
Integrating FPGA-based Processing Elements into a
Runtime for Parallel Heterogeneous Computing

David de la Chevallerie, Jens Korinth and Andreas Koch
Embedded Systems and Applications Group

TU Darmstadt, Darmstadt, Germany
Email: {dc, jk, ak}@esa.cs.tu-darmstadt.de

Abstract—In this work, we present an approach how FPGA-
based computing can be integrated into a heterogeneous com-
puting environment in an embedded systems context, using the
x10rt run-time of the X10 language system as a case-study. To
this end, we present a hardware/software framework for pools
of reconfigurable compute elements, and show how high-level
synthesis can be employed to generate the actual processing cores.
Our framework is sufficiently lean to deliver high performance
FPGA implementations even at high area utilization (operating
at 250 MHz with up to 90% of the device area used), and capable
of low-latency access to pools of dozens of instances of custom
IP cores, automatically generated by high-level synthesis tools.

I. INTRODUCTION

A wide variety of computing architectures exists today
(multi-core CPUs, GPGPUs, DSPs, FPGAs, . . .), each offering
specific advantages and disadvantages, such as massively par-
allel high-speed computation, reduced energy consumption, or
low cost. At almost every scale, applications can benefit from
taking advantage of a combination of these architectures. Run-
time systems of modern programming languages for parallel
heterogeneous computing act as glue between the processing
elements, orchestrating both computation as well as data
transfer over a number of communication links. In this paper,
we present and evaluate an approach to exploit reconfigurable
computing in the low-level runtime of the X10 language, x10rt.

II. X10RT

The X10 programming language, first introduced in [?],
is based on the Asynchronous Partitioned Global Address
Space (APGAS) model [?]. APGAS is a variant of PGAS, a
programming model in which all memories available to the
programmer are represented in a uniform address space, albeit
with non-uniform access times. The PGAS model is well-
suited to represent non-uniform memory hierarchies found
on accelerator devices such as GPGPUs, DSPs and FPGAs,
as well as distributed systems [?]. The PGAS notion of
explicit locality of data is extended in the APGAS model by
locality of execution, which permits both locally and remotely
executed asynchronous tasks. APGAS is implemented by X10
using a tree-structured hierarchy of Places, where a Place
represents a locale of execution and its associated storage.
The communication between places is handled using message-
passing by a low-level runtime called x10rt, which abstracts
from the underlying communication layer(s).

III. RECONFIGURABLE COMPUTE UNIT ARCHITECTURE

The architecture, shown in Figure 1, includes an Applica-
tion Processor Unit (APU) and a reconfigurable area, called
Programmable Logic (PL). The APU will execute the software
parts of the application (and the x10rt runtime itself), while
the Vivado HLS-generated hardware kernels are executed on
the PL. Two main communication mechanisms exist between
APU and PL: Communication initiated and controlled by the
APU via an AXI-Lite interface, or by the PL via an AXI
master-mode interface. Since in our use-case, the controlling
instance is x10rt executing on the APU, we will use the the
first model, aiming for low-latency communication from the
APU to the PL. Logically, the PL is offered to the run-time
as a Reconfigurable Compute Unit (RCU). The RCU provides
a number of (generally different) Functions. Each Function
implements one or more Instances of the hardware kernel. All
Instances may execute in parallel, with hardware schedulers in
the PL distributing processing Jobs received from the run-time
to the actual Instances. Jobs may complete in any order and
are identified across hardware and software by a unique Job
ID.

A. Hardware Interface

The RCU is controlled by the APU using memory-
mapped registers, organized into Global and Function ad-
dress ranges. The first controls the overall behavior of the
RCU (e.g., blocking/non-blocking operation modes, interrupt
status), while the second allows interaction with individual
Functions. Each Function accepts a new Job from the APU,
when the parameters (Cmd, ID, Payload) have been written
to the Function’s appropriate registers. After Job completion
the APU is notified (see Sec. III-B) and can then retrieve
the computation results. The APU indicates completion of
the result retrieval by clearing the Function’s Command/Status
register, allowing the next set of RCU results to move into the
registers. Each Function is controlled by a function control
unit, which handles Job scheduling and distribution/collection
of parameters and results to/from kernel Instances. Since
all kernels within a Function are identical, the scheduler
distributes the incoming Jobs from their queue to the first
available Instance (starting at Instance 0). Similarly, completed
Jobs and their results are enqueued for retrieval by the APU.
If multiple Instances complete at the same time, their results
will be collected in the order of ascending Instance numbers.

