
PRECORE – A TOKEN-BASED SPECULATION ARCHITECTURE FOR HIGH-LEVEL
LANGUAGE TO HARDWARE COMPILATION

Benjamin Thielmann

Integrated Circuit Design (E.I.S.)
Technische Universität Braunschweig

email: thielmann@eis.cs.tu-bs.de

Jens Huthmann, Andreas Koch

Embedded Systems and Applications Group
Technische Universität Darmstadt

email: {huthmann|koch}@esa.cs.tu-darmstadt.de

ABSTRACT
We propose a universal method to automatically gener-

ate both datapaths and the appropriate application-specific
speculation-support logic from high-level C-language de-
scriptions. Our approach aims to be lightweight by extend-
ing efficient statically-scheduled microarchitectures with a
limited dynamic token model to predict, commit, and replay
speculation events. As a first source of speculativeness, we
evaluate the use of data-value speculation to speed-up mem-
ory reads when targeting a reconfigurable adaptive com-
puter.

1. INTRODUCTION

Adaptive computing systems combine a software-
programmable processor (SPP) with a reconfigurable
compute unit (RCU). This combination of processing
elements (PE) can efficiently improve the performance of
many algorithms, with each processing element executing
the parts of application it is best suited for.

However, even reconfigurable systems are affected by
some of the basic problems in computer architecture, one
being the memory bottleneck: Typically, 20% of the instruc-
tions are memory accesses, but they require up to 100x the
execution time of the register-based operations [8].

The memory performance of the RCU can be improved
by, e.g., providing it with a dedicated high-bandwidth path
directly to the memory controller [11], by using a config-
urable multi-port caching/streaming memory system [10],
by control speculation (higher priority to accesses whose
data is more likely to be actually used) [12], or by localizing
data to the fast on-chip memories of an FPGA [3]. How-
ever, whenever DRAM-based main memory is accessed, the
RCU must be able to deal with variable latencies. This can
be handled by a number of techniques: The classic approach
(already used in VLIW compilation) statically schedules ex-
ecution for the expected latency (e.g., a cache hit takes just
one cycle), and stalls the entire PE otherwise until the read
data is available. An alternative approach uses dynamic
scheduling to stall just those parts of PE actually depending

on a memory read, and allows the independent parts to con-
tinue [6]. While very flexible, such a dynamically scheduled
microarchitecture requires more chip area due to the com-
plexity of the scheduling and data/control synchronization
logic.

As an alternative, we propose the use of data speculation
on the RCU to hide the memory latency by making it appear
that a read operation always returns data after a single cycle.
With this approach, we could use an efficient purely stat-
ically scheduled microarchitecture on the RCU. However,
since the data returned by the read might be incorrect, we
now need to provide the RCU not only with the capability
to predict a new data value to return, but also mechanisms
to commit a computation once the predicted value has been
proven to be correct, or to replay (re-execute) a computation
with a new value once the initial prediction turned out to be
false.

In this work, we introduce the general-purpose frame-
work PreCoRe to address these issues for reconfigurable
computing. PreCoRe supports both control and data spec-
ulation for custom-compiled reconfigurable datapaths.The
basic approach is independent of the source of specula-
tiveness in the system (data and address value specula-
tion, memory dependence speculation, etc.). In contrast to
the general-purpose speculation hardware used in dynam-
ically scheduled super-scalar processors [8], PreCoRe em-
ploys application-specific speculation logic, generated by
our high-level language to hardware compiler NYMBLE
for each individual, also application-specific datapath. We
aim to avoid slowing down the datapath compared to a non-
speculative version (by not requiring additional clock cycles
due to speculation overhead), even if all speculations fail
continuously.

