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ABSTRACT
Increasing the degree of speculative execution in
application-specific microarchitectures, which can be gen-
erated for reconfigurable computers from high-level code
using techniques such as PreCoRe, also leads to an in-
creased pressure on the memory system. The RAP approach
introduced here describes and evaluates application-
specific microarchitectural techniques to reduce the impact
of aggressively speculated memory accesses. It covers
a light-weight resolution mechanism for dynamic RAW
memory dependencies, avoiding execution replays due to
misspeculated reads, and a prioritization scheme for arbi-
trating the use of shared resources based on the degree of
speculativeness of the individual access.

I. INTRODUCTION

Adaptive Computing Systems (ACS) combine a
Software-Programmable Processor (SPP) with a Reconfig-
urable Computing Unit (RCU). This heterogeneous combi-
nation of Processing Elements (PE) can efficiently improve
the performance of many algorithms, with each PE execut-
ing the parts of an application it is best suited for. Com-
monly, the SPP executes general-purpose control and I/O
operations not on the critical path, while the performance-
critical “hot paths” (often called kernels) are realized
in dedicated application-specific microarchitectures on the
RCU.

Despites their advantages, ACS architectures are still
a niche technology, as their programming requires expe-
rience in digital hardware design, computer architecture,
and hardware description languages (Verilog/VHDL). To
make the potential of ACSs available to a wider user base,
considerable research effort (e.g., [2], [14], [10]) has been
expended on automatic compilers for such heterogeneous
computers. A new wave of commercial programming tools
[1], [16], [17] allows the description of microarchitectures
for an RCU using subsets of high-level programming
languages such as C or SystemC to describe individual
kernels.

All of these tools concentrate on extracting performance

from single-threaded code by exploiting Instruction-Level
Parallelism (ILP) when generating the hardware architec-
ture for the RCU. However, the increased ILP in an RCU
(not bounded by classical software instruction windows),
leads to an even greater impact of the memory bottleneck:
20% of all instructions are memory accesses, but they
require up to 100x the execution time of register-based
operations [9].

Numerous techniques for improving the memory per-
formance of RCUs having high internal parallelism have
been proposed: On-chip local memories are available in
sufficient quantity on modern reconfigurable devices to
directly provide the required degree of parallel accesses.
However, their small storage capacity necessitates careful
allocation by the human designer or the compiler, often
also requiring swapping/paging between local and main
memory [4]. Other approaches attempt to increase the raw
memory bandwidth available to the RCU [12], or support
both parallelism as well as better bandwidth utilization by
configurable multi-port caching/streaming memory systems
[11].

Another aspect that needs to be considered is the variable
latency of accessing cached or DRAM-based memory.
Traditionally, this has been handled (e.g., in VLIW archi-
tectures) by stalling the entire execution until the requested
data becomes available. Alternatively, dynamic scheduling
can be used to stall just those parts of a computation that
actually depend on the read data, and to allow independent
parts to proceed. For RCUs, such an approach has been de-
scribed in [3]. While more flexible, it carries a significantly
higher cost in hardware area.

An orthogonal approach aims to guarantee fixed latency
accesses. While this could be achieved, e.g., by only
using SRAM, an architecture such as PreCoRe [19], [18]
guarantees single-cycle read operations on DRAM-based
main memory by the use of value speculation: A datum is
always provided within a single clock cycle, either from a
cache hit, or by predicting the next read value on a cache
miss. As these predictions may turn out to be incorrect,
the microarchitecture must be extended to re-execute the



affected parts of the computation with the correct operands
and commit only those results computed from values that
were either correctly speculated or actually retrieved from
memory. Since intermediate computations can be affected
by multiple reads (which are the sole sources of predicted
values), the scope of the re-executed operations must be
determined with some care: Ideally, only those computa-
tions actually affected (sometimes called “poisoned”) by
the misspeculated value need to be replayed. While this
could be handled at the granularity of individual operators
[10], PreCoRe aims for a more efficient hardware imple-
mentation by performing predicts, commits, and replays at
the granularity of stages, which correspond to the clock
cycles of an initially purely statically scheduled datapath.

