
PHAT: A TECHNOLOGY FOR PROTOTYPING PARALLEL HETEROGENEOUS
ARCHITECTURES

Thorsten Wink, Andreas Koch

Embedded Systems and Applications Group
Technische Universität Darmstadt

email: {wink|koch}@esa.cs.tu-darmstadt.de

ABSTRACT

This paper presents the Parallel Heterogeneous Archi-
tecture Technology (PHAT), a scalable design methodology
for prototyping and evaluating heterogeneous arrays of
software-programmable VLIW processors and both man-
ually designed and automatically-compiled custom hard-
ware accelerators, using a shared memory architecture
for communication. We discuss the trade-offs and break-
even point for switching from bus-based to network-on-chip
interconnects, the interface and protocols for connecting
distributed on-chip caches and multi-bank out-of-order off-
chip-memories, as well as the impact of floorplanning on
the quality of results for implementation on Xilinx Virtex 6
LX 760 devices.

The capabilities are evaluated at the system-level on the
multi-FPGA Convey HC-1ex hybrid-core computer, access-
ing its high-performance memory system, and integrating
r-VEX processor cores with IP blocks for SHA and FFT
computations.

I. INTRODUCTION

From application domains reaching from high-
performance stationary to mobile or embedded comput-
ing, single monolithic processors are being replaced with
heterogeneous arrays of processing elements, combining
both programmable and fixed-function as well as (in some
cases) reconfigurable components. Often, shared memory
is used as the interaction model between the different pro-
cessing elements as explicit message-based communication
requires a higher effort from the software developers.

Such systems are becoming increasingly difficult to
develop and prototype: Since custom hardware blocks (hard
IP blocks or custom-compiled components) often need to
be considered, fast simulation using just instruction-set or
architectural simulators is no longer sufficient. While it
is possible to combine different simulators (instruction-
set and RTL), the performance of such a system is of-
ten sub-optimal due to numerous cross-simulator calls,
e.g., when modeling shared memories or cache-coherency
mechanisms.

As an alternative, we present PHAT, a highly flexible
framework for emulating parallel heterogeneous computing

systems. In contrast to many conventional ASIC emulation
approaches, our platform integration will provide both a
fully integrated desktop-class processor as well as high-
throughput memory for the processing elements (PEs) in
the heterogeneous computing array. Note that we use the
term PE to include both software-programmable processors
as well as pure hardware IP blocks.

For flexibility, we support heterogeneity on a wide num-
ber of axes: Instruction set-extension and variable archi-
tecture parameters for individual software-programmable
processors, integration of manually designed or automati-
cally compiled hardware accelerators, a common but highly
adaptable memory system, and an easily resizeable floor-
planning scheme to provide physical-level support for high
performance.

The technology described here combines prior work
on configurable processors [20] and networks-on-chip [17]
with our own research on configurable memory systems
[15] and hardware/software co-compilers [10]. We will
evaluate the system using combinations of pure software
as well as IP and custom-compiled blocks.

II. RELATED WORK

With the growing interest in heterogeneous multipro-
cessors, described, e.g., in [11], demand for quicker design
space exploration [12] [7] has also increased. For homo-
geneous multiprocessors, projects such as RAMP Gold
[1] provide simulation accelerators (e.g., for 64 SPARC
V8 cores communicating by shared memory), but do
not allow the flexible integration of different PEs. PHAT
aims to offer this capability to designers, enabling high-
level architectural flexibility while optimizing physical-
level issues for high performance. HASim [18] is another
simulation system implemented on an FPGA. It can model
a shared memory multicore system, using time multiplexing
hardware to accelerate parts of the system. FAST [2]
is a combined hardware / software simulator, where the
functional simulation is done in software and only the
timing model is realized in hardware. ProtoFlex [4] is
a hybrid full system simulator used in the BlueSPARC
simulator.



Instruction 
memory Fetch Decode

Execute

4x ALU
2x MUL

Writeback
MARC II

cache

MEMRegister

RegisterPC CTRL

128
32

32

Fig. 1. r-VEX in a 4-issue configuration

III. R-VEX

For many experiments, it is useful to easily alter the
characteristics of the software-programmable processor.
Common choices vary the types and numbers of processing
units, while in some cases it is also desirable to extend the
base instruction set with application-specific functionality.

