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Abstract—With the growing maturity of high-level synthesis
systems, the attractive capabilities of architectures relying on
reconfigurable computing have become accessible to a wider
range of developers. A promising next step of research is the
efficient mapping of the high-level descriptions in languages such
as C to more powerful micro-architecture templates. One scheme
that can be explored here is that of Single Instruction Multi-
Threaded (SIMT) execution, re-using the chip area dedicated to
computation for different threads to hide memory latencies.

We describe extending the hardware/software co-compiler
Nymble to automatically generate such multi-threaded hardware
accelerators. In contrast to prior work that simply duplicated
complete compute units for each thread, Nymble-MT reuses the
actual computation elements, and adds just the required data
storage and context switching logic.

Evaluated using the CHStone benchmark suite and a sample
configuration of four threads, the existing prototype can reach
up to quadruple the throughput, but with a chip area just 5%
larger than that of a single-threaded accelerator.

I. INTRODUCTION

With the basics of hardware synthesis from high-level
languages now established both in industrial and academic
tool sets, research now focuses on more specialized aspects
of the flows. Current examples include studies on polyhedral
optimization [1], or memory partitioning [2].

In this work, we extend our own prior research on Nymble
[3], a hardware-software co-compilation system from C to
shared-memory heterogeneous reconfigurable computers, with
the capability to automatically synthesize multi-threaded exe-
cution units. For Nymble-MT, we will, e.g., selectively apply
coarse-grained dynamic scheduling and per-thread context
data storage. We aim to improve datapath utilization in the
presence of variable memory latencies and dynamic loop-
carried dependencies. Specific issues considered include the
efficient modeling of memory dependencies in the synthesized
controller as well as different thread scheduling options (in-
order, reorderable) and their impact on chip areas and clock
frequencies.

II. RELATED WORK

High-level synthesis tools translating different subsets of
C into synthesizable HDL code are under active develop-
ment from many commercial vendors and academic groups
alike. Commercial tools include Xilinx Vivado HLS [4], Y
Explorations eXCite [5], and Synopsis Synphony C Compiler

[6]. These tools, however, do not perform co-compilation
into hybrid hardware/software-executables, which is still the
domain of a small number of academic projects such as LegUp
[7], ROCCC [8], Comrade [9], and DWARV [10]. The topic of
exploiting multi-threaded execution in the generated hardware
is even more rarely addressed.

In [11], the CHAT compiler is introduced as a variant of
ROCCC capable of generating multi-threaded accelerators that
allow for a very quick context switch to alleviate the impact
of memory latencies. Like ROCCC, the CHAT compiler is
focused on generating hardware for highly specialized classes
of input programs, such as sparse matrix multiplication. Ac-
cording to the authors, CHAT can translate only regular for-
loops with a single index variable.

The Nymble-MT tool presented here and CHAT share the
general idea that is beneficial to hide memory access latencies
by switching execution to another ready thread. Nymble-MT,
however, is capable of translating a much larger subset of C,
demonstrated by its ability to create multi-threaded hardware
accelerators for nine out of the 12 CHStone benchmarks
[12]. The remaining benchmarks jpeg and aes contain non-
inlineable function calls, which could be handled using the
software-service call feature of Nymble, but that has not been
enhanced yet for multi-threading in Nymble-MT. For the last
missing benchmark motion, the CHStone-supplied test harness
passes parameters in a way that is incompatible with our
current simulation framework.

In contrast, the LegUp developers pursue a different ap-
proach, more similar to software multi-threading [13]. LegUp
accepts a parallel program that uses the pthreads and Open-
MPI APIs, and generates a dedicated hardware accelerator
instance for each (software) thread or for each parallel loop,
respectively. This is fundamentally different from Nymble-MT,
which aims to increase the utilization of a single accelerator
instance by extending it for multi-threaded execution and
allowing the processing of data from parallel threads.