The PreCoRe mechanisms are lightweight extensions
to a statically scheduled datapath, they do not require the
full flexibility (and corresponding overhead) of a datapath
dynamically scheduled at the level of individual operators
(such as COCOMA [2]). Since speculation in general is
only beneficial for long-latency operations, we have con-
centrated our efforts on (possibly cached) variable-latency

main-memory read operations.
We discuss the PreCoRe system here in a scenario where

we have added data-value speculation to the read ports of
the MARC II [12] reconfigurable multi-port cache-coherent
memory system. For space reasons, this work concentrates
on the commit/replay functionality of the framework. The
actual value speculator (based on a multi-level finite context
scheme), the NYMBLE compile-flow, and low-level hard-
ware implementation details cannot be explained in greater
detail.

2. RELATED WORK

Now that RCUs on modern FPGAs can directly interface
to current high-speed memories such as DDR2/3-SDRAM,
they are also affected by the processor/memory performance
gap that has been plaguing SPPs for years [7]. But since
RCU performance is heavily dependent on exploiting paral-
lelism (usually fine-grained) with dozens or even hundreds
of parallel operators, RCUs suffer a more severe perfor-
mance degradation than SPPs (which generally have only
4. . . 9 parallel execution units on a single core) when access-
ing external memories using the limited FPGA I/O band-
width (compared to the high-bandwidth access to on-chip
memories).

Data value speculation is a long-proposed technique
to reduce the impact of the memory gap [14]. By using
the speculated values to continue computation, long mem-
ory latencies can be hidden. However, as with all spec-
ulation/prediction schemes, actual gains can often only be
achieved if the prediction is correct most of the time (clas-
sical branch prediction), or if the penalty to recover from
misspeculations is very low (the PreCoRe approach).

Much research has been performed on data specula-
tion methods and their accuracy. History based predictors,
with the trivial case of a last-value predictor, predict the
next value depending on the previously encountered values.
Stride predictors can accurately predict sequences with a
constant offset between elements. Context-based value pre-
dictors predict the value sequences for each load instruction
individually [17]. The different schemes may also be com-
bined. The limits of data value speculation have previously
been discussed by Gonzáles et al. [5, 4].

However, the techniques have only seen very limited use
in practice. As one of the few examples, Mock et al. mod-
ified a C compiler to force data speculation where possible
on a Intel Itanium 2 CPU architecture [16]. The Itanium
2 roll-back mechanism is based on a dedicated hardware
structure, the Advanced Load Address Table (ALAT), and
usually needs to be explicitly controlled by the programmer
[15]. The experimental results show that load value spec-
ulation often improves performance by as much as 10%.
However, under adverse conditions with frequent misspecu-

lations, performance losses of up to 5% have also been ob-
served.

To our knowledge, PreCoRe is the first general-purpose
framework for generating application-specific speculation-
assist units from a high-level language targeting ACSs.

3. SPECULATION FRAMEWORK

PreCoRe uses two key mechanisms for its operation. The
first is a token model for tracking the effects of speculative
execution as well as means to commit and revert its effects.
As a second component, specialized queues buffer both to-
kens and their associated data values, allowing the replay of
failed speculation and the deletion of misspeculated data.

3.1. Token Mechanism

We will start with a simple statically scheduled datapath and
extend it with PreCoRe token processing logic. Figure 1.a
shows nine operators, organized into four Stages. In a pure
statically scheduled datapath, a Stage would correspond to
the clock cycle an operation executes in, e.g., the READ op-
eration in Stage 1 would start at time t0. However, assum-
ing that this READ has a variable latency, e.g., is accessing a
DRAM-based main memory via a cache using a system such
as MARC II [12], pure static scheduling is no longer pos-
sible. Instead, operations are scheduled for their expected
latency (one cycle, for the case of a cache hit). If that as-
sumption does not hold (cache miss), the entire datapath is
halted until the data is actually available. In the Figure, this
is indicated by annotating the Stages by the time they ac-
tually start execution. Figure 1.a thus shows that while the
READ is started at t0, a cache-miss has delayed its result so
that Stage 2 can only be started at a later time tn (n > 1).
Thus, the succeeding Stages 3 to 4 also start execution at
later times tn+1 and tn+2.