One of the few openly available cores that provides the
desired flexibility is r-VEX, developed by TU Delft [20].
It is an open implementation of the HP VEX architecture
[5], of which commercial variants were used, e.g., in the
ST Microelectronics ST200 VLIW-DSP processors.

Shown in Figure 1, r-VEX is a 32b VLIW micro
architecture easily adaptable, e.g., with regard to the issue
width, number of ALUs, Multipliers, Load and Store Units
and many more parameters. By setting the issue width to
one, it can be turned into a conventional RISC processor.
The flexible architecture is supported by a configurable
compiler tool chain [8] that generates code for the specific
micro architecture instance. Additionally, since the core
implementation is provided as synthesizable HDL, custom
instructions can also be added to each instance as required.

In the original r-VEX distribution, a core could only
operate in stand-alone fashion, using dedicated on-chip
memories for instructions and data. Memory contents could
only be initialized at synthesis time and no formalized
communication scheme to the outside world existed. We
have made numerous extensions to the base architecture:
Accessing shared memory, configurable cache support for
data and instructions, and interfacing with an external con-
trol processor for system management (including loading
of programs and data) and I/O.

The specific r-VEX configuration we use here employs
four ALUs, two multipliers, and a single load-store unit.
Since this paper focuses on the system-level aspects, we
will not discuss the instruction set-extension of individual
processors here.

AE 3 AE 2 AE 1 AE 0

MC 
7

MC 
6

MC 
5

MC 
4

MC 
3

MC 
2

MC 
1

MC 
0

Host CPU

AE memory system (AEMS)

DIMMs

DIMMs

Host memory system

DIMMs DIMMs DIMMs DIMMs DIMMs DIMMs DIMMs

Fig. 2. Convey HC-1ex System

IV. INITIAL TARGET PLATFORM: CONVEY
HC-1EX

While PHAT is designed for portability between plat-
forms (discussed in Section X), our initial choice of
platform is motivated by our interest in evaluating sys-
tems combining a powerful desktop/server-class CPU with
shared memory heterogeneous processing arrays. Espe-
cially crucial is providing the heterogeneous array with
sufficient memory bandwidth, a capability that is only
rarely available on ASIC prototyping or FPGA evaluation
boards.

Thus, as first implementation platform, we picked a
Convey HC-1ex heterogeneous (“hybrid”) computing sys-
tem. The Convey HC-1ex system consists of a host server
providing an Intel Xeon L5408 Quad-Core CPU, which is
linked by FSB to a reconfigurable component consisting
of four Application Engines (AE), each a Xilinx Virtex
6 LX760 FPGA. The system maps the host memory and
the eight memory banks directly available to the AEs
into a shared cache-coherent address space with NUMA
characteristics (accesses from CPU to AE memory are
possible, but slower than local accesses). The CPU controls
the configuration of the AEs and can also remap parts of
the virtual address space between CPU and AE memory for
faster access. In this fashion, a seamless computation model
similar to the one proposed earlier in [13] is achieved,
which freely allows passing pointers between software and
hardware execution.

Since the multiple compute units on the heterogeneous
arrays have correspondingly higher memory bandwidth
requirements, the powerful AE Memory System (AEMS)
of the Convey platform is attractive for our-use case. In
addition to the host memory shared via FSB, the 48b
adress space allows the AEs access to eight banks of on-
board memory, each bank handled by its own Memory
Controller (MC) in a dedicated FPGA (saving space in
the AEs). Each of the memory banks is 8 bytes wide and
allows configurable interleaving of the address space. In
the experiments presented in Section VIII, we have used
linear interleaving which stores successive 8B blocks to



MARC II Cache System

Read
Addr

Read
Addr
Valid

Read
Data

Read
Data
Valid

Write
Addr

Write
Addr
Valid

Write
Data

Write
Ready

CONNECT NOC

32
64

3264

2x178

Fig. 3. External view of a cached configuration of the
MARC II memory system with one read and write port
(R1W1)

successive memory banks. While the AEMS aggressively
exploits out-of-order operation for high throughput, the
clients (processors and hardware accelerators) are respon-
sible for efficiently reordering the incoming access replies
(see Section V) using a 32b read ID field.