As an example for another completely different approach to
multi-threaded accelerators, Convey Computer recently added
support for a concept called Hybrid Threading (HT) to the
tool chain for their FPGA-accelerated computing systems [14].
The HT flow accepts an idiomatic C description (basically an
FSM, with each state representing a clock cycle, extended with
message-based I/O) for efficiently describing computation, but



f o r ( i =0 ; i<n ; i ++) {
tmp = (B[ i ] + C[ i ∗ 2 ] ) ;
i f ( i % 10 == 0) {

f o r ( j =0 ; j <10; j ++) {
tmp += j ;

}
}
A[ i ] = tmp ;

}
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Fig. 1. Example for a statically scheduled datapath with II=2. Shaded stages
are executed simultaneously using pipelining

without support for pointers or variable-bound/non-unit stride
loops. These descriptions are then compiled into synthesizable
HDL and linked to a vendor-supplied HW/SW framework that
allows the starting of threads on the hardware accelerators and
provides the context switching mechanism. Thread switching
requires a single clock cycle and is used to effectively hide
memory latencies. Despite being limited to an idiomatic pro-
gramming style, the abstraction level of the HT C code is
significantly higher than low-level HDL programming, with
the actual multi-threading hardware being added automatically
by the tools. The main difference between HT and Nymble-
MT is, that the latter accepts true untimed programs, while HT
relies on a manually scheduled/chained program with explicit
message-based communication to host and memories.

III. MULTI-THREADING

The work presented here builds on the Hardware/Software
Co-Compiler Nymble [3]. Nymble uses mainly static schedul-
ing and assigns each operator a specific clock-cycle for execu-
tion (called stage). However, it does support variable-latency
operations [15] or hardware-to-software calls [16] by stalling
the entire datapath, even though some datapath regions might
be completely independent of the variable-latency operations.
Also, while Nymble pipelines the execution, the utilization
of the data paths is highly dependent on the loop-carried
dependencies (LCD), which often limit the initiation interval
(II) to values greater than one. This section describes the
different techniques we explored to improve the utilization of
Nymble-created hardware accelerators.

Figure 1 shows an example of a statically scheduled data-
path. For clarity, we omitted the details of the inner loop, the
loop counter and address calculations. The outer loop shown
here has II=2, since an LCD exists on incrementing the counter
variable (indicated as a dashed data back-edge in the figure).
The computation is organized as stages holding one or more
hardware operators, with the controller being shown in the
center and the associated datapath at the right side of the
figure.
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Fig. 2. Dynamic stage controller executing the example in Fig. 1

A. Dynamic Stage Controller

An obvious approach to increase the utilization is to limit
the effects of stalling to just the dependent regions of the
datapaths. At the extreme end, this can be done at the level of
individual operators [17]. However, this very fine granularity
carries at a high area overhead and can lead to slower clock
rates due to significantly increased wiring requirements of per-
operator token networks. As a compromise, we propose the
synthesis of datapaths that can be stalled at the granularity
of individual stages, allowing prior and successive stages
independent of the stalled stages to continue. This functionality
is provided by a Dynamic Stage Controller (DSC), which is
automatically generated for each high-level input code.

Figure 2 demonstrates how the proposed model of execution
applies to the Example in Figure 1. At Time 3, Iteration 0 stalls
as one of the memory reads in Stage 2 is assumed to suffer
a cache miss and thus cannot immediately provide a value.
Using a DSC, Iteration 1 is allowed to proceed at Time 4 from
Stage 0 to Stage 1 despite the stall. However, since Stage 2
is still occupied by Iteration 0, it cannot continue, until the
read is satisfied at Time 8. Then, Iteration 0 vacates Stage 2,
allowing Iteration 1 to complete and move on at Time 9. That,
in turn allows the initiation of Iteration 2 in Stage 0. At Time
10, Iteration 0 has reached the inner loop, which is also treated
as a variable-latency operator from the perspective of the outer
loop. It appears to be stalled there. However, independent
stages of the datapath continue executing. Assuming cache
hits in the outer loop while the inner loop still executes,
this eventually allows Iterations 1 to 4 to catch proceed until
Iteration 1 reaches the inner loop (still occupied by Iteration 0).
Execution continues only after the inner loop has completed
for outer loop Iteration 0.

