
1

A Reconfigurable Platform and Programming
Tools for High-Level Network Applications

demonstrated as a Hardware Honeypot
Sascha Mühlbach, Andreas Koch

Abstract—The security of computer systems and networks
is severely threatened today by the combination of novel attack
patterns and high traffic volumes. Together, this often exceeds
the capabilities of purely software-based network security
systems. As an alternative, hardware acceleration has been
employed, e.g., for performing deep-packet inspection and
pattern matching as well as general packet-header process-
ing. While such implementations, capable of handling lower
protocol layers, have been extensively studied in research
and industry, their extension to higher communication layers
has only rarely been addressed. Such capabilities, including
the application level (OSI Layer 7), are the focus of this
work. We present the NetStage platform, employing recon-
figurable computing for high-throughput low-latency network
processing, as well as associated development tools that allow
networking domain experts to easily customize the system. As
a use-case, we consider the realization of high-performance
attack-resilient honeypots based on NetStage. To this end, we
introduce the Malacoda language, its programming tools, and
the generated target microarchitecture. We then evaluate the
performance of Malacoda-generated vulnerability emulation
handlers running on the NetStage platform.

Index Terms—Network Security, 10G, FPGA, Network
Stack, Deep Packet Inspection

I. INTRODUCTION

THE relevance of the Internet for both business and
private use has grown dramatically in the past decades.

Social networks, video calls, instant messaging, and many
more services have fundamentally changed the way how
people communicate. Online banking, online shopping and
eGovernment solutions simplify many day-to-day tasks.
However, on the flip side of these advances, the large
volume of accompanying financial activities attracts many
types of criminals. Due to the global distribution of the
Internet, it also presents a global attack surface on its
services.

Attackers exploit weaknesses (bugs, design errors, etc.)
of computer systems to break into remote systems and
leverage this control to steal sensitive data such as pass-
words or credit card information. As shown by numerous
studies [1], [2], the risk is omnipresent. A common tool

S. Mühlbach is with the Center for Advanced Security Research
Darmstadt (CASED), Darmstadt, Germany.
E-mail: sascha.muehlbach@cased.de

A. Koch is with Technische Universität Darmstadt, Embed-
ded Systems and Applications Group, Darmstadt, Germany. E-Mail:
andreas.koch@esa.informatik.tu-darmstadt.de

for starting attacks is so-called “Malware”, programs that
automatically exploit bugs of computer systems for inject-
ing and executing malicious code provided by the attacker.
Pandalabs estimates that in 2012 32% of the worldwide
PCs are infected with some malware [2].

Setting up proper security mechanisms has therefore
never been more important than today. Firewalls and In-
trusion Detection Systems (IDS) are two technologies that
are employed on the network layer to secure the com-
munication infrastructure from illegal access to systems
and applications. However, the data volume transferred on
today’s high-speed networks (10 to 40 Gbit/s already in
common use at the datacenter/carrier levels [3], with 100
to 400 Gbit/s on the upswing) presents a significant chal-
lenge to current security measures. Conventional software-
programmable processors are not able to keep up with these
speeds. An evaluation [4] of the popular network intrusion
detection system Snort [5] showed that such a software
system cannot handle high-speed traffic without noticeable
packet loss on a regular server system.

To support such network security mechanisms on the
infrastructure level, dedicated hardware accelerators have
been proposed to offload compute-intensive tasks from
the processor. As a key technology, Field Programmable
Gate Arrays (FPGAs) are of particular interest to this end.
FPGAs are integrated circuits whose functionality is not
fixed during the manufacturing process, but instead can be
flexibly reconfigured for specific applications afterwards.

Hardware accelerators based on FPGAs have often been
employed for computation [6] or lower-layer acceleration
tasks on the packet level [7], [8]. However, advances in
chip design and fabrication technology have led to very
powerful reconfigurable devices that have become capable
of performing more complex operations. The use of FP-
GAs to accelerate such higher-level applications will be
discussed in this work. Specifically, we employ the term
high-level to refer to any system that actively takes part in
a communication session as an endpoint, instead of simply
monitoring traffic flowing by (as most current IDSs do).