The actual performance of PreCoRe is highly depen-
dent on the data speculator’s accuracy. Furthermore, the
aggressive speculation imposes even higher requirements
on the memory system to support both speculative and
non-speculative prefetching [18]. On the other hand, the
prefetching efficiency is adversely affected by the presence
of memory dependencies. If they cannot be disproven
statically (e.g., by alias / points-to-analysis), they need to
be handled at run-time. This can be achieved either by
executing the memory accesses strictly in program order,
thus ensuring the adherence to the original dependencies,
or by allowing out-of-order execution. In the latter case, a
greater degree of parallelism can be achieved, but depen-
dency violations have to be detected and corrected.

For efficiently handling these issues, this work introduces
RAP, a collection of techniques to Resolve, Avoid, and
Prioritize out-of-order memory accesses with dynamically
occurring memory dependencies. RAP augments our prior
work on PreCoRe, which concentrated on the microarchi-
tectural enhancements required for the speculative com-
mit/fail and replay mechanisms, the actual data value
prediction techniques, and a study of the interaction of
different speculation effects. Furthermore, RAP ensures
that memory dependencies are enforced by re-executing
parts of a computation which were dependent, but also
recognizes independent accesses and allows them to pro-
ceed in parallel. Accesses to shared resources such as
main memory are sequentialized by a priority scheme that
takes their degree of speculativeness into account (accesses
whose data is more likely to be used will get a higher
priority). This technique, which was initially introduced as
an extension of a multi-port cache in [13], is now integrated
into the RAP suite.

II. RELATED WORK
While both SPPs and RCUs rely on pipeline parallelism

for performance, only RCUs can aggressively exploit ILP
to accelerate single-threaded programs even further. By
following the paradigm of spatially distributed computa-
tion, an RCU is not limited to the 4. . . 8 execution units

of superscalar SPPs, but can implement as many parallel
hardware operators as required by the algorithm. In many
cases, this can lead to a significant performance advantage
of the RCU over SPP despite the considerably lower clock
frequency used on the reconfigurable device. Structural
hazards would occur on an RCU only if the available recon-
figurable capacity is exhausted. A more severe limit on the
achievable ILP are memory data dependencies: According
to [7], in practice only tens to at most hundreds (in very
few applications) of instructions are free of dependencies.

Lipasti et al. proposed load value speculation to resolve
read data dependencies speculatively [15], allowing com-
putations to continue using the speculated values without
waiting for the memory system to return the actual (pos-
sibly cached) memory contents. Since the speculated data
could be used as address of another read or write, or as
the data of a write, a single speculated read could start an
entire cascade of dependent memory operations which now
execute with value-speculated operands.

For control speculation, different mechanisms are used
in SPPs and RCUs: On an SPP, branch-prediction could
decide to speculatively execute a memory access on the
branch most likely taken. But on the RCU, commonly all
branches of a conditional are executed in parallel using
dedicated hardware operators. On the other hand, the spa-
tially distributed computation paradigm no longer applies
once singleton resources (of which only a single instance
can exist), such as the main memory, are considered. Such
a resource has to be shared among the individual operators
accessing it in parallel. On an SPP with branch prediction,
this contention would not occur, as only a single branch
alternative would execute. It is thus worthwhile to examine
how to employ a mechanism similar to branch prediction
when accessing a shared singleton resource from the RCU.
Our approach builds on technology initially used in two-
level adaptive branch predictors for SPPs as proposed by
Yeh and Patt [20]. We will employ a similar technique to
prioritize access to a shared resource if it occurs in the
parallel branch most likely to be selected next [13].

Load value and control speculation cannot be considered
completely independently: Value-speculated data may be
evaluated in a control condition, while control-speculated
parallel read operations may lead to a greater presence of
speculated load values in the system (since the shared main
memory cannot supply the actual values for all alternative
branches simultaneously). Thus, the large body of prior re-
search that considered data and control speculation methods
and their accuracy separately is insufficient to fully gauge
the effects on the memory system, on which only few works
have focused at all [6], [5].

