (called a Stage in PreCoRe terminology) and loads the interme-
diate results of each operator into registers the expected latency number of cycles
later. To support pipelining, the sequencer allows multiple stages to be active at
the same time. This is limited by backward data dependencies in the DFG, though,
which will lead to a longer Initiation Interval (II) between datapath starts. As a sec-
ond function beyond the sequencing, a Stall Controller also detects violations of
expected latency for variable-latency operators and stops the sequencing of all other
operations until the variable-latency operator has actually completed. In the base
version of Nymble, this applies to nested loops (treated as single operators), and
cached memory accesses. The latter will be handled differently with the PreCoRe
mechanisms described in the next Section.

4.4 Compiling for the PreCoRe Microarchitecture

PreCoRe requires the extension of the pure statically scheduled execution model of
the base version of Nymble to a semi-statically scheduled version that makes more
scheduling decisions at execution time, but far fewer than would be made in fully
dynamic scheduling. In this section, we will discuss the changes required to the
Nymble controller microarchitecture to integrate PreCoRe token handling (Section
3.2) and speculative queues (Section 3.3).

The Stage-based nature of PreCoRe speculation has an impact on the static
scheduling of multi-cycle operators in Nymble. In general, such multi-cycle opera-
tors will not support a partial replay, especially if they are obtained as third-party IP
blocks (e.g., floating-point cores etc.) and will lack the required functionality (injec-
tion of preserved state data into the internals of the operator on a replay). Thus, all
such operators are constrained in Nymble to be ASAP-scheduled either completely
before or after any reads (which initiate replays on a misprediction).

Some parts of the controller actually are simplified by using PreCoRe. Since
memory reads now become single-cycle operations due to value speculation, the
Stall Controller on a read cache miss is no longer required. However, the need to
support replays adds extra complexity. The microarchitecture of a controller sup-
porting PreCoRe is sketched in Figure 11, the key changes will be discussed next.

The simple sequencing registers in the original statically scheduled controller are
replaced by so-called Flow Control nodes in the PreCoRe controller. During normal
execution (no mispredicts), their behavior corresponds to those of the simple shift
register controller - the Start signal is delayed by a single clock cycle and passed
to the subsequent stage. However, special logic is required to handle replays and to
halt further computations in the operation pipeline as soon as a read is discovered to
have mispredicted.

The easier of the extensions deals with the management of the input queues in
read and write operators: Execution sequencing is only allowed to proceed if all

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 21

READ

St
ag

e
 II

II

St
ag

e
 0

St
ag

e
 I

Flow Control 00

Flow Control 10

Flow Control 20

q

AND

OR INIT
q

q

Ready for
Data

Start

Token &
Validation

q

Speculation
Queue

SUB

Ai

q

WRITE
q q

Fig. 11 Synthesized controller for PreCoRe-speculative datapath

input queues in the entire datapath have space (indicated by asserting their Ready
for Data signal) for the operands that would be incoming in the next cycle. Lacking
such space, sequencing at the datapath level is stopped, but all memory operators
are allowed to proceed internally, draining their input queues. Once queue space has
become available once more, datapath sequencing continues.

Flow Control nodes of Stages holding speculative operators (such as memory
reads) have another extension over the simple sequencing registers: They have in-
ternal queues to buffer incoming Start tokens. If their corresponding datapath Stage
requests a replay (a read discovered it mispredicted), the start tokens are reissued
from the Flow Control token queue to restart the subsequent Stages. If multiple
mispredictions occur, the re-issue rate of the replayed start tokens is throttled to
match the original Initiation Interval, thus keeping the static parts of the schedule
valid. Only once a Stage is confirmed in its entirety (precluding the need for a future
replay) is the start token removed from the Flow Control token queue. Analogously
to the capacity check for input queues in the datapath, execution in the controller is
only allowed to proceed if all Flow Control nodes with queues have space available
for incoming tokens. Otherwise, the controller is stopped, but the speculative reads
continue to execute and will (at some point in time) output and confirm the correct
data, removing a token from the Flow Control node responsible for their Stage, and
thus freeing up queue space. Please see [25] for further details.