Typically, the Convey platform would be programmed
either manually or using a hardware/software co-compiler
such as Nymble [10] to execute the compute intensive parts
of an application on the AEs and leave the rest of the
code (management, I/O) on the Xeon host processor. With
PHAT, more levels of partitioning become available: Not
only between host CPU and AEs, but also between the
(possibly differently configured) r-VEX cores and hetero-
geneous accelerators.

V. PROCESSING ELEMENT-LOCAL MEMORY
INTERFACE

Since all of our PEs are capable of autonomously
performing memory accesses (are master-mode capable),
the memory interface in each PE to the shared system
memory (both AE- and CPU-side) plays a key role in
system performance.

The PE-local Memory Interface (PEMI) consists of two
sides, one facing its client PE, the second facing the on-
chip interconnect (see Section VI). Both of these sides
use standardized protocols, so they can easily be applied
to different PEs or connected to different communications
mechanisms.

The differences lie in the configurable behavior of the
PEMI: PEs such as processors and some accelerators profit
from local caching, to avoid accessing the high throughput
but also high latency off-chip AEMS. Other PEs perform
streaming accesses and do not require caches, but still need
the reordering capabilities required to receive data from the
Convey AEMS.

To satisfy these different needs, the PEMI can provide
either a simple reordering buffer for streaming accesses, or

a complete configurable multi-port cache for more random
access patterns. For the latter, we use a variation of our
earlier MARC II [15] memory system. MARC itself is
also highly portable, carefully separating the client-facing
front-ends (shown as an example in Figure 3) from the
technology-specific back-ends. In addition to the existing
MARC back-ends for various kinds of SDRAM, SRAM,
and PCI, a new back-end for interfacing with the AEMS
was integrated. The mid-end of MARC is responsible
for the actual caching behavior (direct-mapped/associative,
write-through/write-back, cache organization, prefetching
etc.). It was here where we added the reordering capability
required to accept replies from the AEMS, the actual
reordering is completely transparent for the client PE.

Since all of the heterogeneous elements have their
own MARC instances, thrashing or cache pollution is
completely avoided. MARC is also capable of supporting
multiple levels of cache-coherency, but this feature was not
yet exploited for the work presented here. For the actual
experiments, we will use MARC caches, each configured
with one read and one write port, direct mapped access,
write-back mode, using a line width of 8 bytes, 1024 lines
total, and a prefetch length of 32 lines.

To better support the r-VEX cores, we added another
capability to the PEMI: The Fetch stage of the cores is
directly attached to a dedicated local instruction memory
(IMEM), consisting of fast on-chip BlockRAMs. When
starting an r-VEX PE, that memory is initialized with the
program to be executed from the shared memory using
the PE’s MARC instance (similar to the approach used in
[6]). Afterwards, the MARC instance will only be used
for data accesses. This setup essentially doubles the total
memory bandwidth (instructions and data) for each r-VEX
core. In the current experiments, the IMEM is configured
to hold 1024 instructions, each 128b wide for a 4-issue
r-VEX. This suffices to hold the code of the benchmark
examples and could easily be extended for larger programs.
Also, r-VEX itself needed to be modified to accept variable-
latency memory accesses, as the original micro-architecture
relying on local BlockRAMs always expected single cycle
accesses. While IMEM can maintain this for instructions,
cache misses for data accesses will now stall the entire
r-VEX core until the data has been retrieved from main
memory.

VI. ON-CHIP COMMUNICATION

In our previous work on adaptive reconfigurable com-
puters such as [14], we were able to efficiently use custom
bus-based interconnects between the different blocks (e.g.,
processor, accelerator(s), memory controller(s), ...). Thus,
we initially attempted to apply this approach to the PHAT
prototype. As each MARC instance can be configured to
deal with multiple back-ends (mapped into different ranges
of the address space), we created a separate MARC back-
end for each of the eight Convey MC Interfaces (MCI)
in each PE-specific MARC instance. At each MCI, local



PE 0

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 11

PE 9

PE 10

PE 12

PE 16

PE 13

PE 14

PE 15

PE 17

MC3

MC2

MC7

MC6 MC5

MC4

MC0

MC1

NOC

Fig. 4. On-chip topology of PEs and MCs

Router 

Router

send

receive

send

receive

Router 

Router
receive

send

sendreceive

Fig. 5. Double-ring NoC topology

arbitration would control which PE would get access to
that specific MC.