To our knowledge, PreCoRe [19], [18] is the first
general-purpose framework combining control- and load
value-speculation in application-specific microarchitectures
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Fig. 1. ACS based on the Xilinx ML507 Virtex 5 FX FPGA
Board

compiled from high-level languages. With the RAP exten-
sions presented here, we aim to reduce the significantly
increased memory pressure induced by the aggressive spec-
ulation.

III. TARGET ARCHITECTURE
The ACS we use for evaluating the techniques proposed

here is based on a Xilinx ML507 development board. The
superscalar PowerPC 440 core embedded in the Virtex
5 FX FPGA acts as SPP, the rest of the FPGA’s re-
configurable fabric as RCU. The RCU has a dedicated
FastLane+ high-bandwidth interface to the DDR2-SDRAM
controller considerably more efficient than the stock PLB-
based memory interface. In conjunction with other hard-
ware extensions and a customized version of the full-scale
Linux operating system, RCU-SPP signaling latency using
the FastPath modifications has been improved by up to
23x even over a kernel extended with real-time patches.
Furthermore, supported by AISLE extensions, the RCU
can access the shared memory in the same virtual address
space as software on the SPP. All of these enhancements
are described in greater detail in [12].

A hardware kernel executing on the RCU usually does
not access the raw FastLane+ memory interface directly.
Instead, the MARC II [13] memory system is inserted be-
tween the kernel and FastLane+ (Figure 1) to provide mul-
tiple caching/streaming memory ports with configurable
coherency and organization (e.g., stream buffer size, cache
lines and line length, etc.).

This work will concentrate on efficiently using multiple
cache ports in parallel. In MARC II, each port has a
dedicated direct-mapped L1 cache. The ports have single
cycle latency on a cache hit and support pipelined mem-
ory accesses for high throughput. Ports are organized in
an arbitrary number of clusters. Within a cluster, cache-
coherency between its ports is automatically maintained.
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Fig. 2. Memory Dependencies

A cluster may hold an arbitrary number of read ports, but
only a single write port. Memory accesses proven to be
independent by static analysis (accessing non-overlapping
address ranges) can be assigned to different clusters.

Specifically, we will be examining how to use RAP
to make the more difficult case (access independence not
statically provable, all ports in a single cluster) more
efficient. This requires dynamic resolution of memory-
dependent accesses as well as the serialization of multiple
kernel write accesses through the cluster’s single write port.

IV. ENFORCING MEMORY DEPENDENCIES
The simplest way of enforcing the different kinds of

memory dependencies Write-After-Write (WAW), Write-
After-Read (WAR), and Read-After-Write (RAW), consists
of just executing them sequentially in program order, even
on the spatially distributed computing microarchitecture
of an RCU. However, this leads to a significant drop in
the ILP so crucial for RCU performance gains. It is thus
worthwhile to examine other approaches. Specifically, we
consider dependencies in context of a pipelined inner loop.
As shown in Figure 2, dependencies exist both forward
within a loop iteration and backward from subsequent loop
iterations. Example: For the WAW dependency shown in
Figure 2.a, WRITE1 has to execute before WRITE2 within a
single iteration, but WRITE1 of iteration n+1 has to execute
after WRITE2 in iteration n.

Given the MARC II memory system described above,
WAW dependencies between write operations are always
enforced, since the writes are time-multiplexed in program
order onto the single write port of a coherency cluster.

The correct handling of WAR dependencies in PreCoRe
[18] is a side-effect of committing only complete stages
instead of individual operators: Even when speculatively
ignoring their intra-iteration dependency in Figure 2.b, the
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Fig. 3. Mechanisms for RAW dependency resolution in the MARC II cache system

stage holding WRITE2 will only execute once the prior stage
holding READ2 has completely been committed.