Interupt Line

M
_A

XI
_G

P
32

-b
it

 A
X

I M
as

te
r

Central
Interconnect

S_
A

XI
_L

IT
E

32
-b

it
 A

X
I S

la
ve

Interrupt Controller

Memory Mapped Register

Func0

Cmd/Status

ID

Payload

Payload

.

.

.

FuncN

.

.

.

Cmd/Status

ID

Payload

Func Control 1

...

Func Control N

Arbiter

Interupt Vector

Func Instance 1

Kernel

Func Instance M

Kernel
...Arbitration Logic

Queue for incoming Jobs

Queue for Return Values

L2 Cache
Memory
512 KB

NEON
SP, DP FPU

128-bit Vector DSP

ARM A9
32 KB I-Cache
32 KB D-Cache

NEON
SP, DP FPU

128-bit Vector DSP

ARM A9
32 KB I-Cache
32 KB D-Cache

IRQ
20 I, 29 O

SCU
(Snoop Control Unit)

Global
Operating Mode

Interrupt Status

Fig. 1. Hardware Architecture

Notifying the APU of completed jobs can be performed
by using one of two mechanisms: In blocking mode, the
software thread issuing the job sleeps until the RCU issues an
interrupt to announce job completion. In non-blocking mode,
the software thread remains awake and has to explicitly poll
the Function’s Job ID register to determine whether a Job
completed in the meantime.

B. Software Interface

On the software side, the mechanisms described above
are realized by a Linux device driver. Every Function is
represented as a node in /dev in order to gain access from
user-space. Extra entries in /sysfs deliver necessary meta-
information (e.g., the number of Functions and which kernel
they implement). Three main communication mechanisms
have been implemented for fast integration into different use-
cases. Thread-safety is ensured by the driver for the first
two approaches. Inter-process shareable, blocking: The user
process prepares the data and issues an ioctl. The driver
automatically generates a Job ID, transfers parameters, and
starts the Function. The calling process will be put into sleep
until the RCU signals completion of that specific Job ID.
The driver awakes the corresponding process and delivers
its results. Inter-process shareable, non-blocking: Here, the
user process has to explicitly generate the Job ID, calls write

and is free to continue. It has to probe the Job ID queue
itself using read to retrieve the ID of a completed job. If
the ID matches the expected one, read also delivers used
the result data. The count parameter is used to distinguish
between both modes (poll Job IDs, retrieve result data). Non-
shareable, non-blocking: The hardware registers are directly
made visible to one or more processes by the mmap system
call. This allows the lowest latency access, since no context-
switches are required. Only one process may write to the
registers, but multiple processes may safely read them (this
will be exploited, see Sec. IV).

IV. X10RT/RCU INTERFACE

For our integration of FPGAs in x10rt (which will subse-
quently be called x10rt fpga) we follow the example of the
GPGPU integration from [?], but with the major extension
that we allow out-of-order completion of Jobs: In x10rt fpga,
FPGA boards are represented by an accelerator Place in x10rt,
which is hierarchically located below its containing PC’s CPU
Places (or, in case of a SoC, the Places of its embedded CPU).
In this manner, every local CPU place can directly access the
accelerator. The communication endpoint x10rt_send_msg is
implemented using an additional API layer called RCU API,
which abstracts from the device driver interface and provides
methods to transfer a job to the hardware, to check return
value availability, and to fetch and acknowledge return values.
RCU API can be configured to use either the file system based
approach (safe for concurrent access by multiple processes),
or the lower-latency approach using mmap. As an optimization,
the presence of completed Jobs is detected in both cases by
the low-latency mmap-mechanism, since concurrent access to
read-only registers is safe in any case. The implementation
of x10rt_send_msg for accessing the RCU from x10rt calls
the RCU API method to start a Job on the device, and then
inserts the ID of the launched Job into an internal map. The
latter allows the tracking of the out-of-order completion of
different Jobs. Each call to the x10rt fpga implementation
of x10rt_probe polls a single Function (with multiple calls
iterating over Functions in a round-robin fashion) and checks
for the completion of a Job using an RCU API call. If a
completed Job is found, the result data is retrieved and the
Job marked as handled using another RCU API call.

