
Synthilation: JIT-Compilation of Microinstruction
Sequences in AMIDAR Processors

Christian Hochberger and Lukas Johannes Jung
Department for Electrical Engineering and Information Technology

Computer Systems Group, TU Darmstadt
Email: {hochberger,jung}@rs.tu-darmstadt.de

Andreas Engel and Andreas Koch
Department for Computer Science

Embedded Systems and Applications Group, TU Darmstadt
Email: {engel,koch}@esa.informatik.tu-darmstadt.de

Abstract—The large expense of current chip fabrication can
generally only be amortized for large manufacturing volumes.
Thus, it is desirable to build adaptable chips that can be
customized to the application needs after production. In this
contribution we show that this adaptation is possible even
without reconfigurable HW components. We propose synthilation,
a new method for adapting the processor to the application
requirements. It combines methods of hardware synthesis and
software compilation to map high-level descriptions to hardware
components of the processor. Our approach is applicable to
varying degrees of reconfigurability, reaching from static microar-
chitectures just with writable control stores (variable microcode),
to the exploitation of instruction level parallelism with multiple
computational units. We consider both a practical real-world
example as well as theoretical bounds on the speed-ups achievable
by our method.

I. INTRODUCTION

Following Moore’s law, the number of transistors on a chip
doubles every 24 months. After being valid for more than 40
years, the end of Moore’s law has often been forecast. Yet,
technological advances have kept the progress intact.

Due to increasing design and manufacturing costs, we
will need to make chips adaptable to the needs of individual
applications. Reconfigurable logic in different granularities has
been proposed to solve both problems[1]. It allows us to
build large quantities of chips and yet use them individually.
Field programmable gate arrays (FPGAs) and Coarse Grain
Reconfigurable Arrays (CGRAs) are technologies that are
currently in use for this purpose. Yet, programming those
devices is a complicated task which has to be done by experts.

FPGAs and CGRAs can be used as hardware accelerators.
In the past researchers have tried to build systems that synthe-
size configurations for these hardware accelerators on the fly
while the application was running[2][3]. Runtime profiling of
the application was used to identify suitable code sequences
and online synthesis was used to create hardware configu-
rations of the accelerating hardware. Although the potential
speedups are very good, this method has the disadvantage that
it is not possible with all types of applications.

In this contribution we will explore a different type of
reconfiguration and a different way to accelerate applications.
We will make use of the already available hardware resources
in an application optimized way. To this end, just-in-time
compilation of instruction sequences into optimized datapath
control sequences will be carried out. We will show that this
delivers good results without additional resources, but can be
improved by adding a small number of ALUs and scratchpad
memories.

A. Related Work

Static transformation from high level languages into fine
grain reconfigurable logic has been researched by a number of
academic and commercial research groups. Only very few of
them support the full programming language[4].

The (GECO)2-Architecture[5] provides a graphical user
interface to combine basic operations of digital signal proces-
sors (DSP) to complex algorithms. These basic operations are
executed by a CGRA implemented on a Flash-based FPGA,
but the mapping of applications has to be done manually.

Static transformation from high level languages into coarse
grain reconfigurable logic is also investigated by several
groups. The DRESC[6] tool chain targeting the ADRES[7]
architecture is one of the most advanced tools. Yet, it requires
hand written annotations to the source code and in some cases
even some hand crafted rewriting of the source code. Also, the
compilation times easily get into the range of days.

Dynamic transformation from software to hardware has
been investigated already by other researchers. Warp proces-
sors dynamically transform assembly instruction sequences
into fine grain reconfigurable logic[2]. Yet, only very short
basic blocks are taken into consideration, delivering only very
limited application speedups. In AMIDAR processors, full
loop bodies even with conditional execution paths can be
transformed into configurations of reconfigurable hardware in
the form of a CGRA[8][9]. It should be noted that not all
potential code sequences can be mapped to the CGRA and also
that in some cases no acceleration will result from a mapping
to the CGRA.