Stalling the entire datapath could be avoided by perform-
ing operator-level dynamic scheduling, which would allow,
e.g., the right ADD in Stage 2 to proceed while only the
READ stalled [1]. However, another approach is to guar-
antee that the READ returns data after a single cycle. This
can be achieved by supporting load value speculation [18]:
On a cache-miss, a speculated data value will be returned as
read result. If additional speculation cannot proceed (e.g.,
due to exhausted queue capacity), the conventional method
of halting the datapath until the access is resolved is used as
fall-back.

The effect is shown in Figure 1.b. Here, the READ in
Stage 1 executes at t0 and immediately provides a specu-
lated data value to the next Stage, which can then execute at
t1, and now also computes a speculative result for its suc-
cessors. Assuming pipelining, at clock cycle t3 the first
speculative value (originating from the READ in Stage 1)
reaches the WRITE in Stage 4. However, a memory write

MUL READ

WRITE

READ

ADD ADD

CiBiAitn

tn

Token
Logic

to stage

Token
Logic

c c cc

c

c f

f

Stage 1

Stage 2

Stage 3

Stage 4

MUL READ

WRITE

READ

ADD ADD

CiBiAitn

tn

Token
Logic

to stage

Token
Logic

c c cc

c

c -

-

Stage 1

Stage 2

Stage 3

Stage 4

MUL NOP

WRITE

READ

ADD ADD

CiBiAitn

tn+2

Token
Logic

c c cf

f

Stage 1

Stage 2

Stage 3

Stage 4

tn+1
replay

AiREAD

ADD

MUL

WRITE

ADD

NOP

CiBit0

t1

t2

t3

1

Stage 1

Stage 2

Stage 3

Stage 4

AiREAD

ADD

MUL

WRITE

ADD

NOP

CiBit0

tn

tn+1

tn+2

Stage 1

Stage 2

Stage 3

Stage 4

data flow token flow speculative data commit token c fail token fvalidation speculative queue

MUL NOP

WRITE

READ

ADD ADD

CiBiAitn

tn

Token
Logic

c c cc

c

Stage 1

Stage 2

Stage 3

Stage 4a) b)

f)e)d)

c)

q

q q

q q q

q

q q q qq q

q

q

qq

q

qD
el

ay

q q q q q q q q

q

1

1

1

1'

q q q

tn+1
replay

Fig. 1. Datapath and speculation token processing

is a destructive operation. Allowing it to proceed unchecked
could result in the (possibly incorrectly) speculated value
overwriting crucial data. A write operation thus forms the
speculation boundary of the current approach (but see Sec-
tion 5). For a WRITE, the system has to ensure that the data
to be written has been correctly speculated in its originating
READ node (which is the sole source of speculated data in
the current system). For the READ, this is done by compar-
ing the speculatively output result, which is retained for this
purpose in an output queue in the READ node, with the ac-
tual data received later from the memory system. Until the
result of that comparison, which determines the correctness
of the speculation, is available, the data to be written (which
depended on the speculative value) is held in an input queue
in the WRITE node.

Figure 1.c extends the now speculative, but still stati-
cally scheduled datapath to process values correctly spec-
ulated for the READ. Since the speculated and actual data
values have been determined to match at time tn, the READ
node indicates this by sending out a Commit-Token (shown
as C in the Figure). In contrast to operator-level specula-
tion, however, this is not directly forwarded to the WRITE
node. Instead, the speculation status is computed per Stage:
The speculation status signals of all operators in a Stage
(even the non-speculative ones, since they might have op-
erated on speculated values) are combined: Only if all oper-
ators in a Stage indicate the presence of correctly speculated
data, is a corresponding C-Token forwarded to the operator
at the speculation boundary (the WRITE). Here, it confirms