PreCoRe alone was not able to handle RAW depen-
dencies so far and supported only applications with non-
overlapping read/write address ranges. To improve this,
RAP will need to handle a case such as shown in Figure
2.c: The stage holding WRITE1 has been committed, but
the write itself is still in progress. Since PreCoRe assumes
a lack of dynamic RAW dependencies, it currently starts
the stage holding READ2 (which might actually have begun
even earlier to perform a speculative pre-fetch), overlapping
completion of the write with the read operation. If both
operations accessed the same address (=actually have a
RAW dependency), the read will have fetched stale data,
violating the dependency. RAP will need to extend the
PreCoRe re-execution mechanism to replay the read (and
the parts of the computation that are data-dependent on
it) with the value actually written. Note that the extent
of the required re-execution can be limited by considering
the dependency direction: In Figure 2.c, WRITE1 will never
affect READ1 in the first iteration, but could in subsequent
iterations.

V. DYNAMIC RESOLUTION OF RAW
DEPENDENCIES

Two issues must be considered when enhancing PreCoRe
for handling RAW dependencies. First, PreCoRe’s existing
commit/replay scheme can be used as the base for such
functionality, but must be extended to keep reads which
ignore RAW dependencies speculatively, until all prior
writes they could possibly depend on (even across iteration
boundaries) have committed. The resulting mechanism is
responsible for dynamically Resolving dependencies in
RAP.

Second, efficient replays depend on the correct data
being available in one of the caches, thus being accessible

using the intra-cluster coherency scheme without the need
to go to off-chip memory. Since speculatively executing
reads without regard for potential RAW dependencies can
cause even more replays (if the dependencies actually did
exist), it becomes crucial to keep the correct data in the
caches. This function is the Avoidance of memory accesses
in RAP.

V-A. Resolution Mechanisms

Universal Replay: This approach (shown in Figure 3.a)
is a straightforward, low area, but sub-optimal extension
of the existing PreCoRe commit/replay mechanisms: All
RAW-speculated reads re-execute as soon as all writes
have completed, regardless of whether an address overlap
occurred. The number of affected reads is only limited by
the PreCoRe speculation depth, which is the number of
potentially incorrectly speculated intermediate results that
can be rolled back. In practice, it is the depth of speculation
value queues between PreCoRe read and write operators.

Assuming that the data written by all write opera-
tions is still present in the write cache, the replays will
be very quick: All reads will get cache hits using the
intra-cluster coherency scheme. Furthermore, if control-
speculated writes get canceled once the misspeculation is
discovered, the reads also need to be informed (using a
Skip signal) that no dependency can be triggered from these
writes and they can be ignored. If all writes are skipped,
the read replay can be completely avoided.

Selective Replay: This more refined technique avoids
unnecessary replays by detecting read/write address over-
laps and replaying only those RAW-speculated reads ac-
tually affected by writes. To this end, MARC II must be
modified as shown in Figure 3.b): First, each cached read-
port is extended with a (relatively small) Re-Execution
CAM (RXC) that holds the last n requested read addresses,
where n is the PreCoRe speculation depth. Second, the
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write port uses the existing coherency bus to broadcast
write addresses to all read ports. If a RAW-speculated read
was performed for an address overlapping a write address
(as determined by a RXC lookup), a RAW violation is
detected and that read needs to be replayed to deliver
the newly written data. As before, the Skip signal is still
required to ignore the potential dependencies of canceled
writes.

V-B. Avoiding Memory Accesses during Replay
To allow fast replays, it is important to retain newly

written data in the MARC II caches. Some obvious steps
to achieve this would have high hardware or performance
costs. Larger caches would require significant chip area,
since the cache coherency scheme in MARC II relies on
all caches having the same size, and thus an increase of
the cache size would be multiplied by the number of ports.
A fully associative cache would have fewer conflict misses
and thus be less likely to evict important data. However,
the CAMs associated with larger caches not only require
significant hardware area, they also have long delays in
reconfigurable logic. For these reasons, the fully associative
caches originally used in MARC I [11] have been replaced
by the smaller and faster direct-mapped caches of MARC
II.

A better solution for our specific requirements is the
addition of a small, but fully associative victim cache
[8] that buffers blocks displaced from the per-port caches
(Figure 3.c). By sizing it for the current speculation depth,
we can ensure that newly written data is not lost even
if conflict misses occur in the port caches. For typical
speculation depths of 8 or 16, the required CAMs are both
small and fast. By using a shared victim cache, we can
avoid the additional overhead of keeping per-port victim
caches coherent. Instead, the intra-cluster coherency bus
can be used by the shared victim cache to communicate
with the distributed caches.