V. EXPERIMENTAL RESULTS

The Xilinx ZC706 evaluation board was used for the exper-
imental evaluation. The hardware framework and the kernels
are created using Vivado 2014.1, the framework modules are
formulated in synthesizable Verilog HDL, and the kernels are
written in C and compiled using Vivado HLS.

TABLE I
KERNEL RUNTIME BOUNDS FOR SINGLE JOBS

Benchmark Min (ms) Avg (ms) Max (ms)

add 0.02 0.56 1.34
gol 0.02 0.22 1.83
jos 0.24 1,186.19 3,247.12

mnk 0.13 0.34 230.87
nqs 0.44 50.81 24,443.85

A. Benchmarks

To evaluate the x10rt integration we used five different test
cases: The kernel add is a one-cycle 32-bit adder, the corre-
sponding x10rt test case simply computes 100000 additions;
it is mainly used to evaluate the overheads incurred by the
framework (as its own execution time is negligible). gol is a
simplified approach to the Game of Life: the kernel computes
the next state of a single cell, given its neighborhood. The
jos kernel solves an instance of the Josephus problem, using a
while-loop approach, the corresponding test case iterates over
30 different instances with different runtimes. The resulting IP
core uses 64-bit division units, requires significant chip area
(see Table II for details), and has been selected because it
is strictly sequential and profits little (if at all) from spatial
parallelism (which is a worst case for HLS tools and our
framework). The nqs kernel solves the N-Queens problem; the
problem itself benefits significantly from spatial parallelism
and lends itself well to FPGA implementation. Finally, the mnk
kernel computes statistical information about an (m,n, k)-
game instance: The test case computes the total number of
possible games (i.e., sequences of turns), the number of games
that end in draws, and the number of games that end in wins
for Player 1 or 2, respectively, using brute force (counting).
This test case was selected since it principally benefits from
spatial parallelism, but the code itself is not well suited for
HLS tools. Furthermore, mnk is the largest kernel considered
in this work, with only nine instances already using ≈ 94%
of the ZC706 FPGA’s LUTs (see Table II).

For reference, Table I shows typical kernel runtimes in
milliseconds, including operating system overhead. Note that
jos, nqs, mnk have input-dependent runtimes.

B. Hardware Performance

We examine the spatial scalability of the system by in-
creasing the number of instances, while still maintaining a
PL clock rate of 250 MHz. For all of the experiments, we
use between one and three functions, each controlling 3 to
15 Instances of a single kernel. Table II shows the relative
device utilization. With a total of 9 Instances organized into
three Functions, mnk almost completely fills the device with
respect to LUTs. Note that in all cases, our framework itself
requires only 3. . . 4% of the chip area, regardless of whether 10
or 45 instances are used. To examine the temporal scalability,
we consider an RCU holding 10 Instances of the nqs kernel,
organized in a single Function. We will compare calls with
a short hardware execution time of 11µs with calls requiring