the correctness of the last datum with undetermined spec-
ulation status (in the example, the speculated value origi-
nating in the READ node). Note that speculated values and
their corresponding tokens are associated only by remain-
ing strictly in-order, no additional transaction IDs or simi-
lar measures are required. However, tokens can temporarily
overtake their corresponding datum up to the next synchro-
nization point (see Section 3.2) , since the speculation status
of an entire Stage is only affected if a speculative operator
(in our approach, a READ node) is present there. Otherwise,
the speculation status will just depend on the Stage inputs
(non-speculative, if no speculative values were input; spec-
ulative, if even a single input to the Stage was speculative).
Since the Stages 2 and 3 do not contain READs, the token
can be directly forwarded at time tn to the WRITE in Stage
4, where it will wait in a token queue for the correctly spec-
ulated value to arrive and allow the WRITE to proceed. Note
that during this process, pipelining might have lead to the
generation of more speculative values in the READ, which
continue to flow into the succeeding Stages.

The case of handling a failed speculation is shown in
Figure 1.d. Here, two actions have to take place: All data
values depending on the misspeculated value have to be
deleted (which also prevents the WRITE from executing), and
the affected computations have to be restarted (replayed),
this time with the correct non-speculative result of the READ.
To this end, the token logic first determines that the mis-
speculated READ in tn leads to the the entire Stage 1 failing
in its speculation. In contrast to the C-Token, which had

an immediate effect, the Fail token (F-Token) is delayed by
the number of stages between the source of the speculated
value and the WRITE marking the speculation boundary (in
this case, two Stages, leading to a delay of two clock cy-
cles). To be more precise, the token is delayed by two clock
cycles when the datapath is actually computing. If it were
stalled (e.g., all speculative values have reached speculation
boundaries, but could not be confirmed yet by memory ac-
cesses because the memory system was busy), these stall
cycles would not count towards the required F-Token delay
cycles. This ensures that all intermediate values computed
using the misspeculated value in Stages 2 and 3 have now
ended up in the input queues of the WRITE operation in Stage
4, and will be held there since no corresponding C- or F-
Token for them has been received earlier. The appropriately
delayed F-Token from the token logic then arrives at time
tn+2 to resolve this situation, deleting the two sets of incor-
rectly computed intermediate results from the input queues
and preventing the WRITE from executing. The replay starts
at time tn+1 after the misspeculation has been discovered.
READ outputs the correct data, all other nodes in Stage 1
output their last set of results (which may also be specula-
tive themselves!) and perform the computations in Stages 2
and 3 again. These last results of operators are held specifi-
cally for replay purposes in per-operator output queues. Val-
ues are removed from theses queues only if all operators on
a Stage have indicated to the token logic that their values
are now correct by validating them using C-Tokens. In that
case, one set of stored values can be safely discarded for the
entire Stage, since a replay involving them will no longer be
necessary.

Figure 1.e shows the case when multiple speculative data
sources (READ operations at Stages 1 and 3) are present in
the datapath. In this case, each READ begins its own specu-
lation region, which ends either at a WRITE, or a Stage con-
taining another READ. The system now has to handle the
case that even though data has been committed in an ear-
lier Stage (here, by the READ in Stage 1), the WRITE still
cannot proceed since a later Stage is still speculative (READ
in Stage 3). To this end, each of these regions has its own
token logic, customized for the number of Stages in the re-
gion. The upper token logic would delay its F-Tokens by
one cycle (that region begins at Stage 1 and has Stage 2 as
an intermediate Stage before the end), the lower one would
forward F-Tokens directly (its corresponding region, begin-
ning at Stage 3, has no intermediate Stages, it ends at Stage
4). READ nodes beginning a new speculative region need to
be provided with an input queue (for the address data), since
the prior region might already have committed its data (and
removed it from its queues), but the READ has not executed
yet (e.g., due to lack of access to a shared memory bus).
This is the scenario actually shown in Figure 1.e: MUL has
already confirmed its output as being correct (due to Stage