Additional hardware (queues, token transition logic) will be inserted by Nymble
into the statically scheduled controller only at the places required by the current ap-
plication. This selective approach avoids the high overhead of relying on a general-
purpose speculation support unit.

Now that we have discussed the PreCoRe microarchitecture and its automatic
generation during hardware compilation, we can proceed to the last component of
the solution, namely the multi-port memory system specialized to support specula-
tive execution.

22 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

5 The MARC II Memory System

The multi-port cached memory system MARC II, initially presented in [17], has
since been extended to support efficient operation of the PreCoRe mechanisms.
PreCoRe relies on the memory subsystem to quickly satisfy the increased number
of accesses due to execution replays. Note that MARC II deals strictly with non-
speculative data, all value speculation occurs in PreCoRe itself. Furthermore, even
though PreCoRe gives the appearance of single cycle memory reads (due to the
value speculation), the scheme depends on low-latency replies from MARC II to
quickly determine whether to commit a computation on confirmed values, or replay
it due to a discovered misprediction.

5.1 Overview

The use of the spatially distributed computing paradigm on the adaptive computer
also requires an appropriate parallel memory system. While some approaches rely
purely on local on-chip memories (BlockRAMs), their limited size and lack of co-
herency protocols for shared accesses limits the scalability of the technique. In-
stead, we propose to use a shared memory system that gives the appearance of in-
dependent memory ports by providing each port with a distributed cache. Internal
coherency mechanisms ensure a consistent view of all ports on the shared mem-
ory. Implementation-wise, we combine parallel on-chip BlockRAMs to realize fast
caches, but still access the external off-chip main memory (shared with the software-
programmable processor on the ACS) for bulk data.

The MARC line of memory systems has always aimed to provide multi-port op-
eration supported by a dedicated cache infrastructure. In contrast, other ACS archi-
tectures often have at most a single port to external memory which is then explicitly
allocated during scheduling to single memory operations. If they can actually serve
multiple ports, they often have only very limited buffers (e.g., holding a DRAM row)
as port-local storage. In contrast, MARC I [15] already gave multiple independent
memory ports a coherent view of a shared multi-bank multi-port cache, allowing
up to four parallel accesses. While the central shared cache avoided all coherency
issues, it did not scale to larger numbers of ports and also limited the available clock
frequency due to its fully-associative organization.

To lift both restrictions, MARC II (shown in Figure 12) instead relies on dis-
tributed per-port caches with a simpler, but faster direct mapped organization in
on-chip BlockRAM. Since each MARC II per port-cache is larger than the MARC
I central cache, the lower cache hit rates due to the direct mapped organization do
not lead to slow downs. Since all of the caches operate independently, an large num-
ber of memory accesses can be served in parallel. Inter-port coherency is managed
explicitly by a dedicated Coherency Bus (CB, described in the next section). As
MARC I, MARC II is designed to isolate the hardware-independent core of the
system from the device-dependent memory controllers (QDR2-SSRAM, DDR2/3-

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 23

Datapath-Modules

Memory
Read

Memory
Write

TechMod

CachePort
(Read)

Arbiter

Victim
Cache

Arbiter

Datapath

MARC II

Priority Signals Memory Bus

Memory
Read

Coherency Bus

CachePort
(Read)

CachePort
(Write)

External
Memory

CPU

Fig. 12 Overview of the MARC II cache system

SDRAM, etc.), which are implemented as so-called TechMods. This allows the easy
retargeting of MARC II-based accelerators to different ACS platforms.

5.2 Cache System and Coherency Protocol

Ensuring coherency between distributed caches is a difficult problem that has been
the subject of much research, leading to protocols such as MSI, MESI, MOESI, etc.
However, by tailoring the MARC II coherency mechanisms to the requirements of
PreCoRe, we can employ a much simpler, low-overhead solution.