The DSC implementation is a streamlined version of the
more powerful controller we proposed in [18] for data value
speculation. Figure 3 shows the basic structure: The comple-
tion state is tracked per stage, not per operator as in [17].
This can be seen in Stage 2: Only if both reads complete,
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x = 0 ;
whi le ( x < 5) {

tmp = ∗b ;
∗a = tmp + 1 ;
x = tmp / 2 ;
∗c = ∗d + 1 ;

}
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Fig. 4. Handling memory dependencies (II=3)

execution is allowed to proceed. Back-pressure (indicating a
still-busy successor stage) is handled using Full signals, which
can cause the data in the predecessor stage to be held there
until the successor stage becomes available.

However, an additional issue needs to be addressed: In
[18], memory dependencies were optimistically resolved using
data value speculation, replaying computations executing on
misspeculated values. Since the DSC aims for a more area
efficient approach, omitting the speculation and replay logic,
memory dependencies need to be resolved conservatively in
the DSC. In general, any kind of dynamic execution needs
to explicitly track memory dependencies, e.g., using special
activation tokens [9]. However, at the stage-based granularity
used in DCS, explicit dependencies can often be omitted

(relying on the staged execution order), or be folded onto other
dependencies. Both ways reduce the number of dependencies
that need to be explicitly tracked using memory tokens.

Figure 4 illustrates this on a simple example with II=3: For
the code fragment given on the left side, the potential mem-
ory dependencies shown in the center exist (distinguishing
between intra- and inter-iteration dependencies). Intra-iteration
dependencies do not need to be tracked explicitly, as assigning
each memory operation to a stage (Stage 1 . . . 4) in program
order ensures that these dependencies will be satisfied. On the
other hand, without explicit tracking, the DSC cannot ensure
that MemWrite2 is always executed prior to MemRead1
(Inter-iteration dependency a), MemWrite1 (Inter-iteration de-
pendency b), and MemRead2 (Inter-iteration dependency c).
Unless it can be proven (e.g., using alias analysis), that these
potential dependencies do not actually exist, this execution
order must be guaranteed using explicit tracking in the DSC.

In a purely operator-based dynamic execution model, Mem-
Read1 would wait for two individual tokens from its inter-
iteration predecessors MemWrite1 and MemWrite2, requir-
ing logic and wiring area on the device. However, the tracking
effort can be reduced by exploiting the stage-based execution,
leading to a simplified controller as shown at the right side
of Figure 4: Dependency (d), execute MemWrite1 prior to
MemRead1 of the next iteration, is already enforced by the
LCD data edge (Stage 2, Stage 1) that ensures the correct
update of the loop decision variable x (which is the root
cause for II=3). Memory edges (b) and (c) can be folded onto
memory edge (a), which, together with the natural stage order
present in the DSC, ensures that MemWrite1 and MemRead2
will be executed after MemWrite2. Thus, in this example, only
that last memory dependency needs to be explicitly tracked,
leading to an edge (Stage 4, Stage 1) in the DSC.

In hardware, the DSC as shown in Figure 3 is realized
as a shift-register, with a flip-flop for each stage to indicate
an active stage. Simple logic provides the basic transition
rules: advance to the next stage only if all variable-latency
operators in a stage have completed, remain in this stage if
successor stage is still full (any operators are busy). This basic
scheme is extended with the additional memory dependency
tracking logic that handles the per-stage dependency tokens.
These are generated when the predecessor stage of a stage
holding one or more operations acting as dependency sources
has completed. For loop entry, the DSC has a special INIT
state that is initialized to ’1’ to start execution.