VI. ACCESS PRIORITIZATION
With the distributed per-port caches of MARC II (see

Figure 3), the spatial computing paradigm is extended

to some parts of the main memory system. However, at
some point, time-multiplexed access to shared singleton
resources such as intra- and inter-cluster buses, the victim
cache as well as the DDR2-SDRAM itself becomes neces-
sary. By carefully Prioritizing different kinds of accesses
using RAP, the negative performance impact of such time-
multiplexing can be reduced.

VI-A. Static Priority
Even without RAP, MARC II supports priorities by stat-

ically assigning memory operations to the appropriate port.
Accesses can thus be arbitrated to better fit the requirements
of the datapath: The write port in a cluster always executes
with the highest priority since it will only be fed with non-
speculative data. Read operations scheduled early will be
assigned to read ports with lower port numbers (having a
higher priority), so that their data is already available when
later stages execute. In Figure 4.a, READ1 thus executes
with higher priority than READ2.

VI-B. Value-Speculation Priority
Figure 4.b shows a scenario where the address of READ2

is dependent on the result of READ1. In PreCoRe, READ1
will provide a value-speculated result after a single clock
cycle, which READ2 will use as address for prefetching.
However, in doing so, it will hog the shared MARC II
resources performing a potentially useless access (if READ1
misspeculated), but possibly preventing the non-address
speculated READ1 of the next iteration, an access that will
be always useful, from executing. Value-Speculation Prior-
ity dynamically lowers the priority of accesses operating on
speculated address and/or data values, thus giving prefer-
ential treatment to accesses using known-correct operands.

VI-C. Queue-Balancing Priority
In some situations, the simple static per-port priority can

lead to a loss of performance. Specifically, this occurs if
the outputs of multiple reads in the same stage converge
at a later operator. An example for this shown in Figure
4.c. Here, the static priority would always prefer the read



assigned to the lowest port number over another one in the
same stage. Assuming READ1 had the lower port, it would
continue executing until its output queue was full. Only
then would READ2 be allowed to fetch a single datum. A
better solution is to dynamically lower the priority of reads
already having a higher fill-level of non-speculated values
(=actually fetched from memory) in their output queues.

VI-D. Control-Speculation Priority
As described above, read operators may output a specu-

lated value when started. Orthogonal to this is speculating
whether to execute the read operator at all. Such control-
speculation is performed on SPPs using techniques such as
branch prediction. While this approach is not applicable
in the spatially distributed computation domain of the
RCU (all ready operators execute in parallel), it does have
advantages when dealing with shared singleton resources
such as main memory: On an SPP, branch prediction would
execute only the most likely used read in a conditional,
while the reads on all branches of the conditional would
be executed in parallel on the RCU, thus competing heavily
for the shared resources and potentially slowing down the
overall execution (on multiple parallel cache misses).

To alleviate this, we track which branch of a parallel
conditional actually performed useful computations in light
of the evaluated control condition. The read operators in
that branch will receive higher priorities, thus preventing
reads in lesser-used branches from hogging shared re-
sources. To this end, we use decision tracking mechanisms
well established in branch prediction, specifically the GAg
scheme [20], but add these to the individual read operators
of the parallel conditional branches (see Figure 4.d). The
trackers are connected to the controlling condition for
each branch (see [13] for details) and can thus attempt
to predict which branch will be useful next from the past
branching history, prioritizing its read operators. In case of
a misprediction, all mistakenly started read operations are
quickly aborted to make the shared resources available for
the actually required reads.

VI-E. Composite Dynamic Priority Calculation
The dynamic priority Pdyn(r) for each read operator r

is thus computed from the queue-balancing priority Pq(r),
the control-speculation priority Phist(r) based on its GAg
predictor, and its speculative predicate IsSpec(r), which
is true if r is dynamically speculative for any reason
(input address speculated and not yet confirmed, control
condition not yet evaluated, still outstanding writes for
RAW dependency checks).