The processor architecture used in this contribution exe-
cutes Java bytecode. Many existing bytecode processors try
to avoid notorious data transfers to and from the stack mem-
ory. This approach is called it instruction folding. Different
mechanisms for the folding logic have been proposed. The
first published mechanism was included in the PicoJava II
processor[10]. It allows folding of six well defined groups of
instruction pairs which are folded to shorter sequences. It re-
sults in a folding of 42% of all stack operations. The Producer-
Operator-Consumer[11] and its successor the extended POC
folding mechanism[12] allow a more general folding of in-
structions. All instructions are categorized into producers,
operators and consumers. According to these classsifications
folding patterns are defined. EPOC uses a very large instruction
buffer of up to 72 byte capacity. Complex rules also need to
reorder instructions to achieve a folding of a total of 95% of all
stack operations. The resulting hardware is considerably large
when compared to the instruction issue logic.



object
heap

local
variables

operand
stack

jump
unit

method
stack

IALU
thread
memory

i/o
unit

FALU
code
memory

context
memory

token
generator

Token Distribution Network

Communication Structure

Fig. 1. Model of a Java Virtual Machine on AMIDAR Basis

B. Paper Outline

In the following section we will explain the processor
model used in this work. Section 3 will explain our new
method for processor customization. Section 4 shows the
application domain that was used for evaluation purposes. It
will be followed by a discussion of the achieved results and a
conclusion of this contribution.

II. THE AMIDAR PROCESSING MODEL

A. General Model

Execution of instructions in AMIDAR processors differs
from other execution schemes. Neither microprogramming nor
pipelining are used to execute instructions. Instead, instructions
are broken down into a set of tokens which are distributed to a
set of functional units (FU). These tokens carry the information
about the type of operation that shall be executed, the version
information of the input data that shall be processed (called
tag) and the destination of the result.

Figure 1 sketches the structure of an exemplary AMIDAR
processor for the execution of Java Bytecode. The token
generator fetches an instruction the code memory and retrieves
a set of tokens from the token memory that composes the
semantics of the instruction. This set of tokens is distributed
to the FUs over a dedicated token distribution network. The
token generator can distribute token sets efficiently, such that
FUs have enough tokens in their input queues.

To illustrate the composition of token sets for instructions,
we refer to Figure 1. Figure 2 shows a Java bytecode sequence
and the corresponding token sets for each of the bytecode
instructions. E.g. the aload_1 instruction is composed of
two tokens, which are sent to the local variables FU and
the operand stack FU. As a different example, the iadd
instruction consists of a total of four tokens. One token is
sent to the IALU FU and three are sent to the operand stack
FU. Those three have to be executed by the FU in the given
order. Thus, the token generator has to send them one after
each other.

Tokens which do not require input data can be processed
immediately. Otherwise, FUs wait for input data that has the
appropriate tag information. Once the right data is available,
the operation starts. Upon completion of the operation, the
result is sent to the FU that was denoted in the token as
destination. Eventually, one of the tokens must trigger the
transport of the next instruction to the token generator.

A detailed explanation of the model, its application to byte-
code execution and its specific features can be found in [13].

B. Adaptivity in the AMIDAR Model

The AMIDAR model exposes different types of adaptivity.
Firstly, the communication structure can be adapted to min-
imize the bus conflicts that occur during the data transports
between the FUs. In [14] we show how to identify the
conflicting bus taps and also a heuristic to modify the bus
structure to minimize the conflicts is shown. Also, in [13] we
show that the characteristics of the FUs can be changed to
optimally suit the needs of the running application. FUs can
either be latency optimized or throughput optimized.

Finally, one can augment the processor with some spe-
cialized FUs that implement often used code sequences in
an optimized way. In [15] we have presented mechanisms to
identify code sequences as candidates for a HW implemen-
tation. This profiling is part of the code memory. It counts
instructions of loop bodies on all loop nesting levels and
triggers a software thread when a particular sequence exceeds
a predefined threshold of the execution time. This thread
can then map the execution of the sequence to customizable
FUs. The result of the mapping can be stored and following
occurences of the sequence can make use of the optimization
result.

We have also shown that HW implementations of relevant
code sequences can lead to substantial application speedup (or
power saving vice versa)[16].

Previously, we have only used CGRAs that are included
in the processor to map code sequences onto HW. But in this
work we are using a different method that is inspired by the
idea of instruction folding.