The NetStage platform presented here allows the rapid
deployment of hardware-accelerated attack-resilient inter-
active communication applications. The specific attack-
resilience we aim for is against malware injected into the
host running the networking applications. This resilience
is achieved by the complete omission of all software-
programmable processors from the data and control planes.

2

As NetStage does not contain any such processor (even for
operating system-functions), it cannot be subverted by an
attacker into executing malicious code. The FPGA configu-
ration itself remains secure, as the actual configuration port
(e.g., ICAP on Xilinx devices) is completely isolated from
network traffic. To the best of the author’s knowledge, no
possibility of remote attack exists for altering the FPGA
configuration without access to the port.

Note, however, that NetStage itself does not prevent
weaknesses in the system (e.g., in protocol handler state
machines) that could lead to it being exploited for attacks
against other hosts (e.g., by packet multiplication). Evalu-
ating such attack scenarios could be an interesting topic for
future research but lies out of the scope of this work.

As a proof-of-concept for a high-throughput but security-
critical application, the hardware honeypot MalCoBox has
been developed for the NetStage platform. A honeypot
is a network security device that emulates thousands of
vulnerable servers and is placed at an exposed position
in the network in order to attract attackers. One goal of
such a honeypot is to gain knowledge about attack patterns
(e.g., collect the malware injected through the emulated
vulnerabilities). The high volume of requests that could
reach such a honeypot when connected to a high-throughput
link, together with the increased risk of such an exposed
system to become compromised itself, turns a honeypot into
a promising candidate for a hardware implementation.

Despite the advantages of hardware-accelerated solu-
tions, the high programming complexity of dedicated hard-
ware systems is an ongoing issue. This is especially true
for systems such as the MalCoBox, where the program-
mers will be domain experts in network security, but
not proficient in the digital logic design and computer
architecture fields commonly required to program FPGA-
based computers. On the other hand, the dynamic threat
landscape on the Internet requires frequent vulnerability
emulation updates to keep up with attackers.

To resolve this quandary, this work discusses the domain-
specific Malacoda language for abstractly formulating hon-
eypot behavior. Malacoda is translated by its associated
compiler from a high-level description of vulnerability em-
ulations into high-performance hardware handlers executing
on the NetStage platform. Together, NetStage and Mala-
coda address some of the productivity deficiencies often
remarked to be major hindrances for the more widespread
use of reconfigurable computing in communications appli-
cations [9].

We present our findings as follows: Section II reviews
related work in the areas of network processing using FP-
GAs, hardware compilers, and honeypot systems. Section
III gives an overview of the general architecture of the
NetStage platform, the actual communication core, as well
as various supporting services. For the conciseness of this
text, many details are discussed only in more specialized
prior publications, which will be referred to frequently.
Section IV covers the new language Malacoda and the
corresponding compiler architecture for NetStage. Section
V gives synthesis and performance characteristics of the

hardware implementation. Section VI finally concludes
with a summary and a perspective towards future work.

II. RELATED WORK

This section discusses prior and related work in the three
topic areas of this article: Hardware support for network
security, high-level hardware compilation, and network
honeypots.

A. Hardware Support for Network Security

The use of FPGAs to accelerate network security appli-
cations has been a popular field of study for many years
now. A recent survey by Chen et. al. [10] provides a good
overview of the employment of FPGAs for packet clas-
sification, pattern matching, TCP stream processing, and
Internet worm and DDoS attack detection and containment
(as one example for anomaly detection). However, these
works cover packet operations mainly on a lower network
operation level1, relying just on traffic monitoring without
interaction.

1) Network Communication Support: A key requirement
for the implementation of higher-level network communica-
tions on FPGAs is an efficient implementation of the basic
Internet protocol stack [11], especially the transmission
control protocol (TCP) [12]. Unfortunately, this has only
rarely been addressed in the research community.