B. Multithreaded Execution

While the DSC can already improve utilization of the
datapath hardware area, further gains are possible. As we
will demonstrate, even for FPGA-based hardware accelerators,
it can be efficient (in terms of area required / throughput
gained) to exploit multi-threaded execution (sometimes also
called SIMT or SMT).

In its simplest form, for improved utilization, we could
process N independent data streams in the datapath, where
N = II to improve throughput. The data streams would be
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externally interleaved/deinterleaved on a fixed round-robin (in-
order) basis, using the principles of C-slow execution (with
C = N ) introduced by Leiserson et al. [19]. However, the
original approach is limited in that in applies only to constant-
latency operators.

In a more powerful solution, all state in the accelerator is
replicated N times for N threads, with the per-thread storage
called the thread context. Figure 5 show this duplication and
how all context accesses (reads and writes) are qualified by
the ID of the current thread (TID). This is easily added to the
DSC controller: Instead of just using a ’1’ to indicate that a
stage is active, the controller now stores the TID of the thread
active in that stage.

With thread context, we can achieve two goals: First, it
is now possible to handle variable-latency operators such as
cached memory accesses. Once a thread has stalled in a stage
on a cache miss, we can schedule the next ready (un-stalled)
thread in that stage. Second, in contrast to C-slow execution,
we can now allow threads to overtake each other, basically
dynamically changing Leiserson’s interleaving scheme on-the-
fly. To continue the example, if a second thread had a cache
hit in the stage that stalled the prior thread, it could continue
execution past the earlier thread. For each variable-latency
operation in a stage, an external arbiter keeps track of the
per-thread data availability, and selects one of those threads
that has all required data present in the datapath (e.g., a cache
hit, or a variable-latency computation such as an inner loop
completed) to proceed to the next stage.

However, similar to the folding of memory dependence
edges in Section III-A, we can also reduce the extent of state
duplication for context below the factor N required by the
brute-force approach. Overtaking of threads can occur only
in stages with variable-latency operations, thus we require
context only in those stages. In all other stages, we just use
the conventional, non-duplicated pipeline state. This is shown
in Figure 6 for the Example of Figure 1: Only the stages with
bold borders hold context.

Stage 0, even though it does not hold variable-latency
operations, also needs context in order to avoid deadlocks:
One or more threads could compete for Stage 0 via the loop
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back-edge. If none of them could proceed due to Stage 0
being exclusively busy with another thread, the resulting back-
pressure along the back edge could lead to busy stages all the
way back up to Stage 1 (successor of Stage 0), which would
prevent Stage 0 itself from ever completing and thus deadlock
the entire datapath. Since both memory accesses and variable-
latency operators will eventually complete, they do not cause
deadlocks by themselves.

Fixed-latency multi-cycle operations that span stages hold-
ing variable-latency operators must also be provided with
context, as thread reordering may occur due to the other
operators in a stage, and the active thread is tracked only for
an entire stage. However, it suffices to place the context only
at the end of such operations, as reordering cannot take place
within them. In this manner (context storage at the outputs),
non-threaded third-party IP blocks can easily be integrated into
compiled threaded datapaths. The only issue to consider here
is that the context must use queues deep enough to buffer all
of the data inside of the multi-cycle operation, if the module
cannot be completely stopped (e.g., by deasserting a clock
enable) when a stage has to be stalled. E.g., for a 32-cycle
modulo operator, the context consists of a 32-element queue
for each thread.

Figure 7 shows two possible scenarios (named I and II) for
the reordering of two threads. At Time 3, Iteration 0 of thread
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Fig. 7. Thread reordering example, for scenarios I and II. Labels have the
form [thread id . iteration].

a, written as a.0, reaches the memory read at Stage 2 and
is assumed to stall due to cache miss. b.0, which was started
one cycle after a, has advanced to Stage 2 then. Since the
example assumes II=2, a.1 is also started at Time 3. Since
we are still relying on the DSC, the stall in Stage 2 does not
hinder other stages. Thus at Time 4, b.0 is allowed to advance
into Stage 2, which already holds the stalled a.0. Assuming
that b.0 also experiences a cache-miss, which is resolved by
Time 7, b.0 would then be allowed to advance to Stage 3 at
Time 8, overtaking a.0 which is still stalled in Stage 2.