1 confirming itself as correct), but the Stage 3 READ has not
yet resolved its speculation status, which is thus pending for
the entire Stage 3. In turn, the WRITE is not allowed to pro-
ceed. Furthermore, as usual with a Stage containing a READ
node, all nodes in the Stage are provided with output queues
to allow a replay should one of the Stage’s read operations
fail in its data speculation. Had the upper region failed due
to misspeculated data in the Stage 1 READ, the F-Token from
the upper token logic would delete the misspeculated val-
ues from the Stage 3 output queues, since they will be re-
calculated when the upper region is replayed. These output
queues also serve to resynchronize values and their associ-
ated tokens, as tokens are not allowed to overtake their cor-
responding values across an output queue.

The scenario is advanced in Figure 1.f: Here, we assume
that the Stage 3 READ has misspeculated at time tn, leading
to a replay of the succeeding Stages (in the example just
the WRITE operation in Stage 4, which has been halted so
far due to the unclear READ speculation status) starting at
tn+1. Since the intermediate results computed from values
originating in Stages 1 and 2 have already been confirmed
as being correct, the replay can be limited to just forward-
ing the now-correct values from the Stage 3 output queues
to Stage 4. It is not necessary to re-execute the complete
computation beginning with Stage 1.

3.2. Queue Management for Speculation

As described in the prior Section, operator queues play a
significant role in the speculation mechanism. They are re-
sponsible for providing succeeding Stages with data (specu-
lated or accurate), holding data until the need for a replay
has been ruled out, and to discard misspeculated values.
Furthermore, they synchronize the asynchronously flowing
value and token sequences, as tokens cannot overtake values
through an output queue. The queue’s internal operation is
thus somewhat more complicated than that of simple con-
ventional queues.

D0

D1

-

-

D0

D1

D2

-

c

f

-

-

c

-

-

-

D0

-

-

-

-

-

-

-

-

D1'

D2'

-

-

D1'

D2'

-

-

-

c

f

-

f

c

-

D0

D1

D2

-

c

f

-

-

a) b)

f)e)d)

c)

Write Read Spec. Read Overwrite Index

Fig. 2. Speculative output queue behavior

Figure 2.a shows the general organization of a specula-

tive output queue. Fundamentally, it consists of two circular
buffers (one for values, one for tokens) organized as two
queues: A Write pointer indicates the next available posi-
tion to enter data, a Read pointer marks the first unread el-
ement. For token management (the right queue), this is the
entire required functionality, the Figure thus shows the ac-
tual pointers only for the more complicated value queue (de-
picted at the left side in each subfigure). In the value queue,
the data between the Read and Write pointers has either not
been passed on to a succeeding operator, or its speculation
status is as yet undetermined. To pass on speculative values
to succeeding operators, the SpecRead pointer is used. All
values below that pointer have been passed to succeeding
operators, but they might be misspeculated values. The re-
gion starting with and extending above the OverwriteIndex are
those positions holding known misspeculated values, they
will need to be overwritten with new values (that may still
be speculative).

We will illustrate the operation of the speculative out-
put queue (and the interaction between the value and token
queues) using an example execution sequence.

Figure 2.a shows the situation after a value D0 has ar-
rived at the value queue. Write has advanced to the next
available space, while all other pointers were not affected.

For Figure 2.b, three events have occurred concurrently:
First, a second value D1 has arrived and is inserted into the
value queue, advancing Write upwards. Second, D0 has been
speculatively forwarded to a successor node, bumping up
SpecRead. At the same time, a C-Token has arrived for the
first value (here D0), confirming it as correct. In order to
prevent it from being overwritten by a possible future replay
of prior Stages, the OverwriteIndex is moved upward, protect-
ing D0. Since the Stage holding this output queue has not
been validated yet (other operators may hold uncommitted
data), D0 as well as its corresponding C-Token are kept in
the queue for a future replay of this Stage.