However, the placement constraints imposed by Convey
in order to close 150 MHz timing tightly pack all MCIs into
the center of the AE-FPGAs (see Figure 4). Attempting to
route eight MARC back-end buses (each > 128b wide) for
each of the PEs leads to routing failure when more than
five PEs are present in an AE, since there simply is not
sufficient interconnect available in the center of the chip.
As our work aims for more PEs per AE (at least a dozen
should be supported), we needed a more scalable solution.

Thus, despite initial reservations with regard to the
increased area and access latency, we also implemented a
network-on-chip (NoC)-based communication architecture.
Since our interest lies in prototyping parallel heterogeneous
computing systems and not in NoC design, we were
fortunate to be able to use the existing CONNECT NoC
[17]. CONNECT presents a low barrier of entry, as the
author makes not just a single NoC node router available,
but provides a generator [16] as a web service for entire
NoCs, which outputs synthesizable Verilog for the chosen
configuration.

Considering the size of an individual r-VEX core (see
Section VIII), it made sense to partition the V6LX760 chip

Bits Description
31:0 ID for reordering and source port identification

95:32 Read / Write Data (64b)
159:96 Memory-address (64b)

167:160 Byte write Enable (8b)
168 read or write (1b)
169 virtual channel (at least 1b)

174:170 destination address (5b)
175 Tail (for multi-packets, unused in PHAT, 1b)
176 Valid (1b)

Table I. Structure of the NoC packets used in PHAT

FFT Core

CONNECT-NOC

Re-
Order

TechMod

SHA Core

CONNECT-NOC

MARC II
Cache

TechMod

MARC II
Cache

VEX Core

IMEM

TechMod

CONNECT-NOC

a) b) c)

Fig. 6. Configurable interfaces between PEs and the NoC
using PEMI

used for an AE into 18 regions around the central area
holding the preplaced MCIs and movable NoC logic. Again
with an eye toward routability, we performed floorplanning
on these partitions (Figure 4) and chose a matching double
ring topology (Figure 5, shows an example for four nodes)
with a total of 26 endpoints in our largest configuration (18
PEs and 8 MCIs).

Table I shows the payload (169b) and control data (8b)
of a PHAT NoC packet. Most of these data items also
appear as the hardware signals to the CONNECT router
blocks in the form of an easily-used parallel interface.
As the number of Virtual Channels (VC) for the NoC
instance is configurable at generation time, more channels
(see Section VIII) will result in more bits being needed
here.

VII. COMPLETE HARDWARE ARCHITECTURE

Using CONNECT, we provide each PE with a NoC
router. Depending on the needs of the PE, an appropriate
PEMI (Section V) is inserted between the router and the



Application-Code

Code for Host-CPU
Code for VEX-

Processor
Code for custom 

hardware

Convey-GCC
HP-VEX-Compiler
R-VEX Assembler

HLS-Synthesis /
handcoding

Executable
Instruction- and
Data-Memory

Verilog /
Bitstream

Executed on host
Copied to memory
Executed on VEX-

Core

Placed in a slot on 
the FPGA

Fig. 7. Compiling for the PHAT prototype

PE itself: MARC II with separate IMEM for an r-VEX
(Figure 6 a)), a plain Reorder Buffer for streaming accesses
(Figure 6 b)), and MARC II for hardwired accelerators
that do not need to fetch instructions (Figure 6 c)). A so-
called Technology Module acts as the interface between
the generic MARC/Reorder Buffer-internal protocols and
the router interface.

This approach allows the easy integration of custom-
compiled hardware functions generated by the Nymble [10]
co-compiler, which already connect to the MARC II cache
interface. Also, due to the simplicity of the protocol, it is
easy to wrap manually designed IP blocks in the interface.
Examples for both approaches will be shown in Section
VIII).

VIII. EXPERIMENTAL EVALUATION

We evaluated the PHAT prototype using a number
of software applications and two hardware functions, one
automatically compiled using Nymble, the second one a
manually wrapped IP core. For compilation to the different
components of the prototype (x86 host CPU, r-VEX PE,
accelerator PE), we used the three-pronged flow sketched
in Figure 7), focusing here on compiling for the different
PEs.