Meanwhile, we have to pick a thread to advance into Stage
1. As Stage 1 is not a variable-latency operation, it does not
have context storage and can thus hold only a single thread.
Two options exist: In Scenario I, at Time 4 b.1 is selected,
which could then proceed to Stage 1 (Time 5) and Stage 2
(which is assumed to still hold a stalled a.0) at Time 9. In
Scenario II, a.1 is picked instead at Time 4. While a.1 can
advance to Stage 1 at Time 5, further advancement is not
possible as Thread a already occupies Stage 2 in the form of
a.0. Even worse, since Stage 1 has no context, b.1 also has
to remain in Stage 0. This will change only once the memory
request of a.0 in Stage 2 has actually been satisfied, then a.0
moves on and a.1 can enter Stage 2 (not shown in the figure).

The current implementation generates a simple priority
encoder for thread scheduling, always picking the thread with
the lowest thread ID. Future work could improve this, e.g.,
picking threads which experienced cache hits in the past (to
exploit locality).

Another option, which we will evaluate in Section IV, will
be the use of queues instead of the simple duplicated registers
for storing context. In the example of Figure 7, such a queue
would allow a.1 to enter Stage 2 at Time 6 in Scenario II, even
though a.0 is already present (earlier in the queue). Note that
this use of queues is different from the one outlined earlier
(buffering pipelined results of unstoppable IP blocks which
span stalled stages).
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C. Multiplexing Memory Ports

Nymble-MT tries to follow a fully spatial execution model
when building its datapaths. However, that becomes infeasible
when accesses to external memory are considered. Here,
resources (e.g., memory controller, memory bus(es) etc.) have
to be shared between the many memory operations often
present in real applications. In the purely-statically scheduled
Nymble microarchitecture [3], this was achieved by imposing
an upper limit on the number of parallel memory operations
per stage for scheduling.

In Nymble-MT, however, the stage-based dynamic schedul-
ing makes such static limits infeasible. Instead, shared re-
sources such as memory ports must be arbitrated dynamically.
This is done in a generic way, which could also be used to
share other large resources such as FPUs.

As shown in Figure 8, each of the resources to be shared is
wrapped in stubs that just provide input/output registers for an
operation. An arbiter observes the presence of data on the input
registers. If a stub has valid data in all of its input registers, it is
eligible for access to the shared resource. The arbiter currently
uses a simple static priority scheme to grant access if multiple
stubs are eligible for execution (this could be refined in future
work, especially in conjuction with better thread scheduling).
The input data of the selected stub is then forwarded to the
actual shared resource, and the result(s) then passed back to
the stub output registers.

IV. EXPERIMENTAL EVALUATION

We evaluate our approach by exploring a number of dif-
ferent micro-architecture options on the CHStone benchmark
suite. Like its predecessor, Nymble-MT aims for fined-grained
hardware/software co-execution. This is reflected in our choice
of target platform: We employ a Xilinx ML507 board (Virtex 5
FX-based), using the hardware and software environment de-
scribed in [20] to achieve high-throughput low-latency access
to shared memory between the accelerator(s) and the general-
purpose PowerPC 440 processor. As the XC5VFX70 device on
the actual board is too small to hold the complete system-on-
chip (processor buses, memory controller, network interface,
etc.) for the larger CHStone examples, we also employ a
simulated version of the board that virtually substitutes the
larger XC5VFX200 device into the same architecture. For
our measurements, we performed post-layout simulations,



#Clock Cycles Clock Frequency [MHz]
Single Threaded Four Threaded Single Four Threaded