PreCoRe relies on load value speculation and does not support speculative writes.
Thus, a single Write Port suffices in the memory system. All memory writes (being
non-speculative) will have to be serialized through that port in program order (to

24 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

avoid violating WAW dependencies). This limitation is less severe than it appears,
since conventional programs execute 3x . . . 6x as many loads as stores (measured in
[11] for SPEC CPU 2006).

With the restriction to a single Write Port, we can employ a lightweight co-
herency protocol. Cache lines in a Read Port are either valid or invalid. In the Write
Port, they are either invalid (the cache line is not present), shared (the cache line
is present, and also present in at least one other Read Port cache) or exclusive (the
cache line is present and no other cache has it). Note that the explicit modified state,
common to general-purpose coherency protocols, is not required here, since the
Write Port cache only holds modified lines.

Cache-Hit?

no

CB-Hit?

Get cache line from
external memory

no

Get cache line from
other cache,

mark as shared

yes

Write data to cache

Update other
caches

yes

Shared cache
line?

invalidate

Cache-Hit?

no

CB-Hit?

Get cache line from
external memory

no

Get cache line from
other cacheyes

Deliver data to
readportyes

b)a)

Write requestRead request

Invalidate other
caches

no yes

Coherence
scheme

update

Fig. 13 Processing an access in a Read Port (a) and a Write Port (b)

Figure 13 sketches how requests from the datapath are handled by MARC II
caches on memory reads (a) and memory writes (b).

Whenever a read request is executed, it is checked first whether it is a cache hit. If
so, data can be provided in a single cycle from the Read Port cache without having
to interact with any other shared resource. Thus, cache hits can be served completely
independent of the actions of other ports. If the requested data is not available from
its cache (local cache miss), the request is forwarded to all other caches connected
to the CB by broadcast. Only if the request cannot be served by any of the other
caches (remote cache miss), must the external memory be accessed.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 25

The behavior for writes is slightly more complex. Again, the port first determines
whether the necessary cache line is present. If so, the new data is inserted into the
cache. If the modified line was shared with other Read Ports, coherency must be
ensured. This can happen in one of two user-selectable modes: In invalidate mode,
the Write Port tells the Read Ports holding an affected shared cache line to invalidate
it. If the Read Ports later require the cache line again, it will be requested over the CB
from the Write Port (which now holds the only copy). In update mode, the Write
Port immediately transmits its modified cache line over the CB to all Read Ports
holding the shared old versions (here, multiple copies of the line exist). If the write
is a local cache miss, the Read Port caches are accessed via the CB. On a remote
hit, the line is then marked as shared in the Write Port. Only if no port cache holds
the data is the external memory accessed.

5.3 MARC II Support for PreCoRe Operations

Obviously, the paradigm of spatially distributing computation can only be main-
tained in the MARC II front-end. The rest of the infrastructure consists of time-
multiplexed shared ressources (Coherency Bus, Memory Bus, TechMod, the actual
external memory). The ports compete for access to these resources: In case of a local
cache miss, the shared Coherency Bus must be accessed. On a remote cache miss,
the request is forwarded to the shared external Memory Bus. If the external memory
is in use (e.g., by the CPU), the access will have to wait until the memory becomes
available for the RCU.

MARC II allows the accelerator to provide additional information on the priority
of each access on a per-port basis: Each cache-port has its own priority-input, and
an arbitration mechanism considers the given priorities of all pending requests when
arbitrating the use of shared MARC II resources. This feature is used to apply the
dynamic priority PreCoRe computes for each access (see Section 3.5) to influence
the processing order of requests.

The displacement of cache lines in the distributed caches does not affect other
caches, and thus is a less severe issue compared to cache line displacement in a
single shared cache. However, the direct-mapped cache organization may cause fre-
quent, undesirable cache displacements for some address sequences. In this case,
the Memory Bus must be requested repeatedly to transfer the data from the exter-
nal memory. Given the frequent memory accesses in PreCoRe, such displaced lines
would lead to significantly longer replay times. By adding a small, fully-associative
victim cache, these drawbacks can be reduced. The impact of a victim cache on per-
formance and where it should be placed (L2 or L1) has been studied in detail for
conventional processors [12]. In context of MARC II, the victim cache can be inte-
grated seamlessly by attaching it to the Coherency Bus, where it just acts as another
remote cache. This avoids the need for yet another communication network, and
also keeps the access latency low by maintaining a single level of cache hierarchy.