C. Instruction Folding

Executing Java bytecode on AMIDAR processors makes
heavy use of the stack memory, which is due to the nature
of the stack oriented bytecode. Many of these transfers can be
avoided by looking at longer sequences of the bytecode. Figure
2 shows a bytecode sequence together with its token sequence
for the AMIDAR processor. It executes the Java statement
lv2 = lv1[lv2 + 10];. On the right-hand side, the data
dependencies have also been shown. In an ideal situation all
the tokens targeting the stack memory (PUSH and POP) would
be eliminated. It is easy to see that this can be achieved in
the given situation by simply sending the data to the final
consumer of the data.

Figure 3 shows the final result of instruction folding in this
case. The resulting sequence is substantially shorter and will
execute accordingly faster.



localMem opStackobjHeapialu

POP

PUSH

READ_1

tokenmachine

PUSH

PUSH

POP

PUSH

POP

POP

PUSH

READARRAY

POP

0x0000000A S2I

ADD32

aload_1

bipush 10

iload_2

iadd

iaload

istore_2 FASTWRITE_2

READ_2

Fig. 2. Sample sequence of bytecode instructions and the corresponding set
of tokens for an AMIDAR processor

localMem opStackobjHeapialu

READ_1

tokenmachine

READ_2

READARRAY

0x0000000A S2I

ADD32

aload_1

bipush 10

iload_2

iadd

iaload

istore_2

FASTWRITE_2

Fig. 3. The completely folded version of the already shown bytecode
sequence

III. SYNTHILATION

Although instruction folding proved useful in real byte-
code processors, a thorough analysis shows that none of the
mentioned mechanisms can fold all potentially foldable stack
transfers. Some instruction sequences would only be foldable
if the sequence of instructions would be reordered. This cannot
be done concurrently with folding instructions in hardware.

This insight gives rise to a new idea how we can avoid
the stack transfers. Rather than implementing the instruction
folding in hardware, we make use of the existing profiling
mechanism that is described in section II-B. Frequently used
instruction sequences are then compiled into an optimized
token set which carries out the whole bytecode sequence as
one virtual instruction. This can be seen as a just-in-time
compilation of tokens (or microinstructions). The methods
which are employed in this JIT-compiler borrow concepts from
traditional compiler engineering as well as from hardware
synthesis approaches. Thus, we came up with the new term
synthilation as a mixture between synthesis and compilation.

In order to support synthilation, the underlying machine
requires only two modifications: 1) The token memory must
contain an empty area that is writable by the runtime system.
2) A new software thread must be launched at system startup.
This thread will be triggered whenever a suitable instruction
sequence has been found by the hardware profiler. The thread
will then try to compute an optimized token set for the
sequence and store it in the token memory.

In contrast to the synthesis approach, no additional hard-
ware is required to support synthilation. It only uses the already
available hardware in a more efficient way (Yet, additional
hardware can be used).

The synthilation process is very similar to the synthesis
process. It starts from an instruction graph which is constructed

Profiling detects that a bytecode
sequence exceeds threshold

Build instruction graph

Annotate dependencies and operand src/dest

Schedule operations

Generate token set

Load token set into token memory

Patch original bytecode sequence

Execute optimized token set
for the bytecode sequence

Fig. 4. All process steps for the synthilation of an optimized token set

from the instructions in the candidate sequence. In a second
step this graph is annotated with dependency information and
information regarding source and destination of operands. The
annotated graph is then subject to scheduling and binding.
Eventually, the scheduled graph is traversed to evaluate the
corresponding token set. Fig. 4 shows the steps for creating an
optimized token sequence.

An example of such an optimized token set can be seen in
Figure 3. The original bytecode sequence is shown in Figure 2.
The new token set is associated with a new virtual instruction.
This instruction is stored at the beginning of the bytecode
sequence in the program memory and it automatically skips
the remaining instructions of the sequence. When the token
generator sees this new instruction, it distributes the optimized
token set. For this short example sequence, an advanced
version of instruction folding would have had the same effect.
Yet, synthilation can deal with much longer sequences and
also, it can use additional hardware to gain higher performance
as we will show in section III-C.