RO=0 RO=0 RO=1 RO=1 Threaded RO=0 RO=0 RO=1 RO=1 Best f of
Benchmark static DSC Q=0 Q=1 Q=0 Q=1 static Q=0 Q=1 Q=0 Q=1 4 threads
adpcm 66659 81768 85448 85447 83817 83817 72 * * * * *
blowfish 1467210 1153336 2094483 2092148 1895012 1891892 87 84 93 82 72 93
dfadd 11610 14268 36918 36918 36918 36918 100 93 95 93 93 95
dfadd mod 5357 5312 14578 14578 11611 11611 101 89 80 78 73 89
dfdiv 9398 10893 18930 18930 18884 18930 95 90 94 93 89 94
dfmul 6078 6314 16054 16054 16054 16054 100 92 93 95 91 95
dfmul mod 1883 1714 3459 3429 2427 2632 92 85 88 75 74 88
dfsin 201338 222435 418346 418346 413661 413661 79 40 49 * * 49
example 30707 24035 82572 81724 56331 56399 93 100 94 86 94 100
example -O0 33072 19442 72098 70009 60695 53372 100 91 91 93 84 93
gsm 27082 19543 51173 33742 28458 20221 76 82 75 69 49 82
mips 37837 28327 29536 29568 28871 28924 100 85 84 75 75 85
sha 683834 771098 999806 999806 773284 773284 100 79 94 77 94 94

TABLE I
EXECUTION CYCLES AND CLOCK FREQUENCIES

including cycle-accurate models for memories and caches.
All Nymble-family compilers use LLVM as front-end and
for machine-independent optimization. The specific version
employed here is LLVM 3.3. Furthermore, we relied on
Mentor Precision 2013b5 for logic synthesis, and Xilinx ISE
14.6 for physical mapping.

As benchmarks, we used CHstone and one additional test
case: example is the program shown in Figure 1. For the
examples dfadd, dfmul and example, we explore additional
implementation alternatives discussed in the next subsection.

The column static refers to a purely statically scheduled
data path, DSC uses the Dynamic Stage Controller, and both
are operating in single-threaded execution mode. The remain-
ing cases compile to accelerators processing four threads. For
them, we explore the impact of allowing thread-reordering
(RO=1) and using 16-entry queues for context instead of
just registers (Q=1). As DSC is just a RO=0, Q=0 imple-
mentation executing a single thread, we have omitted its area
numbers. Alternatives marked with * in the table did not map
successfully to the XC5VFX2001. Also, in some cases, the
DSC has a higher cycle count than the static datapath, since
the latter is able to optimistically start a new iteration (and
cancel too-aggressive results afterward). The DSC always has
to completely evaluate the control condition of the loop before
starting a new iteration.

In the multi-threaded cases, time is measured from the start
of the earliest thread to the completion of the last thread, with
a thread being started every 10 clock cycles. All time mea-
surements include the execution time of the software thread-
management API (memory-mapped communication) and the
hardware cycles for invalidating (at start) and flushing (at end)
the distributed per-thread caches.

A. General Discussion

Multithreading carries both an delay and area overhead
(shown in Tables I and II) . This is reflected in the increased
number of logic resources and lower achievable clock fre-

1We are currently performing additional mapping
runs with different options, these results will be
included in the final paper.

quencies. However, when the overall efficiencies are examined,
multi-threading can be beneficial. We will examine both time
and area efficiencies, which for the four-threaded case are:

et = 4 tsingle/tmulti ea = 4 asingle/amulti

Here, t indicates the wallclock execution time and a the
accelerator area in slices, for both single-threading and multi-
threading variants.