Pdyn(r) = (Wq ·Pq(r)+ (1−Wq) ·Phist(r)) >> (Wspec · IsSpec(r))
⇔ Pdyn(r) = Pqh(r) >> S(r)

where the Wx are static weights that can be set on
a per-application basis, potentially even automatically by

sufficiently advanced analysis in the compiler. Wq is used
to trade-off between queue balancing and control history
prediction, while Wspec determines the priority penalty for
speculative accesses. For brevity, the part of the expression
dealing with priorities is termed Pqh(r), the part dealing
with penalizing speculation S(r), and >> indicates a right-
shift.

Note that the cluster write port, operated with purely
static priority, will always have precedence over any read
ports. The impact of the weights, as well as examples for
the actual number ranges of the different quantities, will be
considered in the experimental evaluation of the scheme in
Section VII-B.

VII. EXPERIMENTAL RESULTS
In this section we will evaluate the different components

of RAP for different applications and parameter sets. All
of the hardware features described have been mapped to
and measured on the actual ACE M5 ACS platform (see
Section III).

VII-A. Dynamic Resolution of RAW Dependencies
In order to evaluate the different resolution mecha-

nisms, we implemented a synthetic benchmark applica-
tion (using our C-to-hardware compiler Nymble) which
performs a mix of speculated accesses (control, value,
RAW-dependency). Furthermore, we control the number
of conflict misses in the direct-mapped MARC II caches
by reducing the effective number of the cache port’s 1024
lines to just 16, 8, and 4 lines. We will use this to observe
the impact of victim caches on the dependency speculation
schemes. Roughly a third of the read accesses will actually
cause replays due to violated RAW dependencies.

Table I measures the speed-up of using the different
techniques relative to a non-speculative execution without
a victim cache (speed-up = 1.0). Alternatives examined
vary in the number of effective caches lines (lower num-
bers induce more conflict misses), the Replay Mode used
(with “always” indicating Universal Replay, but not able
to ignore misspeculated writes using the Skip signal), and
{0, 16, 32, 64} entries in the shared victim cache. For each
execution, we show the number of reads completed, the
total number of reads issued (including the misspeculated
ones that will get canceled before completing), and the run-
time in clock cycles. We also give the relative areas and
clock frequencies compared to the non-speculative baseline
version.

The benchmark application significantly profits from
speculative execution due to the increased ILP (up to 1.58x
cycle-based speedup). The victim cache alone contributes
to the speed-ups by 5% to 20%, since it compensates
for conflict misses. However, the majority of the speed-
up is due to the speculation mechanisms. Even the simple
always scheme achieves speed-ups of 16. . . 28% without a



shared victim cache. Further improvements by employing
the smarter Universal and Selective replay methods yield
gains of 39. . . 46%, again without a victim cache. The
impact of the better methods increases as replays become
more expensive due to more conflict misses. The simple
always scheme profits significantly from the victim cache
(up to 18%), but even the better methods gain up to 9% of
speed-up. The number of entries in the victim cache can
be relatively small, with the theoretical upper bound being
the number of read ports times the speculation depth. This
would cover the worst case of all read ports continuously
misspeculating and always evicting a line that will be
required in a later replay. All of these lines would then
be caught in the victim cache and allow fast replays with-
out main memory accesses. However, even larger victim
caches eventually lead to an unbalanced architecture and
corresponding slow-downs (due to excessive speculation no
longer supported by other parts of the memory system).

The current implementation of the system has focused
on features and correctness, less on a highly optimized
mapping. Thus, we observe a clock frequency slow-down
of up to 8% over the non-speculative baseline kernels,
mainly due to the more complex speculation logic having
longer delay paths. While we still achieve net wall clock
time speedups even with this slowdown, future work will
involve refining the implementation for both smaller area
and higher clock frequencies.

VII-B. Access Prioritization
We evaluate the access prioritization on three different

benchmark applications, representing the different cases
shown in Figure 4. Table II shows the results for a number
of configurations of the dynamic priority scheme, expressed
as % speed-up over an execution without dynamic priority.