The r-VEX core is used in version 2.1, executables
are compiled using version 3.43 of the VEX C compiler,
assembled using TU Delft’s r-ASM [19], Xilinx ISE 14.6 is
used for logic synthesis, mapping, placement and routing.

VIII-A. Software Performance on r-VEX PEs

As described in Section III, we use 4-issue cores
executing at 150 MHz (the default clock frequency of the

Convey HC-1ex MC interface). Four software applications
execute on the r-VEX PEs:

• ADPCM: Encoding of PCM values in shared
memory, followed by decoding and comparison of
the results.

• Matrix Multiplication: Multiplication of two
dense 100x100 matrices in shared memory.

• Bubblesort: Sort of a 2000 element integer array
in shared memory.

• Contrast Enhancement: Two-pass contrast-
spreading on 256x256 8b greyscale images.

In summary, a single 4-issue r-VEX core clocked at 150
MHz has roughly 1/18 of the performance of one of the
2.13 GHz Xeon cores of x86 server host CPU. Performance
for these sample applications scales linearly with the num-
ber of r-VEX cores, as MARC II, the NoC, and AEMS has
sufficient bandwidth to never get saturated even when all
18 cores are operating on an AE. With four AEs available
on the Convey HC-1ex, allowing a total implementation of
72 r-VEX cores, the prototyping performance of this PHAT
platform is thus broadly equivalent to the native Quad-Core
CPU, significantly exceeding the performance of HDL or
instruction-set simulation.

VIII-B. Scalability of Homogeneous r-VEX Arrays

Table II gives an overview of the scalability of the
approach. We show the required areas for the largest
routable bus-based system (5x r-VEX), a smaller NOC
based system with just eight r-VEX cores (leaving 10
partitions available for other logic), and the maximal NoC-
based system with 18 r-VEX cores. For both NoC cases, we
use CONNECT in its minimal configuration of just 2 VCs
(one for sending, one for receiving of data). Sizes are given
for an individual r-VEX core, a single MARC II cache
(configured as described in Section V), an individual NoC
router as well as the complete NoC. cae pers is the size of
the synthesized logic (PE array and NoC), while complete
FPGA also includes the Convey-provided interfaces (e.g.,
the MCs).

In all cases, the complete FPGA met timing at 150
MHz. The bus-based implementation is of course somewhat
smaller (ca. 10%) than the corresponding NoC-based one,
but does not scale beyond the 5 PEs shown here. However,
even for the largest PE arrays, the NoC requires just around
8% of the entire chip area.

VIII-C. Scalability of NoC Virtual Channels

If more network throughput is desired (e.g., for more
cache-hostile applications) or when cache-coherency mes-
sages must also be transported (see Section IX), the band-
width of the network can be scaled up by increasing the
number of virtual channels. Table III shows the impact of
scaling up to 4 and 8 VCs in a maximum r-VEX array.
Even going to 8 VCs increases the total NoC just to 16%