For et > 1, executing four threads simultaneously is faster
by a factor of et than executing a single thread sequentially
four times. Analogously, if ea > 1, a four-threaded accelerator
takes just 1/ea of the area of four individual instances of
a single-threaded accelerator. For all mappable benchmarks,
both et and ea always exceed 1.0, in some cases even
achieving close to perfect scaling effiency (ea = 3.85 for
dfdiv, et = 3.84 for mips, with the value 4.0 being perfect).
If the optimization goal is throughput, and the often longer
latency of the multi-threaded accelerator is not an issue, high-
level synthesis using Nymble-MT is always worthwhile here.

dfadd mod and dfmul mod are modified versions of the
corresponding CHStone benchmarks that execute the entire
inner loop, instead of just the actual dfadd and dfmul ker-
nel, on the accelerator. Avoiding hardware/software execution
switches in this manner leads to significant speed-ups. How-
ever, even then, total performance gains for these benchmarks
is somewhat limited since they execute only relatively few
simple integer computations compared to the overhead of
context storage and memory system.

Interestingly, in the dfdiv case, the number of registers of
the multi-threaded implementation was actually less than in the
statically-scheduled variant. The latter had to be constrained
to issue a maximum number of one memory access per cycle,
leading to long schedules with a large number of pipeline
registers. The multiplexing and dynamic scheduling allowed to
place an unlimited number of memory accesses into a single
stage, thus leading to shorter schedules and fewer pipeline
registers.



#Slices
Single Four Threaded

Threaded RO=0 RO=0 RO=1 RO=1 Size of fastest
Benchmark static Q=0 Q=1 Q=0 Q=1 wallclock 4-thr. ea
adpcm 28247 * * * * * *
blowfish 10341 17503 18265 22828 23473 18265 2.26
dfadd 8426 12547 12612 13892 14010 12612 2.67
dfadd mod 7986 16092 17106 20019 25742 20019 1.60
dfdiv 18911 19476 19669 19589 19876 19669 3.85
dfmul 7408 10949 10883 11073 11338 11073 2.68
dfmul mod 7951 14501 15358 18117 22310 18117 1.76
dfsin 28885 30716 30645 * * 30645 3.77
example 5553 8440 8557 8712 9180 9180 2.42
example -O0 5638 8906 9070 8980 9602 9602 2.35
gsm 21408 22600 24018 24279 28918 24279 3.53
mips 8745 13391 12908 16495 16495 13391 2.61
sha 18359 26534 26715 28453 29044 29044 2.53

TABLE II
AREA REQUIREMENTS AND AREA EFFICIENCY ea

B. Impact of Queues and Thread Reordering

For the discussion of these features, consider the benchmark
example, corresponding to Figure 1. All of the memory
accesses (arrays A, B, and C) are assumed to be independent.
The discussion of Figure 2 and Figure 7 already sketched
the potential effects of allowing thread reordering and using
queues for context storage. This can now be shown in practice
when considering the cycle counts of the different imple-
mentations of the example test case. Furthermore, we can
use this benchmark to illustrate possible interference between
machine-independent optimization in LLVM and the actual
high-level synthesis by Nymble-MT.

For beginning the discussion, assume that the hardware
generated exactly reflects the code structure as actually written
in Figure 1 (two nested loops). This can be achieved in
practice by disabling machine-independent optimizations in
LLVM (similar to -O0 in other compilers). Nymble-MT then
indeed synthesizes a datapath with II=2. With that short an II,
queues are quite useful to reduce the back pressure, allowing
a thread to advance into a stage even though it is already
occupied by a previous iteration of the same thread (Scenario
II, as described in Section III-B and Figure 7 for a.0 and a.1).
Execution for example -O0 drops from 60,695 cycles without
queues to 53,372 cycles with 16-entry queues and reordering.
Without reordering, throughput is so limited that back pressure
does not build in the datapath, in which case queues do not
gain much performance (72,098 vs. 70,009 cyles). In general,
for short IIs, reordering works best with queues enabled.