This is still the case in Figure 2.c. D0 and its C-Token are
as yet unvalidated (e.g., another read operation at the same
Stage has an uncertain speculation status). At the same time,
D1 has been speculatively passed to a successor node, mov-
ing the ReadSpec pointer upwards, and a new value D2 has
arrived and is inserted into the value queue. However, an
F-Token incoming in the same cycle signals that the first un-
certain value (being D1) was misspeculated. Thus, D1 and
other values arriving since (here, D2) are considered incor-
rect and will be recalculated by a replay of the prior stages.
To this end, Write is reset to the OverwriteIndex (which marks
the boundary to the actually confirmed values).

In Figure 2.d, that replay has not occurred yet (e.g., due
to a prior read operation not getting access to the shared
memory bus), thus, no recalculated values arrive. However,
the value queue continues to supply speculative (undefined)
values to successor nodes, bumping up ReadSpec, since the

F-Token indicating their incorrectness has not become visi-
ble yet at the head (bottom) of the token queue.

The situation is resolved in Figure 2.e, when the exter-
nal token logic has validated this entire Stage. This leads
to the removal of D0 (by moving Read upwards) and its cor-
responding C-Token (they will no longer be required for a
replay starting at this Stage). The F-Token, now visible at
the bottom of the token queue, indicates that starting from
here the values speculatively forwarded to successors have
all been incorrect. In order to begin forwarding the next
set of re-calculated values, ReadSpec is reset to Read, and
the F-Token, having performed its function, is removed. At
the same time, the first new value D1’, re-calculated by the
replay in prior Stages, has arrived, and is immediately con-
firmed by a corresponding C-Token arriving in parallel. The
value will stay in the queue until the entire Stage has been
validated. Note that, if D1’ had not arrived this cycle, the
now-visible F-Token would have prevented the output of un-
defined values to the successors.

The final development (Figure 2.f), shows the situation a
few cycles later: D1’ is still unvalidated, but has been specu-
latively forwarded to successor nodes (ReadSpec has moved
above it). However, the replay of earlier Stages has been
misspeculating again. While it has re-calculated at new
value D2’, that value has already been marked with an F-
Token. Thus, Write has been reset to OverwriteIndex, which
will lead to the overwriting of the misspeculated value D2’
with a result of the next replay of earlier Stages. No unde-
fined values are output, since the special case of Write being
equal to ReadSpec is recognized as an empty queue (regard-
less of the hidden F-Token).

As can be seen here, values and tokens are synchronized
strictly by their sequential order, not by being in the same
position of the queues. Furthermore, the token queue must
have twice the length of the value queue to handle the cor-
ner case of an incoming sequence of alternating C- and F-
Tokens.

Input queues behave similarly to output queues, with
one exception: They do not require validation of commit-
ted data. Instead, values are removed from the queues as
soon as their C-Tokens arrive.

4. EXPERIMENTAL RESULTS

Table 1 shows the results of executing a number of bench-
mark programs using our PreCoRe-enhanced NYMBLE
compiler. The RTL Verilog created by NYMBLE was then
synthesized for a Xilinx Virtex-5 FX device using Synop-
sys Synplify Premier DP 9.6.2 and Xilinx ISE 11.1. Our
target ACS is based on the Xilinx ML507 development
board, but extended with the MARC II high-performance
memory interface [12]. As a baseline for our comparison
(both for performance and area), we configured MARC II