26 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

MARC II also provides special support for the Selective Replay RAW-
dependency resolution mechanism introduced in Section 3.4. Each Read Port has
a (relatively small) Re-Execution CAM (RXC, see Figure 4.b) that holds the last
n read addresses, where n is the PreCoRe speculation depth. The Write Port broad-
casts the write addresses over the Coherency Bus (see Section 5.2) to all Read Ports.
If a RAW-speculated read was performed for an address overlapping a write address
(as determined by a RXC lookup), a RAW violation is detected and signaled to the
datapath in order to to initiate a replay.

6 Experimental Results

The ACS infrastructure proposed in this work has been implemented on the Xil-
inx ML507 development board using the Verilog hardware description language. Its
core is a Virtex-5 FX FPGA, which is connected to various peripheral components,
with a DDR2-SDRAM bank acting as external main memory. The reconfigurable
fabric on the FPGA is used as RCU, the embedded PowerPC 440 as software-
programmable processor. All benchmarks were compiled from C using the Nymble
C-to-hardware compiler. The resulting RTL description was then synthesized using
Synopsys Synplify Premier DP 9.6.2 and placed and routed with Xilinx ISE 11.1.

For evaluating the different components of the system, we used selected applica-
tion benchmarks from well known benchmark suites (e.g., Mediabench [18], Hon-
eywell ACS Suite [14]). The samples include the gf multiply kernel from the Pegwit
elliptic curve cryptography application, the quantization and wavelet transforma-
tion of the Versatility image compression application, and a luminance median fil-
ter. While the application benchmarks provide a good overview on the performance
of the overall system, we also used synthetic hardware kernels to test specific fea-
tures and characteristics of the system. The following paragraphs just summarize
the actual results, please see [26, 25, 27] for the detailed measurements.

Each kernel was compiled twice, once with PreCoRe enabled, once with the
original purely statically scheduled datapath. As previously discussed in Section
4.2, in the static version, a single cache miss stalls the entire datapath. Thus, all
differences in performance are due to making better use of the hardware operators
that are already present in the datapath.

Depending on the regularity of the input data, performance gains of up to 23%
have been observed by employing load value speculation alone. Although successful
speculation effectively hides the memory access latency of its particular access, even
unsuccessful speculation may result in an improved execution time: The latency of
later accesses may potentially be hidden by allowing them to execute earlier (instead
of being stalled with the rest of the datapath). If the access executed early used a non-
speculative read address, the data will be prefetched into the cache for use not only
by the specific Read Port executing the early access, but also all other Ports that can
retrieve it using the Coherency Bus (instead of accessing main memory again).

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 27

The dynamic priority computation discussed in Section 3.5 can lead to speed-
ups 2%. . . 25.5%. However, the best choice of weights for the computation is highly
application dependent. Compiler support for selecting appropriate parameters auto-
matically would be highly desirable here.

Despite being only a secondary effect of the actual read value speculation, the im-
pact of prefetching should not be underestimated. As an experiment, we disabled the
value-predictor, forcing it to always mispredict. Even in this crippled form, PreCoRe
still executes reads as single cycle operations and avoids datapath-wide stalls, thus
allowing prefetching to be performed. This prefetching-only version of PreCoRe
yields a speed-up of 1.43x. Re-enabling the value-predictor reduces the execution
time further to a total speed-up of 1.58x over the original statically scheduled ver-
sion. For this specific benchmark, the prefetching made possible by the non-stalling
mispredicting reads, and not the successful speculation, is actually responsible for
most of the performance gain.