In a mixture of synthetic benchmarks, we have seen
speedups of ≈ 2.6. This is already better than the speedup
of 1.8 which is achieved by the EPOC ruleset. It should be
noted that these speedups were achieved for code fragments
which were dominated by compute kernels. In real world
applications, achievable speedups will most likely be smaller.

Synthilation is a concept that can be employed in all stack
based microarchitectures which are microprogrammed.

A. Sequence Improvement

The initially generated token sequences can be further
optimized. In several cases, it could be seen that the bytecode
carried out the same sequence of operations and accesses to
local variables multiple times. Thus, the executed code could
benefit from common subexpression elimination (CSE). Our
implementation of CSE has a complexity of O(n2). Thus,
running it in the target system, which is our intention, could
lead to noticeable delays of the synthesis process.

B. Small Hardware Improvements

Preliminary analysis of the generated token sequences
revealed two minor weaknesses. Firstly, in several cases the
token sequence contained more than one constant. Adding
one additional port to send two constants concurrently slightly
improved the timing of the sequences. Secondly, the generated



token sequences produced suboptimal memory rows in the
token memory. The rows contained empty places that could
be filled with tokens from subsequent rows. Thus, we imple-
mented a peephole optimizer that tries to compact the token
sets. This compaction only reduces the amount of memory
needed to store the sequence. It does not improve the timing.

C. Additional Hardware Resources

A more thorough analysis of the generated token sequences
disclosed additional potential for increased speedups. Some
sequences exposed a certain amount of instruction level par-
allelism (ILP). The ILP is dependant on the nature of the
application, but for performance demanding applications it is
highly likely to expose considerable ILP.

In an unaltered AMIDAR processor, it would not be possi-
ble to parallelize these computations. But when we compile
a sequence of tokens for a particular candidate instruction
sequence, we can make use of additional ALUs to compute
in parallel. First experiments in this direction showed that
we might also need extra temporary storage in the range of
no more than 128 words. The current synthilation algorithm
can use an arbitrary number of ALU and additional memories
(so called scratchpad memories). It tries to distribute the non
dependant computations of the sequence to the different ALUs.
Regular code will not make use of these additional resources.

IV. ADPCM AS AN APPLICATION EXAMPLE

An implementation of an adaptive differential pulse code
modulation (ADPCM) taken from [17] was used as an appli-
cation example. ADPCM is used for example in ITU audio
codec G.726 for IP telephony [18] like in DECT for cordless
phones. The following subsections explain the algorithm and
the code structure of the implementation used in this work in
order to enable a proper discussion of the achieved speedups.

A. ADPCM

Simple differential pulse code modulation just transmits the
difference of two succesive samples and an initial value. Thus,
for highly autocorrelated input data like audio signals, the
variance and the mean of all transmitted values is decreased.
With appropriate coding it is now possible to transmit the in-
formation with less effort. In ADPCM the mean value and the
variance are decreased further by transmitting the difference
between a prediction for the next value and the actual value.
This difference is also called prediction error di = xi−x̃i. The
prediction is calculated with a linear prediction filter of order
M with the coefficients ai, i ∈ 0...M − 1 and the previous
samples xi−M , ..., xi−1:

x̃i =

M−1∑
k=0

ak · xi−M+k

The decoder needs to know the first M samples and the filter
coeffiecient. Thus they are transmitted directly.

The filter coefficients are calculated for each block of
size N in advance. To find the optimal filter coefficients
the autocorrelation rk of the current block is calculated.
These values are used to build a system of linear equations,
whose solution results in filter coefficients that minimize the

variance of the prediction error sequence (d1, ..., dN ) [19].The
prediction error sequence is mapped from signed to unsigned
integer via code spreading.

These unsigned integer values are coded with Golomb-
Rice-Coding which is very effective for input streams in which
small values are more probable than large values. This is the
case for the prediction error sequence for input streams like
audio signals which can be predicted effectively. Golomb-Rice-
Coding has one parameter which will be called riceCoefficient
in this work.

B. Code Structure of ADPCM Implementation

The AMIDAR simulator framework does not yet support
input streams. Thus the input and output streams of the
ADPCM are simulated by arrays in this work. Both the encode
and the decode methods receive the parameters blockSize,
order, riceCoefficient plus the references to two
arrays for input data and output data.