For the same reason, datapaths with longer IIs do not
profit much from enabled queues. Compiling example with
-O3 (the default in our flow) leads to the inner loop be-
ing completely removed (due to LLVM -O3 pass indvars
statically determining that tmp will always incremented by
45, and then removing the useless loop by the loop-deletion
pass). However, subsequent -O3 optimizations instcombine
and loop-rotate require the introduction of additional control
logic. From the hardware perspective, these transformations
actually lead to II=6, which is sufficiently long to avoid
building intra-thread back pressure and thus does not profit
from queues (slowdown from 56,331 to 56,399 cycles). A

better choice of machine-independent optimizations and an
algorithm for selectively placing reordering stages and queues
only at profitable stages appear to be highly profitable for
future work.

C. Implementation Limitations

At this stage, Nymble-MT is a proof-of-concept prototype
and still suffers from a number of implementation weaknesses.

For shorter benchmarks (e.g., dfdiv and dfmul), the co-
execution overhead of the software API managing the four
hardware threads becomes significant (roughly 75% of exe-
cution cycles). Here, a tighter interface than that achievable
on the ML507 (non-real time Linux communicating via PLB
with the accelerator and using IRQ-based signaling) would be
preferable.

Some of the loss in clock frequency is currently due to
operator chaining being performed in the compile-flow before
context storage is inserted. By making chaining context-aware,
better results could be achieved.

Area could be reduced further by globally multiplexing
memory accesses across loop boundaries. Since we use dis-
tributed caches for memory accesses, reducing the number
of cache ports by multiplexing across sequentially executed
loops could significantly reduce area and also improve clock
rates (due to reduced routing pressure at the cache-memory
controller interface).

V. CONCLUSION AND FUTURE WORK

We have shown that a combination of different techniques
such as dynamic stage-based scheduling, state duplication,
queue insertion, and thread-reordering allow the automatic
high-level synthesis of multi-threaded hardware accelerators
which have better time and area efficiencies than temporally
reused or spatially replicated single-threaded microarchitec-
tures.

A number of areas for future work have already been
identified. These include better thread scheduling techniques
prioritizing non-stalled threads, more intelligent multiplexing
of memory ports exploiting temporal and spatial locality,
and context-insertion aware chaining to achieve higher clock



Wallclock Execution Time [ms]
Single Threaded Four Threaded

Best t
of static RO=0 RO=0 RO=1 RO=1 Best

Benchmark static DSC or DSC Q=0 Q=1 Q=0 Q=1 wallclock et
adpcm 0.926 * * * * * * * *
blowfish 16.864 12.401 12.401 24.934 22.496 23.110 26.276 22.496 2.21
dfadd 0.116 0.150 0.116 0.397 0.389 0.397 0.397 0.389 1.20
dfadd mod 0.053 0.060 0.053 0.164 0.182 0.149 0.159 0.149 1.43
dfdiv 0.099 0.116 0.099 0.210 0.201 0.203 0.213 0.201 1.96
dfmul 0.061 0.066 0.061 0.175 0.173 0.169 0.176 0.169 1.44
dfmul mod 0.020 0.019 0.019 0.041 0.039 0.032 0.036 0.032 2.41
dfsin 2.549 4.539 2.549 10.459 8.538 * * 8.538 1.19
example 0.330 0.240 0.240 0.826 0.869 0.655 0.600 0.600 1.60
example -O0 0.331 0.209 0.209 0.792 0.769 0.653 0.635 0.635 1.32
gsm 0.356 0.238 0.238 0.624 0.450 0.412 0.413 0.412 2.31
mips 0.378 0.333 0.333 0.347 0.352 0.385 0.386 0.347 3.84
sha 6.838 8.203 6.838 12.656 10.636 10.043 8.226 8.226 3.33

TABLE III
WALLCLOCK EXECUTION TIME AND TIME EFFICIENCY et

frequencies. Hardware/software co-execution latencies could
be reduced by porting the required infrastructure to a plat-
form with tighter integration between software-programmable
general-purpose processor and hardware accelerators, such as
the Xilinx Zynq family. The latter effort is already under way.
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