Kernel FPGA Area Max. Clock Freq. Runtime Comparison
#LUTs #Registers (MHz) #Cycles µs at max. freq. Slices Speed

n. spec spec n. spec spec n. spec spec n. spec spec n. spec spec ovrhd. -up
array add 10141 14717 1246 2948 106.90 96.30 6194 3923 57.94 40.74 1.45x 1.42x
bintree search 11129 19782 1570 5795 105.70 100.10 3497 3359 33.08 33.56 1.78x 0.99x
gf multiply 11918 22790 1702 6459 102.80 101.30 2510 2482 24.50 24.42 1.91x 1.00x
median filter row 12895 28333 2458 9909 106.40 102.20 296409 114650 2785.80 1121.82 2.20x 2.48x
median filter col 12998 28391 2529 10325 106.00 100.30 1054736 666554 9950.34 6665.24 2.19x 1.50x
pointer chase 11979 20637 1478 10208 106.40 98.90 4087 3650 38.41 36.91 1.72x 1.04x
simple read 10241 14703 1484 3639 105.80 103.20 19615 14150 185.40 135.41 1.45x 1.37x
versatility quant. 12351 39716 5390 18495 105.70 97.40 96771 50746 915.53 521.01 3.22x 1.76x
versatility fcdf22 12055 32284 1889 9863 105.20 93.80 43633 20573 414.76 219.33 2.68x 1.89x

Table 1. Hardware area, maximum frequency, and run-time without/with data speculation (n.spec/spec)

to provide cached accesses to the FPGA-external DDR2-
SDRAM, with the memory ports being organized as a single
coherency cluster. In the non-speculative case (using only
static scheduling), we halt the entire datapath if a memory
access cannot be resolved within a single cycle.

array add increments each element of an array, without
loop-carried dependencies. bintree search searches a binary
tree. gf multiply is part of the Pegwit elliptic curve cryptogra-
phy application and MediaBench [13]. median filter row and
col realize a luminance median filter. Blocks of 9 pixels are

read row/column-wise and the median of luminance is writ-
ten to the center pixel. The column-based processing shows
the effectiveness of data speculation when cache efficiency
decreases due to unsuitable access patterns. pointer chase
processes a randomly linked list, writing to every second el-
ement. simple read sums all values of an array, and thus has
a loop-carried dependency. versatility quantization and ver-
satility fcdf22 are the quantization and Wavelet steps of an
image compression benchmark [9].

As can be seen in the Table, enabling PreCoRe dur-
ing hardware compilation carries an area overhead of
1.45x. . . 3.22x (counting slices). This is due mostly to the
current NYMBLE hardware back-end not exploiting the
sharing of queues across multiple operators in a stage, and
the pipeline balancing registers automatically inserted by
the compiler not being recognized as mappable to FPGA
shift-register primitives by the logic synthesis tool. Both
of these issues can be resolved by adding the appropriate
low-level optimization passes to NYMBLE. For some ker-
nels, the added logic also leads to a drop in clock-rate of up
to 11% over the non-speculative versions. However, since
the system clock frequency of the ML507 board is limited
to 100 MHz by the other SoC components, the worst clock
slow-down observed amounts to just 6.2% in practice. Since
most of the critical path lies inside of the MARC II memory
system, the achievable maximum clock frequency is almost
independent of whether a speculative or non-speculative ex-
ecution model is chosen. Consequently, adding the single-
cycle load speculation leads only to the observed limited
drops in frequency.

Despite the current area and clock inefficiencies, en-

abling PreCoRe can achieve speed-ups for our benchmark
applications of up to 2.48x. Compared to its non-speculative
version at maximum theoretical clock frequency, only bin-
tree search would be slowed down (by less than 1%). When
considering the actual 100 MHz system clock, the wall-
clock improvements go up to 2.59x, and no slow-downs oc-
cur at all. These results show significant improvements over
prior work (cf. Mock, see Section 2).

5. CONCLUSION AND FUTURE WORK

We have introduced an effective new general-purpose
scheme for adding hardware-supported speculation to
mostly statically scheduled datapaths. Our approach auto-
matically generates the required structures when compiling
from C for adaptive reconfigurable computers.