1) Structure of the Encode Method: The encode method
consists of a single while loop which contains all functionality.
If a new block starts, the prediction filter coefficients have to be
calculated. Afterwards the prediction errors are calculated, en-
coded (Golomb-Rice-Encoding) and sent to the output stream.
The structure of the code is shown in Algorithm 1.

Right hand-side comments show which loops are contained
within the instructions. Loops whose number of iterations are
dependant on the parameter order are marked with O while
loops whose number of iterations change dynamically with
the input data are marked with D. Finally, loops with a static
number of iterations are marked with S. The operand ∗ denotes
the scalar product of two vectors.

Algorithm 1 Encode
while input stream not finished do

read next sample from byte stream; → one loop (S)
if calc new coefficients then

if start of block then
init correlation sum; → one loop (O)

update correlation history; → one loop (O)

calc correlation sum; → one loop (O)
if end of block then

calc auto corr val; → two nested loops (D/O)

derive linear eq system; → two nested loops (O)

gauss elimination; → four nested loops (O/O/D/O)

get coefficients; → three nested loops (O)

transmit coefficients; → two nested loops (O/D)
calc new coefficients = false;
rewind input stream for encoding;

else
if sample history full then

prediction = coeff ∗ smpleHist; → one loop (O)
error = sample - prediction;
output byte = encode error; → two loops (D)
write output byte;
update sample history; → one loop (O)
if end of block then

calc new coefficents = true;

It can be seen, that the encoding itself consists of simple
loops while the coefficients are determined using nested loops.



2) Structure of the Decode Method: The decode method
consists of two parts. In both parts is necessary to check if a
new block is transmitted in order to extract the new prediction
filter coefficients. This is implemented with two nested loops
(O/S). The first part initializes the decoder by filling the
sample history. It contains one simple loop (S). The second
part operates in steady state and uses the filter coefficients
and the sample history to calculate a prediction for the next
sample. In the next step the incoming bytes are decoded with
the help of two while loops (Golomb-Rice-Decoding) in order
to obtain the prediction error. Afterwards the current sample is
calculated and the sample history is updated. In the last step
the current sample is sent to the output stream. These parts add
up to five simple loops (O/D/D/O/S) in total. It is obvious that
nested loops are only executed when a new block is started.

C. Input data

The input data used in this work are neural activities of
primates solving different tasks. The data was measured by
a micro-electrode inside the probands brains at the German
Primate Center in Göttingen. The sensor data was sampled
with 16 bit resolution at a frequency of 24.414 kHz. Applying
ADPCM to this input data, results in compressed data with a
size of 36% of the original size[20].

V. EVALUATION

The aims of this simulation are to determine the maximal
achieveable speedup for the synthilation and to find the optimal
recource configuration. The speedup is measured in relation to
the execution time in cycles on AMIDAR without Synthilation
and without instruction folding. The simulation was executed
on our AMIDAR simulation framework.

The parameters that can be changed in this experiment
are riceCoefficent, blockSize, order and the hard-
ware resources in AMIDAR. The impact of the parameter
riceCoefficent on the whole runtime can be neglected if
the order is high enough. It is assumed that this is the case for
values equal or greater than two. Hence the parameter will be
constant for all simulations. This also applies to the parameter
blockSize which has no significant influence on the runtime
for large values.

Thus, the optimal simulation to achieve the aims mentioned
above, would be a 3D sweep over order, number of ALUs
and number of memories. As this is too costly the simulation
was split into two parts. In the first part the optimal hardware
configuration is determined with a 2D sweep over number of
ALUs and number of memories. Afterwards this configuration
is used for a sweep over the parameter order.

A. Sweeping the amount of Resources

In a first simulation the speedup was measured for
different amounts of resources. The parameters used
were riceCoefficent = 4, blockSize = 1024 and
order = 2.