Schuehler and Lockwood [13], [14] began focusing on
FPGA-based TCP processing for gigabit line rates in 2002.
But their intention was to monitor TCP streams in switches
and routers, instead of enabling endpoint communication.
The same holds for later proposals [15], [16]. Dollas et. al.
[17] were among the first researchers aiming at providing
an entire communication stack, but their solution (achieving
around 350 Mbit/s) does not reach the performance of
high-speed networks and the project was discontinued.
As an intermediate solution, TCP offload engines have
been proposed that support CPUs for compute-intensive
protocol processing (e.g., checksum calculation) for high-
speed operation, but leave complex parts of the protocol
(e.g., flow control) up to the CPU [18].

However, in the past two years, industrial development
activity has ramped up. With the release of more pow-
erful FPGAs and corresponding hardware platforms, and
supposedly driven by the exploding interest in FPGA-
based high-frequency trading (HFT) applications [19], a
number of companies presented or announced [20], [21],
[22] complete TCP/IP stacks for the use in FPGAs at
data rates of 10 Gbit/s or more. Most of these cores
support configuration parameters (e.g., number of supported
connections) to allow the designer to adapt the core to the
particular needs [22]. However, a deeper study in research
continues to be hindered by these proprietary cores only
being available under commercial licenses, with strict non-
disclosure rules.

1For purposes of this discussion, we consider passive monitoring to be
lower level, and active communications higher level operations.

3

2) FPGA-based Development Platforms: In addition to
core components such as pattern matching and communi-
cation support, hardware applications require further infras-
tructure beyond the actual FPGA chip(s) to actually realize
entire systems. In the area of FPGA-based networking,
the most popular research platform is NetFPGA [23]. The
NetFPGA base board consists of an FPGA connected to
multiple network interfaces and external memory, with
a 10G-capable version becoming available in 2011. An
attractive aspect of NetFPGA is that, in addition to stable
and affordable hardware, a rich set of open source software
tools is available.

A commercial platform with a focus similar to NetFPGA
is NetCope [24] from INVEA-TECH. NetCope also con-
sists of an FPGA-based IP core and supporting software
components. However, NetCope primarily targets commer-
cial research and production use, e.g., for telecommuni-
cation providers, and was initially implemented only on
the INVEA-TECH Combo Board hardware platform [25].
With the release of the NetFPGA-10G card, INVEA-TECH
presented a port of NetCope to the NetFPGA-10G, available
under special academic licensing [26]. The combination
of the industrial-strength NetCope core with the open
NetFPGA-10G research platform could also be suitable for
further academic research.

3) High-Level Hardware-Based Applications: The im-
plementation of complete communication applications en-
tirely using reconfigurable logic has only rarely been ad-
dressed (in comparison to, e.g., regular expression match-
ing). After initial proposals, e.g., by Fallside [27], only
limited research effort has been directed at the topic.
Most attempts perform only compute-intensive tasks on the
FPGA and employ embedded general-purpose processors
(GPP) for complex protocol processing (e.g., [28], [29].
While this is a practical approach, it does not reach the per-
formance and security levels achievable using completely
specialized hardware architectures.

A recent work from Lockwood et al. [30] considers the
area of high-frequency trading applications. They describe a
platform allowing financial experts to build hardware-based
automatic trading applications. For that use-case, the main
benefit of the hardware lies in the low latency that could
be achieved by implementing the network communication
stack and the application logic directly on the FPGA. For
the application layer, Lockwood et al. follow an approach
similar to the one we have used for Malacoda. They also
advocate the use of a domain-specific language, both for
being more accessible to application experts, as well as for
better quality-of-results compared to compiling a general-
purpose language.

B. High-Level Hardware Compilation

Two major approaches for high-level hardware compi-
lation have been followed: Compiling from an established
high-level general-purpose programming language (e.g., C),
or accepting special domain-specific languages (e.g., [31])
as source. While general programming languages have the

advantage that they can express a wide range of algorithms,
domain specific languages score with their focus on con-
cisely describing solutions in a particular problem area,
where they achieve a higher programming and compilation
efficiency.