TABLE II
DEVICE UTILIZATION FOR DIFFERENT DEGREES OF PARALLELISM

Kernel #Funcs. #Insts. LUT FF BRAM DSP
[%] [%] [%] [%]

mnk 1 1 11 6 1 3
mnk 3 3/3/3 94 50 5 30

framework 3 3/3/3 4 3 - -
jos 1 1 9 5 - 1
jos 3 4/3/3 84 44 - 12

framework 3 4/3/3 3 3 - -
nqs 1 1 1 1 1 -
nqs 3 15/15/15 25 15 29 -

framework 3 15/15/15 3 3 - -

 0

 20

 40

 60
Short Kernel Duration

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30 35 40

S
lo

w
d

o
w

n
[t

o
ta

l
e
x
e
c

ti
m

e
/s

in
g

le
 e

x
e
c

ti
m

e
]

#Jobs

Long Kernel Duration

Fig. 2. Execution times relative to job duration and system load

long execution time 18, 495µs. One thread launches new Jobs
using write as quickly as possible, the second one retrieves the
results using read. Each run of the benchmark was executed
100 times to reduce the measurement error, with Figure 2
reporting the minimal execution times. The Y-axis shows
the complete execution time (software-hardware-software) per
Job, normalized to the hardware execution time tkernel of
performing a single nqs kernel (short or long) in the system.
The X-axis shows the number of Jobs launched for the specific
run. It takes ≈ 240µs to launch a single Job from user-space to
actually starting the computation on an Instance. Short Jobs are
thus finished faster than new Jobs can be spawned. As a result,
only a single Instance will actually be used and we cannot
achieve any gains by spatial parallelism. The framework’s
overhead becomes negligible, when executing long nqs Jobs.
Jobs are launched faster than they complete, and thus begin to
execute in parallel. Once the configured number of instances
on the RCU (10 in our example) is exceeded, Jobs begin to
execute sequentially. This leads to the stair shape at the bottom
of Figure 2.

C. System-Level Performance

To evaluate the performance at the system level, overall
wall-clock execution time of the benchmarks was measured.
x10rt itself does not implement actual concurrency support
(which is provided by the higher-level X10 language runtime).
For our experiments, we used a custom, minimal thread pool
implementation based on the Pthread library to utilize all
available CPU cores. Figure 3 shows the speed-ups and slow-

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

add gol jos nqs mnk

S
p

e
e
d

u
p

 F
a
ct

o
r

Benchmark

ARM Cortex A9
ZC706 (r/w)

ZC706 (mmap)

1
.0

1
.0

1
.0

1
.0

1
.0

0
.3

0
.4

3
.9

6
.2

3
.2

0
.4

0
.3

3
.9

6
.2

3
.2

Fig. 3. Speedup compared to ARM Cortex A9

downs measured for the different RCU API implementations
based on memory mapped registers ZC706 (mmap) and file
system interface communication ZC706 (r/w), compared to
the pure software execution on the Zynq’s Cortex A9 cores
alone (ARM Cortex A9). For longer kernels with runtimes
exceeding the framework overhead (such as jos, nqs, mnk),
there is no measurable benefit from using the mmap approach,
since the communication with the hardware is no longer the
performance bottleneck. When considering that the read/write
approach offers the benefit of safe, system-wide access to
the hardware (even across process boundaries), we conclude
– contrary to our initial expectation – that the read/write
approach is preferable in most of the intended use cases for
our framework. Figure 3 also shows, that even for some of the
relatively simple kernels examined here, performance gains
using our framework over medium-sized embedded CPUs
are already possible, despite the kernels just being high-level
synthesized from C instead of manually optimized solutions.

VI. RELATED WORK

There have been several approaches to integrate FPGAs
in heterogeneous computing, e.g., [?]. In [?], a HLS flow
is presented that constructs concurrent hardware modules
using Pthread and OpenMP syntax, but no framework for
an execution environment is specified. Such a framework
was presented in [?]: FUSE provides accelerator integration
which is completely transparent to the SW designer. How-
ever, this requires the same kernel code to be used for all
devices, contrary to our approach. Several approaches for
hardware/software co-execution have been shown, e.g., the
tools described in [?] and [?]; however, integrating other
hardware (e.g., GPGPUs) is currently not possible. In terms of
scope, [?] is closest to ours, but focusing on GPGPUs. [?] and
[?] introduce a combination of a polling and an interrupt based
scheme. We support dynamic switching between polling and
interrupt-driven signaling under developer control, but do not
switch between the modes automatically. Task-management
frameworks like [?] go a step beyond our own effort by
realizing the entire scheduler in hardware. At this stage of
our work, we leave these in the higher software layers of

the X10 runtime. As a different implementation alternative to
our combination of device driver and RCU API, a microkernel
hypervisor [?] could have been chosen to encapsulate access
to the RCU. However, as X10 expects a full-scale operating
system such as Linux to be present, we chose the traditional
approach in x10rt fpga.