Slices Slice Reg LUTs BRAMs
available on V6LX760 118560 948480 474240 720

5x r-VEX, bus-based
complete FPGA 30521 45006 91144 132

cae pers 19643 14815 62372 60
1x VEX-Core 2418 1401 8659 4

1x MARC II-Cache 833 409 1976 8
5x r-VEX, NoC w/ 2 VCs

complete FPGA 33043 48915 104291 132
cae pers 22712 18261 74241 60

1x VEX-Core 2418 1127 8511 4
1x MARC II-Cache 720 510 2071 8

CONNECT NoC 4520 2322 14123 0
1x CONNECT Router 320 169 1043 0

8x r-VEX, NoC w/ 2 VCs
complete FPGA 45120 54915 141188 168

cae pers 33693 24691 110311 96
1x VEX-Core 2418 1127 8511 4

1x MARC II-Cache 720 510 2071 8
CONNECT NoC 6226 3222 19258 0

1x CONNECT Router 324 171 1043 0
18x r-VEX, NoC w/ 2 VCs

complete FPGA 81671 76843 260585 288
cae pers 70450 46619 229134 216

1x VEX-Core 2632 1456 8781 4
1x MARC II-Cache 745 528 2100 8

CONNECT NoC 9626 5148 28747 0
1x CONNECT Router 370 198 1084 0

Table II. Area scaling of homogeneous r-VEX arrays

Slices Slice Reg LUTs BRAMs
available on V6LX760 118560 948480 474240 720

18x r-VEX, NoC w/ 4 VCs
complete FPGA 84516 80027 265876 288

cae pers 73188 49803 234572 216
1x VEX-Core 2710 1456 8781 4

1x MARC II-Cache 720 528 2111 8
CONNECT NoC 11270 8308 33851 0

1x CONNECT Router 430 318 1272 0
18x r-VEX, NoC w/ 8 VCs

complete FPGA 91411 87883 282594 288
cae pers 80568 57659 252012 216

1x VEX-Core 2710 1456 8781 4
1x MARC II-Cache 811 528 2105 8

CONNECT NoC 18763 16164 52294 0
1x CONNECT Router 720 618 1988 0

Table III. Area scaling of homogeneous r-VEX arrays with
more VCs

of the total chip area, leaving sufficient scaling headroom
to more traffic-intensive applications on the r-VEX cores.

VIII-D. Custom-Compiled Hardware PEs

To demonstrate the feasibility of quickly integrating
custom-compiled hardware using PHAT, we used Nymble
to compile the SHA kernel from the CHStone benchmark
suite [3] into a PE for insertion into the PHAT array. Since
the compiler has only limited optimization opportunities
on the code (which uses unbounded loops and pointer
accesses), the resulting hardware is significantly larger than
the manually optimized r-VEX core. But it can be easily

Slices Slice Reg LUTs BRAMs
available on V6LX760 118560 948480 474240 720

15x r-VEX, 1x SHA, NoC w/ 2 VCs
complete FPGA 88893 152505 286378 260

cae pers 78822 122281 254911 188
1x VEX-Core 2487 1127 8497 4

1x MARC II for r-VEX 737 510 2101 8
1x MARC II for SHA 773 526 1941 8

1x SHA Accelerator 20121 81084 58548 0
CONNECT NoC 8404 14590 27651 0

1x CONNECT Router 325 171 1042 0

Table IV. Heterogeneous array combining r-VEX with
compiled SHA accelerator

Slices Slice Reg LUTs BRAMs
available on V6LX760 118560 948480 474240 720

18x FFT, NoC w/ 2 VCs
complete FPGA 63319 140492 165848 144

cae pers 51942 110268 134713 72
1x FFT Core 2077 5047 5296 3

1x Reordering Buffer 89 303 186 1
CONNECT NoC 9537 5140 27880 0

1x CONNECT Router 371 171 1042 0

Table V. Homogeneous array of 18 FFT IP blocks

accommodated in PHAT just by allocating it to three of the
18 PE slots during floorplanning.

The heterogeneous array of 15 r-VEX cores and one
SHA accelerator also meets 150 MHz timing on the Virtex
6 FPGA.

VIII-E. Manually-Optimized Hardware PEs

Both the homogeneous and the heterogeneous example
arrays described above did not put large bandwidth de-
mands on the memory system and the NoC. In order to
stress-test these components, we now examine the integra-
tion of a manually optimized IP block that runs in full
streaming mode.

To this end, we consider a pipelined 256 point FFT
core [21], accepting a 32b input word and producing a 32b
output word per cycle. At the system clock of 150 MHz,
the total required memory bandwidth will be 1.14 GB/s
per core. Since the core operates purely in streaming mode
with no data reuse, it will not use a MARC II cache in
the PEMI, but employ a simple Reorder Buffer (Section
VII). As shown in Table V an instance of the FFT core
(2077 slices) easily fits into one the r-VEX sized floorplan
partitions (2800 slices), allowing us to execute the stress
test with a homogeneous array of 18 FFT cores. Input
and output is allocated as shared memory in the off-chip
AEMS.