1) General Purpose Languages: In the embedded sys-
tems domain, the C language and its derivatives (e.g.,
SystemC) are still dominant. The compilation of these
languages to hardware is the subject of intense research
in projects such as C-to-Verilog [32], Comrade [33], or
Nymble [34]. In recent years, the technology has matured
sufficiently to be usable in commercial systems. Vivado
HLS [35] by Xilinx is a generic C to HDL (VHDL, Verilog)
compiler employing many of the techniques first proposed
in academic research. CatapultC [36] and Synphony C [37]
are comparable, but according to an evaluation by Meeus
[38], more advanced knowledge in digital system design is
required to achieve a similar quality of results.

Coming from the hardware design perspective, but with
a significantly raised level of abstraction (e.g., a powerful
type system, the abstract description of parallelism and
concurrency, etc.), the Haskell-based BlueSpec System Ver-
ilog (BSV) [39] is another language aiming to improve
the productivity of hardware design. However, since BSV
originated in digital logic design, it is easier for the BSV
compiler to generate circuits that are competitive with
manually optimized implementations.

2) Domain-Specific Languages: The language G [40]
has been designed specifically for packet header processing
on FPGAs. It supports a flexible specification of the packet
format (fields and positions) and of conditional rules for
modifying these fields depending on packet contents. G has
some limited capability for payload processing, but lacks
advanced facilities such as direct regular expression (RE)
handling.

PacketC [41] is a language developed by Cloudshield
[42] to be used on their heterogeneous multiprocessor
machines (containing FPGAs, processors, and TCAMs) for
high-speed network packet processing. Their programming
model uses coarse-grain, SPMD (single program, multiple
data) parallelism. On the hardware side, FPGAs (e.g.,
for ingress filtering and header evaluation) and special
microcode control the packet pipeline. A single instance
of a packet program is then executed on multiple network
processing cores. PacketC is based on C for the basic
syntax (operators, conditional statements etc.), but omits
operations requiring complex hardware implementations
(e.g., pointers, address operators, and dynamic memory
allocation). For better packet processing support, domain-
specific data types and operators have been added.

In contrast to hardware compilers generating complete
architectures from scratch, Chimpp [43] follows a more
general approach. It relies on an XML description for the
composition of arbitrary pre-implemented packet-handling
hardware blocks. These blocks can be of varying granularity
(e.g., ARP lookup or simple TTL decrement), but they must
be manually provided as synthesizable HDL descriptions.
Chimpp itself provides only the interfacing and composition

4

capabilities.
Gorilla [44] is another C-style language for describing

data parallel applications (such as network processors) for
compilation to an FPGA on the functional level. Pro-
grammers can use domain-specific functions, which are
mapped to a library of dedicated hardware accelerators.
These are provided to the tool as parameterized templates
that have been written and optimized by hardware experts
for high performance operation. In this manner, Gorilla
follows a similar concept as Chimpp, but offers more
fine-grained control of the application (due to the more
flexible parametrization). The Gorilla compiler accepts the
application description together with the template library
and generates synthesizable Verilog code.

C. Honeypots

While a wide spectrum of honeypot approaches exists,
the focus of this work are so-called low-interaction hon-
eypots [45]. These emulate selected parts of an operating
system (e.g., the network stack) and / or selected parts
of a vulnerable application. These honeypots are well
suited for unattended operation and assisting a network
intrusion detection system (NIDS) by providing information
about current worm activity, spam attempts, or collected
malware (using malware collection honeypots). Popular
open source honeypot systems are HoneyD [46], Nepenthes
[47] and Dioneae [48]. HoneyD offers a generic framework
for the development of honeypot scripts, while Nepenthes
and Dioneae primarily focus on collecting malware using
emulated application vulnerabilities.

To the best of the authors’ knowledge, there exists
only one prior published work exploring the concept of
executing honeypot functionality on bare hardware. The
work of Pejovic et al. [49] describes a hardware honey-
pot implementation based on interpreting state machine
transition/output tables stored in memory. These FSMs
represent conditions and actions orchestrating the client-
server interaction [50]. The research group implemented a
hardware prototype using a Virtex-4 FPGA, but unfortu-
nately did not publish any performance benchmarks. While
the table-driven FSM approach is easier to program than
the fully specialized hardware architecture we propose, it
could become bottlenecked by limited memory bandwidth
once network speeds exceeding 10 Gbit/s are considered.