In both cases a speedup of 1.56 was achieved without
addtional resources (one ALU and one memory). Using two
additional ALUs and two additional memories gives a speedup
of 1.66 for decoding and a speed up of 1.70 for encoding.
Figure 5 and 6 also show the speedup for different amounts

1

1.2

1.4

1.6

1.8

2

S
p
e
e
d
u
p

1
2

3
4

5
6

2
3

4
5

6
7

Memories
ALUs

Fig. 5. Simulation Results for Decoding with different amount of resources

1

1.2

1.4

1.6

1.8

2

S
p
e
e
d
u
p

1
2

3
4

5
6

2
3

4
5

6
7

Memories
ALUs

Fig. 6. Simulation Results for Encoding with different amount of resources

of resources and it is obvious that at this point a plateau is
reached. Thus, adding further resources does not contribute any
additional speedup. The reason for this is that optimizations
like ILP or CSE are already exploited using three ALUs and
three memories.

In Figure 5 some artefacts can be seen when using two
ALUs. Adding memories decreases the speedup in some cases.
This is due to the heuristic scheduling algorithms used in
Synthilation. Hence, adding memories can lead to a suboptimal
schedule which results in a slightly decreased speedup.

Apart from those artefacts using three ALUs and three
memories is the optimal hardware configuration because it
leads to a nearly optimal speedup with a minimum of ad-
ditional hardware. The artefacts were neglected when taking
this decision because for different ADPCM prediction orders
those artefacts look different so this case does not give any
information about the general case.

B. Sweeping the Order

In the second simulation the resources were fixed
to three ALUs and three memories. The parameters
riceCoefficient = 4 and blockSize = 1024 were
fixed as well while the parameter order was swept from 2
to 14 to test the influence of the order on the speedup. Figure
7 show the results for decoding and encoding respectively.

It is obvious that the speedup increases monotonically with
the order. The reason for the monotonous increase is, that
for higher orders the number of loop iterations increases (for
loops marked with O). As only loops are synthilated this



Model Encode

Measurement Encode

S
p
e
e
d
u
p

Model Decode

Measurement Decode

Order

2 4 6 8 10 12 14

1.6

1.8

2

Fig. 7. Simulation Results for Encoding and Decoding with different orders

means that the percentage of executed instructions that can be
synthilated increases. Thus, if the order increases, the speedup
also increases. This implies that for large orders the speedup
converges to a limiting value l.

This phenomenon can be mathematically modeled as fol-
lows. The execution time T (o) = a + b + c(o) consists of
one part a that will not be synthilated, one part b that will be
synthilated but is independant of the order and the last part
c(o) = h · o which will be synthilated and have a runtime
that depends on the order linearly. This part consists of loops
whose number of iterations is directly dependant on the order
(denoted with O in Section IV). Nested loops may lead to a
runtime that is quadratically or even cubically dependant on
the order, but the experiment showed that the linear model
is sufficient, as nested loops occur only in the beginning of
blocks or during Gaussian elimination respectively. For the
synthilated case the parts that will be synthilated are multiplied
with speedup factors sb and sc: Tsyn(o) = a + sbb + scc(o).
So the speedup S for the order o is

S(o) =
T (o)

Tsyn(o)
=

a+ b+ ho

a+ sbb+ scho
(1)

This equation can be transformed to a rational function with
three unknowns x1, x2 and x3:

S(o) =
1 + x1o

x2 + x3o
(2)

We can use this equation and the measurements shown in
Figure 7 to create an overdetermined system of linear equa-
tions Ax = y. We solved this system approximately with
x = A+y where A+ is the pseudoinverse matrix of A.
This leads to xDEC = [0.16 0.64 0.07]

T and xENC =

[0.11 0.63 0.04]
T . From this we can calculate the boundary

value l = lim
o→∞

S(o) = x1

x3
= 1

sc
. We get lDEC = 2.29 and

lENC = 2.75. This means that the speedup can never be higher
than 2.29 for decode and it can never be higher than 2.75 for
encode respectively.

This is not a global property of ADPCM but a property of
the implementation we used in this work which is a generic
code and was not optimized for runtime. Figure 7 shows that
the model fits the measurement very well.

VI. CONCLUSION

In this contribution, we have shown a mechanism that
accelerates the execution of Java bytecode on AMIDAR pro-
cessors. We have evaluated this synthilation approach on a
real world example. It is concerned with ADPCM, a lossless
compression and decompression method for digital signals. We
can achieve speedup factors of up to 2 using only minimal
additional hardware for higher ADPCM prediction orders.
Without these hardware extensions we still achieve speedups of

1.56. By sweeping the parameter space for additional resources
we can identify the optimal number of resources for additional
ALUs and scratchpad memories.