These benchmarks were constructed so that no RAW dependencies existed be-
tween accesses. If such dependencies cannot be ruled out (e.g., by using the C restrict
keyword), the dynamic resolution mechanisms described in Section 3.4 need to be
employed. For a synthetic benchmark that has a third of all speculative accesses vi-
olating RAW dependencies, the Selective resolution method (detecting overlapping
addresses) requires up to 4% fewer clock cycles than the Universal resolution (that
assumes all executed writes interfere with all reads). Adding a victim cache (Section
5.3) to speed-up replays further gains up to another 9% of clock cycles.

Combining the various features of PreCoRe, it was possible to achieve wall-clock
improvements of up to 2.59x in our examples, without incurring any slow downs.
This is a significant improvement over prior work such as [22] discussed in Section
1.

However, enabling PreCoRe has both an area as well as a clock frequency cost.
The latter is not relevant for our experiments, since the maximum clock slowdown
we observed (11% over the non-speculative versions) was either more than compen-
sated by the PreCoRe speed-ups, or lead to a clock frequency that still exceeded the
100 MHz limit of the ML507 reference design. Since most of the critical path lies
inside of the MARC II memory system, the achievable maximum clock frequency
is almost independent of whether a speculative or non-speculative execution model
is chosen.

In contrast to the negligible clock slowdown, PreCoRe carries a significant area
overhead (in our benchmarks: 1.45x. . . 3.22x, counting slices). Much of this is due to
the current Nymble hardware back-end not exploiting the sharing of queues across
multiple operators in a stage, and the pipeline balancing registers automatically in-
serted by the compiler not being recognized as mapable to FPGA shift-register prim-
itives by the logic synthesis tool. Both of these issues could be addressed by adding
the appropriate low-level optimization passes to Nymble.

28 Benjamin Thielmann and Jens Huthmann and Thorsten Wink and Andreas Koch

7 Conclusion

We have presented a comprehensive approach to widening the memory bottleneck
that is also starting to affect reconfigurable computing. It encompasses the microar-
chitectural mechanisms of the PreCoRe value speculation framework, the automatic
generation of application-specific controllers implementing these techniques from
C programs by the Nymble hardware compiler, and the run-time support for parallel
memory accesses and quick execution replays provided by the MARC II memory
system.

Our approach embraces the paradigm of spatially distributed computation, pre-
ferring to expend reconfigurable silicon area on application-specific computation
support structures such as PreCoRe, instead of on general-purpose support mecha-
nisms with diminishing efficiency, such as classical caches. With the ongoing trend
towards ever larger reconfigurable devices, continued research in this area seems
very promising.

Acknowledgements This work was supported by the German national research foundation DFG
and by Xilinx Inc.

References

[1] A. V. Aho, M. S. Lam et al. Compilers: Principles, Techniques, and Tools (2nd Edition).
Prentice Hall, 2006.

[2] M. Budiu and S. C. Goldstein. Optimizing memory accesses for spatial computation. In
Proceedings of the Intl. Symp. on Code generation and optimization: feedback-directed and
runtime optimization, CGO ’03, pp. 216–227. IEEE Computer Society, 2003.

[3] M. Burtscher, B. G. Zorn et al. Hybrid Load-Value Predictors. IEEE Trans. on Computers,
51:759–774, 2002.

[4] T. J. Callahan, J. R. Hauser et al. The Garp architecture and C compiler. IEEE Computer,
33(4):62–69, 2000.

[5] H. Gädke-Lütjens. Dynamic Scheduling in High-Level Compilation for Adaptive Computers.
Ph.D. thesis, Technical University Braunschweig, 2011.

[6] J. González and A. González. Limits of Instruction Level Parallelism with Data Value Specu-
lation. In Intl. Conf. on Vector and Parallel Processing, VECPAR ’98, pp. 452–465. Springer-
Verlag, London, UK, 1999.

[7] S. C. Group. Scale - a scalable compiler for analytical experiments, 2011.
[8] Z. Guo, W. Najjar et al. Efficient Hardware Code Generation for FPGAs. ACM Trans. Archit.

Code Optim. (TACO), 5(1):1–26, 2008.
[9] G.Weaver, B.Cahoon et al. Common Language Encoding Form (Clef) Design Document.