In this configuration of the on-chip MCIs (single chan-
nel mode), each AE has a maximal theoretical throughput
of 9.15 GB/s to MCs in the AEMS. At best, however, we
just reach 3.87 GB/s across all MCIs (shown for 9 FFT
blocks active, Table VI). Using more VCs does not gain
performance until we exceed five FFT blocks (no blocking



Number of 2 VC 4 VC 8 VC
FFT Blocks

1 1.00 1.00 1.00
2 1.63 1.57 1.31
3 1.87 1.93 1.74
4 1.93 1.79 1.80
5 2.25 2.21 2.20
6 2.80 2.88 2.83
7 3.07 3.08 3.13
8 3.10 3.21 3.46
9 2.93 3.79 3.87

10 2.80 3.50 3.59
11 2.66 3.51 3.65
12 2.60 3.28 3.51
13 2.62 3.25 3.29
14 2.68 3.19 3.43
15 2.52 3.30 3.60
16 2.51 3.55 3.78
17 2.59 3.42 3.76
18 2.52 3.40 3.63

Table VI. Total throughput of the eight on-chip MCIs for
FFT blocks [GB/s]

Number of 2 VC 4 VC 8 VC
FFT Blocks

1 4.0 4.0 4.0
2 6.6 6.3 5.3
3 7.6 7.8 7.0
4 7.8 7.3 7.3
5 9.1 9.0 8.9
6 11.4 11.7 11.5
7 12.5 12.5 12.7
8 12.6 13.0 14.0
9 11.9 15.4 15.7

10 11.3 14.2 14.6
11 10.8 14.3 14.8
12 10.5 13.3 14.3
13 10.9 13.2 13.4
14 10.2 12.9 13.9
15 10.2 13.4 14.6
16 10.5 14.4 15.6
17 10.2 13.9 15.3
18 10.0 13.7 14.9

Table VII. Total throughput of the NoC for FFT blocks
[GB/s]

occurs in the NoC). For six and more blocks, more VCs
allow more packets to be in-flight between the PEMIs and
MCIs. After exceeding 8 (for 2 VCs) or 12 blocks (for
4 or 8 VCs) the number of collisions has increased to a
level that begins to reduce system performance again. So,
it appears that the NoC is the bottleneck here.

We thus measured the throughput of the NoC itself:
Reads induce two packets in the NoC (request and reply),
while writes require only a single one. The results are
shown in Table VII). To achieve a memory throughput of
3.87 GB/s for the FFT PEs, we have to process 15.7 GB/s
in the NoC. So while the NoC did resolve the scaling issue
the bus-based approach faces, there clearly is the need for
more optimization of the NoC to satisfy even bandwidth-
hungry applications.

IX. FUTURE WORK

While PHAT already allows the exploration and proto-
typing of parallel heterogeneous architectures using shared
memory for communication much faster than software-
based simulators (RTL or ISS), much potential for improve-
ments remains.

One area of further development are the capabilities of
the r-VEX core, which was originally never intended to be
used in a chip-level multiprocessing (CMP) configuration.
For more general use, key functions for parallel program-
ming such as atomic update instructions will need to be
added to the core.

Similarly, a major component missing from the current
shared memory system is automatic cache coherence be-
tween PEs. Note that this capability is already supported in
bus-based MARC II designs, but will need to be adapted to
the NoC-based communication scheme. It should also be
performed across AE boundaries, requiring inter-chip data
routing between NoCs residing on different AEs.

Finally, to support even higher memory bandwidths, it
is worthwhile to optimize the NoC itself. One approach
would be the use of pipelining in the NoC, which is
already present in CONNECT, but not reliable in all NoC
configurations. The second would be the replacement of
the CONNECT NOC routers with a faster version, e.g., as
described in [9].

X. CONCLUSION

The PHAT prototype has already been useful in al-
lowing experimentation with and evaluation of parallel
heterogeneous architectures. For example, on 18 r-VEX
cores, the contrast enhancement application described in
Section VIII-A executes 1.4M times faster on PHAT than
using software simulation.

The combination of selective floorplanning together
with a scalable NoC architecture has permitted successful
FPGA implementation even of complex PE arrays with
short turnarounds, while still meeting the default timing
of the underlying hardware platform.

The system is highly flexible, allowing customization
and parameter tuning at many levels, from specific in-
struction set extensions of individual processors to altering
global NoC characteristics.

Despite appearances, PHAT is also highly portable
to different hardware platforms. While the currently em-
ployed Convey HC-1ex platform is desirable for its tight
integration of a multi-core server-class x86 CPU with a
large reconfigurable processing capacity, coupled to a high-
throughput memory system, other use-cases might call
for more economical solutions using smaller prototyping
boards. In that case, only the MCI endpoint in PHAT would
have to be altered, connecting the corresponding NoC node
to the actual memory controller used. In smaller platforms,
many more advanced features such as out-of-order memory



replies will most likely not even be required, thus avoiding
the need for reorder buffers in the PEMI.