The column Simple shows the impact of using a simpler
dynamic prioritization formula

Psimple(r) = Pmax >> S(r)

that just penalizes all speculative accesses, regardless
of their queue fill states and conditional execution history
(represented by using a constant maximum priority Pmax,
see below). If even the speculative accesses are ignored by
also setting Wspec = 0, that entry represents an execution
without dynamic priority.

In the actual hardware, all arithmetic is performed
in 6b unsigned integer arithmetic with normalized val-
ues (63 ≡ 1.0). Given that Fq(r) is the fill level
of a read r output queue, which has 16 elements for
speculation depth 16, the normalized queue-balancing
priority is Pq[5:0](r) = (63 · (16 − Fq(r)))/16. The
normalized control-speculation priority is Phist[5:0](r) ∈
{000000, 010101, 101010, 111111} for predicted branch
execution probabilities of {0.0, 0.33, 0.66, 1.0}. Since the
weights Wq = 1−Whist are set statically at compile time,

Effect. Replay Vict.- #Proc. #Issu. Runtime Speed- Area Clk
Lines Mode Cache reads reads [cycl.] up Ovhd. Speed

16 non.spec. 0 200 200 12598 1.00 1.00 1.00
16 non.spec. 16 200 200 12298 1.02 1.01 1.00
16 non.spec. 32 200 200 11747 1.07 1.01 1.00
16 non.spec. 64 200 200 11418 1.10 1.03 1.00
16 always 0 1955 2292 10828 1.16 1.80 0.95
16 always 16 2932 3442 9263 1.36 1.80 0.95
16 always 32 1865 3652 9207 1.37 1.81 0.95
16 always 64 1971 3727 9203 1.37 1.82 0.95
16 universal 0 885 857 9082 1.39 1.80 0.95
16 universal 16 748 1007 8851 1.42 1.80 0.95
16 universal 32 885 1114 8820 1.43 1.81 0.95
16 universal 64 972 1190 8882 1.42 1.82 0.95
16 selective 0 531 756 8839 1.43 1.83 0.92
16 selective 16 670 880 8692 1.45 1.83 0.92
16 selective 32 801 979 8667 1.45 1.84 0.92
16 selective 64 894 1031 8693 1.45 1.85 0.92
8 non.spec. 0 200 200 13890 1.00 1.00 1.00
8 non.spec. 16 200 200 13362 1.04 1.01 1.00
8 non.spec. 32 200 200 12293 1.13 1.01 1.00
8 non.spec. 64 200 200 11790 1.18 1.03 1.00
8 always 0 1712 2292 10828 1.28 1.80 0.95
8 always 16 2393 2938 9997 1.39 1.80 0.95
8 always 32 3139 3354 9339 1.49 1.81 0.95
8 always 64 3209 3412 9376 1.48 1.82 0.95
8 universal 0 832 1188 9713 1.43 1.80 0.95
8 universal 16 956 1312 9429 1.47 1.80 0.95
8 universal 32 1020 1372 9207 1.51 1.81 0.95
8 universal 64 1624 1956 9356 1.48 1.82 0.95
8 selective 0 328 589 9540 1.46 1.83 0.92
8 selective 16 313 767 9297 1.49 1.83 0.92
8 selective 32 836 1038 9132 1.52 1.84 0.92
8 selective 64 942 1137 9128 1.52 1.85 0.92
4 non.spec. 0 200 200 14272 1.00 1.00 1.00
4 non.spec. 16 200 200 14154 1.01 1.01 1.00
4 non.spec. 32 200 200 12548 1.14 1.01 1.00
4 non.spec. 64 200 200 11861 1.20 1.03 1.00
4 always 0 535 1140 11325 1.26 1.80 0.95
4 always 16 614 1207 11050 1.29 1.80 0.95
4 always 32 2822 2408 9559 1.49 1.81 0.95
4 always 64 2875 2534 9570 1.49 1.82 0.95
4 universal 0 371 714 10033 1.42 1.80 0.95
4 universal 16 412 747 9898 1.44 1.80 0.95
4 universal 32 803 1110 9197 1.55 1.81 0.95
4 universal 64 1003 1292 9418 1.52 1.82 0.95
4 selective 0 292 559 9793 1.46 1.83 0.92
4 selective 16 527 580 9664 1.48 1.83 0.92
4 selective 32 695 914 9022 1.58 1.84 0.92
4 selective 64 908 1106 9177 1.56 1.85 0.92