III. NETSTAGE ARCHITECTURE

The realization of active high-level network security
applications entirely on dedicated hardware requires a base
architecture capable of autonomous Internet communication
without CPU intervention. A major component of such a
platform is a complete, yet efficient implementation of the
basic Internet protocol stack [11]. Since at the beginning
of this work, no suitable solution was available off-the-
shelf (see also Section II-A1), we developed our own
implementation, called NetStage (described in greater detail
in [51], [52], [53]).

FPGA

Communication

with clients on the

Internet

Network

Interface /Core

Protocol Stack

Application

Logic
System Management

Fig. 1. NetStage operating scenario

NetStage is a generic high-speed network processing
platform implementing the endpoint-oriented communica-
tions scheme shown in Figure 1. It supports UDP and
TCP processing at 10 Gbit/s line rates on FPGAs using a
protocol implementation customized for hardware mapping
[51]. The NetStage Core, which provides the actual TCP/IP
stack in hardware, can be used to support arbitrary network
operations on the FPGA. In addition to the low-level
network interface and protocol processing, NetStage also
offers utility facilities (such as integrated per-connection
state storage) as well as extensive simulation capabilities
for the development and debugging of new hardware-
accelerated network services.

For FPGA-acceleration, the application logic is inte-
grated into NetStage as so-called Handlers. These act as
network endpoints / servers and are mapped to independent
hardware blocks. The blocks support the transparently vir-
tualized execution of the actual per-connection processing,
using time-multiplexing for different connections to the
same application. Handlers communicate with the NetStage
Core via a unified message-based interface that is easily
extended with new capabilities.

This section gives an overview of the hardware archi-
tecture, Section IV will describe some of the programming
tools for the platform. More details on the architecture and a
number of actual hardware prototypes have been published
in [52], [53], [54], with the hardware-optimized lightweight
TCP/IP implementation covered in greater detail in [51].

A. Packet Processing Architecture

Figure 2 sketches the design of the NetStage platform
architecture. Two dedicated network interfaces (Fig. 2-
a) support the physical separation of public Internet and
internal management traffic.

Public network packets that arrive at the system are
processed by the Core 2-b) and forwarded to the corre-
sponding application Handler 2-e). Routing the packets to
the right application is the task of the Routing Layer 2-
d), based on an internal Routing Table 2-f) that holds
the destination information for each application. When
NetStage is operated as network communication endpoint,
the routing rules correspond to network sockets identified
by the combination of destination IP address, protocol, and
port. The Routing Table can be dynamically controlled via
the management interface.

5

Network Frame

Receiver 1

NetStage Core

B
U
F

1

2

n-1

Routing Table

Global Application

State Memory

Network Frame

Receiver 2

System

Management Updates

Slot Management / Control

Handler Slots

Handler

Handler

Handler

2

3

n

Routing Layer

Handler

1

0

a

a c

d

e

B
U
F

B
U
F

B
U
F

Network Data

Internal Data

Routing Service

Lookup

b

Management

Network Data

Fig. 2. NetStage platform architecture overview

For increased flexibility, the application Handlers are not
attached directly to the Core, but are instead placed into so-
called Slots. These provide buffered connectivity (to avoid
stalls in the main datapath) between the routing layer and
the Handlers. The buffers are implemented as special ring
buffers [52], in contrast to the simple FIFOs often found
in flow-based networking platforms (e.g., [55]). Slots and
the routing layer are connected by a shared bus for direct
communication between the Core and any Handler. The
interconnect is optimized for operating NetStage as com-
munications endpoint, allowing a simplified optimization
of the routing layer. Full duplex communication at native
interface speeds is supported by separate data paths for the
receive and transmit directions.