Work on alleviating some of the current limitations,
specifically automatic cache coherence and higher available
memory bandwidths, has already begun.

Acknowledgments: This work was supported by hardware and
software donations from Xilinx Inc.

REFERENCES

[1] R. Avizienis, Y. Lee et al. RAMP Gold: A High-Throughput FPGA-
Based Manycore Simulator. In Design Automation Conference
(DAC). 2010.

[2] D. Chiou, D. Sunwoo et al. FPGA-Accelerated Simulation Tech-
nologies (FAST): Fast, Full-System, Cycle-Accurate Simulators. In
MICRO. 2007.

[3] CHStone - A Suite of Benchmark Programs for C-based High-Level
Synthesis. [Online]. Available: http://www.ertl.jp/chstone/.

[4] E. S. Chung, M. K. Papamichael et al. ProtoFlex: Towards Scalable,
FullSystem Multiprocessor Simulations Using FPGAs. 2009.

[5] J. Fisher, P. Faraboschi et al. Embedded Computing. Morgan
Kaufmann, 2004.

[6] H. Gädke-Lütjens, B. Thielmann et al. A flexible compute and mem-
ory infrastructure for high-level language to hardware compilation.
In Field Programmable Logic and Applications (FPL), 2010 Intl.
Conference on, pp. 475–482. IEEE, 2010.

[7] P. Garcia and K. Compton. Kernel Sharing on Reconfigurable
Multiprocessor Systems. In Conference on Field Programmable
Technology. 2008.

[8] Hewlett-Packard Laboratories. VEX Toolchain. [Online]. Available:
http://www.hpl.hp.com/downloads/vex/.

[9] Y. Huan and A. DeHon. FPGA optimized packet-switched NoC
using split and merge primitives. In Field-Programmable Technology
(FPT), 2012 International Conference on, pp. 47–52. 2012.

[10] J. Huthmann, B. Liebig et al. Hardware/software co-compilation
with the Nymble system. In 2013 8th International Workshop
on Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), pp. 1–8. IEEE, 2013.

[11] R. Kumar, D. M. Tullsen et al. Heterogeneous Chip Multiprocessors.
Computer, 38(11):32–38, 2005.

[12] R. Kumar, D. M. Tullsen et al. Core Architecture Optimization for
Heterogeneous Chip Multiprocessors. In Proceedings of the 15th
International Conference on Parallel Architectures and Compilation
Techniques. 2006.

[13] H. Lange and A. Koch. An execution model for hardware/software
compilation and its system-level realization. In Field Programmable
Logic and Applications, 2007. FPL 2007. Intl. Conference on, pp.
285–292. IEEE, 2007.

[14] H. Lange and A. Koch. Architectures and Execution Models for
Hardware/Software Compilation and Their System-Level Realiza-
tion. IEEE Trans. Comput., 59(10):1363–1377, 2010.

[15] H. Lange, T. Wink et al. MARC II: A Parametrized Speculative
Multi-Ported Memory Subsystem for Reconfigurable Computers. In
DATE. 2011.

[16] M. Papamichael. CONNECT-Generator. [Online]. Available:
http://users.ece.cmu.edu/ mpapamic/connect/.

[17] M. K. Papamichael and J. C. Hoe. CONNECT: Re-Examining
Conventional Wisdom for Designing NoCs in the Context of FPGAs.
In FPGA. 2012.

[18] M. Pellauer, M. Adler et al. HAsim: FPGA-based high-detail
multicore simulation using time-division multiplexing. 2011.

[19] r-VEX: Sources and Tools. [Online]. Available:
https://code.google.com/p/r-vex/.

[20] R. Seedorf, F. Anjam et al. Design of a Pipelined and Parameterized
VLIW Processor: r-VEX v.2. In Proc. 6th HiPEAC Workshop on
Reconfigurable Computing. Paris, France, 2012.

[21] Uzenkov, Oleg and Sergiyenko, Anatolij . Pipelined
FFT/IFFT 256 points processor [Online]. Available:
http://opencores.org/project,pipelined fft 256.