In future work, we will investigate the combination of
synthilation with hardware synthesis. Also, we will evaluate
other real life problems.

REFERENCES

[1] S. Vassiliadis and D. Soudris, Eds., Fine- and Coarse-Grain Reconfig-
urable Computing. Springer, 2007.

[2] R. L. Lysecky and F. Vahid, “Design and implementation of a
microblaze-based warp processor,” ACM Trans. Embedded Comput.
Syst., vol. 8, no. 3, pp. 1–22, 2009.

[3] S. Döbrich and C. Hochberger, “Effects of simplistic online synthesis
in amidar processors,” in ReConFig, 2009, pp. 433–438.

[4] A. Koch and N. Kasprzyk, “High-level-language compilation for recon-
figurable computers,” in ReCoSoC, 2005, pp. 1–8.

[5] F. Philipp and M. Glesner, “(geco)2: A graphical tool for the gener-
ation of configuration bitstreams for a smart sensor interface based
on a coarse-grained dynamically reconfigurable architecture,” in Field
Programmable Logic and Applications (FPL), 2012 22nd International
Conference on, Aug 2012, pp. 679–682.

[6] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling,” in DATE, 2003, pp. 10 296–
10 301.

[7] ——, “ADRES: An architecture with tightly coupled vliw processor
and coarse-grained reconfigurable matrix,” in FPL, 2003, pp. 61–70.

[8] S. Döbrich and C. Hochberger, “Low-complexity online synthesis for
amidar processors,” International Journal of Reconfigurable Computing
- Selected Papers from ReconFig 2009 International Conference on
Reconfigurable Computing and FPGAs (ReconFig 2009), vol. 2010,
2010.

[9] ——, “Practical resource constraints for online synthesis,” in Pro-
ceedings of the 5th International Workshop on Reconfigurable
Communication-centric Systems on Chip (ReCoSoC 2010), O. S.
Michael Hübner, Loı̈c Lagadec and J. Becker, Eds. KIT Scientific
Publishing, 2010, pp. 51–58.

[10] S. Microsystems, picoJava-II Microarchitecture Guide, 1999.
[11] L.-C. Chang, L.-R. Ton, M.-F. Kao, and C.-P. Chung, “Stack Operations

Folding in Java Processors,” IEEE Transactions on Computers and
Digital Techniques, vol. 145, no. 5, pp. 333 – 340, 1998.

[12] L.-R. Ton, L.-C. Chang, and C.-P. Chung, “Exploiting Java Bytecode
Parallelism by Enhanced POC Folding Model (Research Note),” in
Euro-Par. Springer, August 2000, pp. 994 – 997.

[13] S. Gatzka and C. Hochberger, “The AMIDAR class of reconfigurable
processors,” The Journal of Supercomputing, vol. 32, no. 2, pp. 163–
181, 2005.

[14] ——, “The organic features of the AMIDAR class of processors,” in
ARCS, 2005, pp. 154–166.

[15] ——, “Hardware based online profiling in AMIDAR processors,” in
IPDPS, 2005, p. 144b.

[16] ——, “On the scope of hardware acceleration of reconfigurable proces-
sors in mobile devices,” in HICSS, 2005, p. 299.

[17] A. Engel and A. Koch, “Hardware-accelerated data compression in
low-power wireless sensor networks,” in Reconfigurable Computing:
Architectures, Tools, and Applications, ser. Lecture Notes in Computer
Science, D. Goehringer, M. Santambrogio, J. Cardoso, and K. Bertels,
Eds. Springer International Publishing, 2014, vol. 8405, pp. 167–178.

[18] CCITT, “Recommendation g.726,” International Telecommunication
Union, Tech. Rep., 1990.

[19] K. Sayood, Introduction to Data Compression (2Nd Ed.). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000.

[20] J. Hofmann, “Hardware accelerated data compression in wireless sensor
network,” Bachelor Thesis, TU Darmstadt, Embedded Systems and
Applications Group, 2012.