VII. CONCLUSION

We have shown that our hardware/software architecture
for pools of high-level synthesized kernels is suitable for
integration in heterogeneous parallel runtimes, such as x10rt.
Naturally, hand-built custom solutions developed specifically
for a given FPGA board could outperform such framework-
based solutions, but we argue that the convenience, main-
tainability, and reduced development cost of a single-source
solution justifies the potential performance losses.

VIII. ACKNOWLEDGMENT

This work was performed in the context of ”REPARA –
Re-engineering and Enabling Performance and poweR of
Applications” [?], a Seventh Framework Programme project
of the European Union.

IX. BIBLIOGRAPHY

REFERENCES

[B+02] D. Bonachea et al. Gasnet: A portable high-performance commu-
nication layer for global address-space languages. CS258 Parallel
Computer Architecture Project, Spring, 2002.

[C+11a] A. Canis et al. Legup: high-level synthesis for fpga-based proces-
sor/accelerator systems. In Proceedings of the 19th ACM/SIGDA int.
symposium on field prog. gate arrays, pages 33–36. ACM, 2011.

[C+11b] D. Cunningham et al. GPU programming in a high level language:
compiling X10 to CUDA. In Proceedings of the 2011 ACM
SIGPLAN X10 Workshop, page 8. ACM, 2011.

[C+13] Jongsok Choi et al. From software threads to parallel hardware in
high-level synthesis for fpgas. In Field-Programmable Technology
(FPT), 2013 Int. Conference on, pages 270–277, Dec 2013.

[D+06] K. Danne et al. Executing hardware tasks on dynamically reconfig-
urable devices under real-time conditions. In Field Programmable
Logic and Applications ’06, Int. Conference on, Aug 2006.

[E+04] Kemal Ebcioglu et al. X10: Programming for Hierarchical Par-
allelism and Non-Uniform Data Access. In Proceedings of the
International Workshop on Language Runtimes, OOPSLA, 2004.

[G+96] G.R. Gao et al. Polling watchdog: Combining polling and interrupts
for efficient message handling. In Computer Architecture, 1996 23rd
Annual International Symposium on, pages 179–179, May 1996.

[H+13] J. Huthmann et al. Hardware/software co-compilation with the
nymble system. In Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC), 2013 8th Int. Workshop on, July 2013.

[I+11] Aws Ismail et al. FUSE: Front-End User Framework for O/S Ab-
straction of Hardware Accelerators. IEEE 19th Ann. Int. Symposium
on Field-Prog. Custom Computing Machines, May 2011.

[L+96] Langendoen et al. Integrating polling, interrupts, and thread
management. In Frontiers of Massively Parallel Computing, 1996.
Proceedings Frontiers ’96., 6th Symposium on the, Oct 1996.

[L+07] H. Lange et al. An execution model for hardware/software compila-
tion and its system-level realization. In Field Programmable Logic
and Applications, 2007, Int. Conference on. IEEE, 2007.

[P+13] Khoa Dang Pham et al. Microkernel hypervisor for a hybrid arm-
fpga platform. In Application-Specific Systems, Architectures and
Processors (ASAP), 2013 IEEE 24th Int. Conference on, June 2013.

[REP14] REPARA - Reengineering and Enabling Performance and poweR of
Applications. http://www.repara-project.eu, 2014. Accessed: 07/14.

[S+10] Vijay Saraswat et al. The Asynchronous Partitioned Global Address
Space Model. Technical report, Toronto, Canada, June 2010.