Future work will tackle both implementation weak-
nesses (e.g., reduce area overhead by merging of queues),
as well as add new speculation sources, such as memory
dependence speculation (which can dynamically reorder ac-
cesses). Furthermore, additional engineering effort will be
expended on raising the maximum clock frequency to speed-
up the entire SoC, specifically by deeper pipelining of the
critical path(s) within the MARC II memory system. The
increased latency should only have a limited impact on Pre-
CoRe, since successful speculation still gives the appearance
of single-cycle read accesses to the datapath.

Acknowledgements: This work was supported by the German na-
tional research foundation DFG and by Xilinx Inc. We would also like to
thank the reviewers, who provided very valuable comments to guide our
next research steps.

References
[1] H. Gädke and A. Koch. Accelerating Speculative Execution in High-

Level Synthesis with Cancel Tokens. In ARC, vol. 4943/2008 of
LNCS, pp. 185–195. Springer, 2008.

[2] H. Gädke-Lütjens. Dynamic Scheduling in High-Level Compilation
for Adaptive Computers. Ph.D. thesis, Technical University Braun-
schweig, 2011.

[3] H. Gadke-Lutjens, B. Thielmann et al. A Flexible Compute and
Memory Infrastructure for High-Level Language to Hardware Com-

pilation. Intl. Conf. on Field Programmable Logic and Applications,
0:475–482, 2010.

[4] J. González and A. González. The potential of data value speculation
to boost ILP. In Proc. Intl. Conf. on Supercomputing, ICS ’98, pp.
21–28. ACM, New York, NY, USA, 1998.

[5] J. González and A. González. Limits of Instruction Level Parallelism
with Data Value Speculation. In Intl. Conf. on Vector and Parallel
Processing, VECPAR ’98, pp. 452–465. Springer-Verlag, London,
UK, 1999.

[6] H. Gädke, F. Stock et al. Memory Access Parallelisation in High-
Level Language Compilation for Reconfigurable Adaptive Comput-
ers. In FPL, pp. 403–408. 2008.

[7] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 3 edition, 2003.

[8] D. Kaeli and P.-C. Yew. Speculative Execution In High Performance
Computer Architectures. CRC Press, Inc., 2005.

[9] S. Kumar, L. Pires et al. A benchmark suite for evaluating config-
urable computing systems—status, reflections, and future directions.
In FPGA, pp. 126–134. ACM, New York, NY, USA, 2000.

[10] H. Lange and A. Koch. Memory Access Schemes for Configurable
Processors. In FPL, pp. 615–625. 2000.

[11] H. Lange and A. Koch. Architectures and Execution Models for
Hardware/Software Compilation and their System-Level Realization.
IEEE Trans. on Computers, 99(PrePrints), 2009.

[12] H. Lange, T. Wink et al. MARC II: A Parametrized Speculative Multi-
Ported Memory Subsystem for Reconfigurable Computers. In DATE.
2011.

[13] C. Lee, M. Potkonjak et al. MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications Systems.

[14] M. H. Lipasti, C. B. Wilkerson et al. Value Locality and Load Value
Prediction. pp. 138–147. 1996.

[15] C. McNairy and D. Soltis. Itanium 2 Processor Microarchitecture.
IEEE Micro, 23:44–55, 2003.

[16] M. Mock, R. Villamarin et al. An Empirical Study of Data Specu-
lation Use on the Intel Itanium 2 Processor. In Proc. Workshop on
Interaction between Compilers and Computer Architectures, pp. 22–
33. IEEE Computer Society, Washington, DC, USA, 2005.

[17] Y. Sazeides and J. E. Smith. The predictability of data values. In
Proc. Intl. Symp. on Microarchitecture, MICRO 30, pp. 248–258.
IEEE Computer Society, Washington, DC, USA, 1997.

[18] B. Thielmann, J. Huthmann et al. Evaluation of Speculative Execu-
tion Techniques for High-Level Language to Hardware Compilation.
In ReCoSoC. 2011.