Table I. Speculative RAW dependency resolution results

Wq = 1− Whist Testcase
Wspec 0.0 0.5 1.0 Simple

0 0.0 9.3 9.3 0.0 gf multiply
2 13.7 12.3 11.0 11.0
4 13.7 12.3 11.0 11.0
6 13.7 13.7 13.7 13.7
0 25.5 25.5 13.0 0.0 priority mux
2 12.5 12.5 13.2 13.2
4 12.5 12.5 13.2 13.2
6 13.2 13.2 13.2 13.2
0 0.3 1.9 2.0 0.0 median filter
2 0.3 1.9 2.0 0.0
4 0.3 1.9 2.0 0.0
6 0.3 1.9 2.0 0.0

Table II. Runtime speed-up in % over static prioritization



dynamically computing Pqh(r) is efficiently implemented
by a two-dimensional, statically pre-computed 64-entry
look-up table indexed by Fq(r) and the 2b output value of
the GAg predictor of r (selecting the branch probability
Phist). At run-time, only the evaluation of S(r) and the
shift have to be performed. For computing Psimple(r), we set
Pmax[5:0] = 63. Note that with these parameters, choosing
Wspec = 6 implies that the priority of speculative accesses
is always zero.

gf multiply performs Galois field multiplication. Due to
the address of the next read being dependent on the result
of a previous read, it has a structure similar to that of Fig-
ure 4.b. Thus, the Value-Speculation Prioritization scheme
should be profitable here. This is indeed the case: Queue-
balancing and control-speculation have only limited speed-
up potential, but heavily penalizing speculative accesses
over non-speculative ones by increasing Wspec achieves
speed-ups of up to 13.7% (even when using the simpler
Psimple dynamic priority).

median filter performs image processing and executes
parallel memory reads on the required pixels. It has no data
dependencies between reads and no control flow in the loop
body. However, all pixels read are combined in the median
computation. The application thus has a structure similar
to that shown in Figure 4.c and suggests the use of Queue-
Balancing Priority. As expected, the best speed-ups of 2%
are achieved with Wq = 1.0, the other parameters have no
impact.

priority mux is a synthetic test case for reads on separate
branches of a conditional that are executed in parallel
on the RCU, reflecting the structure of Figure 4.d. This
example profits by up to 25.5% from Control-Speculation
Priority by setting Wq = 0.0⇔ Whist = 1.0, and disabling the
unnecessary Value-Speculation Priority by Wspec = 0.

These results also show that, if FPGA area is scarce, the
simpler Psimple dynamic priority scheme might be a viable
choice. It does not not need to track queue fill-levels or
require any kind of per-port branch prediction, but can
still yield performance improvements over the purely static
case as long as speculative accesses are at least somewhat
penalized over non-speculative ones (e.g., by Wspec = 2).
But even better performance is achievable by matching
(ideally, compiler-assisted) the access predictor weights to
the application.

VIII. CONCLUSION AND FUTURE WORK
With our prior work on PreCore, we have introduced

an effective general-purpose scheme for adding hardware-
supported speculation to statically scheduled datapaths
compiled from C. The RAP extensions presented here
improve PreCoRe by allowing efficient handling of RAW
memory dependencies and reducing the negative effects
of speculation-induced increased memory pressure by a
dynamic prioritization scheme. Using our new Selective

Replay method to react to speculative RAW violations,
we improve performance over conventional approaches that
just rely on victim caches to ensure quick re-execution.

The key capability of reconfigurable computing, the
adaptation of the microarchitecture of the generated hard-
ware to the structure of the application, is further strength-
ened using RAP. In future work, we will refine our compiler
to automatically support the required customization of
individual RAP features by appropriate heuristics.
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