The internal data bus has a width of 128 bits. Typically,
the Core is running at the same clock frequency of the
network interface, which is 156.25 MHz for 10G operation.
Using a single clock avoids clock domain crossings and
simplifies FPGA placement and routing. The combination
of bus width and clock rate leads to an internal data
path throughput of 20 Gbit/s for each direction (incoming
and outgoing), which is sufficient to satisfy a line rate of
10 Gbit/s while providing some headroom to recover for
throughput variations (stalls) in the Core or Handlers.

As a configurable option, the NetStage Core can be pro-
vided with a unidirectional connection to the management
interface. This would allow the sharing of the Core between
Handlers and system management components for sending
IP-based control messages over the private management
interface (shaded light grey in Figure 2).

B. Message-based Internal Communication

For future scalability, NetStage already employs a
message-based scheme over the bus-based internal inter-
connect. This will allow an easy transition to a network-
on-chip in the future, but none of our current applications

have required this extra flexibility yet. NetStage messages
encapsulate packet payloads by prefixing them with an
Internal Control Header (ICH, see Figure 3), similar to the
approach proposed in [23]. The wrapped packets bundle
NetStage-internal control data with the payload for efficient
processing.

SRC MACSRC IPDST IP

Lgth

Application State Data from Global Application State

Memory (up to 15x16 Bytes)

IP Protocol1

TCP SEQ & ACK

Internal Flags

SPrtDprt

ICH Data

Words (2-17)

DST Slot 1 Size of Application

State Data Region

(0-15)

TCP Flags

Fig. 3. NetStage Internal Control Header (ICH)

However, the NetStage ICH goes beyond the traditional
models of routing and control information. In addition,
it supports Layer 7 operations by also containing the
application-specific state data. This allows to keep both the
Core as well as many of the Handlers completely stateless,
relying entirely on the ICH for quick reply packet gener-
ation. The ICH encapsulates both incoming and outgoing
traffic.

C. NetStage Communication Core

The NetStage Core implements ARP, IP, ICMP, UDP, and
TCP processing to perform autonomous Internet commu-
nication. In contrast to a software implementation (where
optional functionality can easily be provided using li-
braries), an all-hardware architecture requires FPGA device

6

resources even for seldom-used functionality. This requires
a careful trade-off between functionality and available
hardware area, often leading to the omission of rarely-
used functions from the hardware architecture. NetStage
has been subjected to such a trade-off, enabling it to
support autonomous low-latency high-bandwidth operations
for a multitude of parallel connections (100,000+), while
fitting onto off-the-shelf reconfigurable computing boards.
Specifically, the following requirements have been imposed
on the base architecture:

• The main data path should be able to handle network
traffic at a line rate of 10+ Gbits/s.

• Overall multi-connection performance is more impor-
tant than individual per-connection performance.

• Parallel support for multiple applications and network
endpoints (sockets).

• Basic operation should possible even with limited
external resources (e.g., using only on-chip memory)

• To maintain security, only dedicated hardware modules
will come in contact with network traffic.

• All communication is initiated by the external clients,
NetStage only acts as a responder.

The Core has a modular architecture, reflecting the
structure of the protocol stack, which allows easy extension
on all protocol layers. The hardware implementations of the
different layers, called Stages, are interconnected via on-
chip memory buffers and operate in a streaming fashion,
similar to techniques described in prior work such as [23].

Handling many parallel TCP connections normally re-
quires high memory bandwidth on the server for keeping
track of the per-connection state. NetStage implements a
stateless TCP variant in hardware [51], avoiding the need to
maintain local counters on the server to track the connection
state. The approach exploits, that TCP transmits the current
acknowledgment number not only with acknowledgment
packets, but also with each data packet. Assuming that
there are no outstanding packets that have already been
sent by the server, the server-side SEQ number can thus be
reconstructed entirely from the incoming data without the
need for local storage in memory. In normal operation, both
for connection-establishment (using hardware-based SYN
cookies), as well as for steady-state request-response traffic,
NetStage adheres to the TCP specifications and has proven
to be inter-operable with a wide spectrum of clients (see
Section V).