Technical report, Department of Computer Science, University of Massachusetts, 1997.
[10] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 3 edition, 2003.
[11] C. Isen, L. K. John et al. A Tale of Two Processors: Revisiting the RISC-CISC Debate. In

Proc. SPEC Benchmark Workshop, pp. 57–76. 2009.
[12] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small

Fully-Associative Cache and Prefetch Buffers. In Proc. of the 17th Annual Intl. Symp. on

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 29

Computer Architecture, ISCA ’90, pp. 364–373. ACM, New York, NY, USA, 1990.
[13] D. Kaeli and P.-C. Yew. Speculative Execution In High Performance Computer Architectures.

CRC Press, Inc., 2005.
[14] S. Kumar, L. Pires et al. A benchmark suite for evaluating configurable computing systems—

status, reflections, and future directions. In FPGA, pp. 126–134. ACM, New York, NY, USA,
2000.

[15] H. Lange and A. Koch. An Execution Model for Hardware/Software Compilation and its
System-Level Realization. In Field Programmable Logic and Applications (FPL), 2007. Intl.
Conf. on, pp. 285 –292. 2007.

[16] H. Lange and A. Koch. Architectures and Execution Models for Hardware/Software Compi-
lation and Their System-Level Realization. Computers, IEEE Transactions on, 59(10):1363
–1377, 2010.

[17] H. Lange, T. Wink et al. MARC II: A Parametrized Speculative Multi-Ported Memory Sub-
system for Reconfigurable Computers. In Design, Automation & Test in Europe (DATE),
2011 Conf. on. 2011.

[18] C. Lee, M. Potkonjak et al. MediaBench: a tool for evaluating and synthesizing multimedia
and communications systems. In Microarchitecture, 1997. Proc., 30th Annual IEEE/ACM
Intl. Symp. on, pp. 330 –335. 1997.

[19] M. H. Lipasti, C. B. Wilkerson et al. Value Locality and Load Value Prediction. pp. 138–147.
1996.

[20] C. McNairy and D. Soltis. Itanium 2 Processor Microarchitecture. IEEE Micro, 23:44–55,
2003.

[21] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Educa-
tion, 1st edition, 1994.

[22] M. Mock, R. Villamarin et al. An Empirical Study of Data Speculation Use on the Intel
Itanium 2 Processor. In Proc. Workshop on Interaction between Compilers and Computer
Architectures, pp. 22–33. IEEE Computer Society, Washington, DC, USA, 2005.

[23] A. Putnam, D. Bennett et al. CHiMPS: A C-level compilation flow for hybrid CPU-FPGA
architectures. In Field Programmable Logic and Applications (FPL), 2008 Intl. Conf. on, pp.
173 –178. 2008.

[24] Y. Sazeides and J. E. Smith. The predictability of data values. In Proc. Intl. Symp. on Mi-
croarchitecture, MICRO 30, pp. 248–258. IEEE Computer Society, Washington, DC, USA,
1997.

[25] B. Thielmann, J. Huthmann et al. Evaluation of speculative execution techniques for high-
level language to hardware compilation. In Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), 2011 6th Intl. Workshop on, pp. 1 –8. 2011.

[26] B. Thielmann, J. Huthmann et al. Precore - A Token-Based Speculation Architecture for
High-Level Language to Hardware Compilation. In Field Programmable Logic and Appli-
cations (FPL), 2011 Intl. Conf. on, pp. 123 –129. 2011.

[27] B. Thielmann, T. Wink et al. RAP: More efficent eemory access in highly speculative ex-
ecution on reconfigurable adaptive computers. In ReConFigurable Computing and FPGAs
(ReConFig), 2011 Intl. Conf. on. 2011.

[28] K. Wang and M. Franklin. Highly accurate data value prediction using hybrid predictors.
In Microarchitecture, 1997. Proceedings., 30th Annual IEEE/ACM Intl. Symp. on, pp. 281
–290. 1997.

[29] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch predic-
tion. In Proc. of the 19th annual intl. symp. on Computer Architecture, pp. 124–134. 1992.