The absence of state keeps NetStage from detecting and
reordering packets arriving out-of-order. This is worked-
around by the Core always offering a window size equal to
the maximum segment size on the link, allowing at most
one packet to be in transit for larger transfers. We accept
the corresponding reduction in per-connection throughput
to achieve higher overall throughput for a large number of
parallel connections, the scenario NetStage is optimized for.

NetStage could be extended to full TCP functionality,
but this would require the presence of sufficient amounts
of low-latency off-chip memory (e.g., RLDRAM, or even
better QDRII+ SSRAM) on the target hardware platform.
But since not all of our supported target platforms have such

off-chip memory (e.g., the Beecube BEE3 has only DDR2
SDRAM), it is just optional for our current implementation
(allowing better performance if fast external memory is
present, though).

D. Application-Specific Handlers

The application-specific service Handlers are responsible
for the actual Layer 7 processing of network data. Figure
4 shows the architecture of an example Handler in the
MalCoBox honeypot application (also called Vulnerabilty
Emulation Handler, VEH). Such Handlers react to incoming
packets and generate response packets according to prede-
fined rules.

They comprise the actual protocol state machine, an
(optional) RE matching engine, and an (optional) set of
response packets, described as stored templates. These
three components are customized for each application.
Logically, it appears that each connection is processed
by its own Handler. Physically, multiple connections are
time-multiplexed onto the same Handler at line-rate, trans-
parently virtualizing the underlying FPGA hardware and
giving the appearance of multi-threaded execution.

For maximum threading throughput, Handlers should
never block. However, if necessary, variable-latency han-
dlers are supported, but will lead to packets queuing up
in the inter-stage buffers until a non-blocked Handler for
the required protocol becomes available. To ameliorate
this situation, our current NetStage prototypes have an
internal throughput of double the external line rate, allowing
Handlers to catch-up with backlogged packets.

Response

Templates

Matching

Rules

Main Handler

State Machine

HTTP/1.1

200 OK\r

\nServer:

Apache

/^\/login/

In Buffer

Data

Out

Data

In

Write

Pointer

Read

Pointer

Read

Packet

Interface

Write

Packet

Interface

Slot
Handler

Out Buffer To

Core

From

Core

Fig. 4. Example application handler structure

E. Supporting Services

In addition to the packet pipeline in the NetStage Core,
the system also provides a number of support services.

7

1) Global Application State Memory: FPGA-based cus-
tom computer architectures allow the matching of memory
systems to the needs of the application (e.g., [56]). The
NetStage memory system is highly specialized for the
storage of per-connection state for a multitude of paral-
lel connections. The Global Applications State Memory
(GASM), introduced in [51], stores this application state
in a central location and unburdens individual Handlers
from having to implement their own memory interfaces.
Additionally, by allowing the Handler internals to be state-
less, the overhead of saving/restoring Handler state when
exploiting dynamic partial reconfiguration of Handlers [53]
is completely avoided.

Initially, the GASM was realized in on-chip BRAM
blocks [51] and limited to storing just 16 bytes of data
per connection. Current versions are also able to use low-
latency off-chip memory (such as that available on the
NetFPGA 10G card) to quickly access up to 15 words of
16 bytes each per connection.

The per-connection data is retrieved from the GASM
when a packet arrives, and accompanies it through the re-
ceive pipeline, bundled into the ICH attached to the packet.
State changes performed in the Handler are committed
to the GASM when a reply (or an explicit empty state
change packet) leaves the Handler by way of the transmit
pipeline. When the ICH-wrapped packet passes the GASM,
the altered state contained in the ICH is written to memory.

2) Mirror Port Functionality: For debugging and mon-
itoring, NetStage can use one of its 10G interfaces as a
mirroring port for the public network interface, indepen-
dently of the mirror capabilities of an uplink switch. The
mirroring (if enabled in the current NetStage configuration)
is performed using dedicated hardware and does not affect
system throughput or latency. The mirroring port is limited
to an aggregate throughput of 10 Gbit/s, even though the
NetStage Core supports 10 Gbit/s full-duplex traffic.

3) Low-Level Simulation Environment: When devel-
oping new Handlers at the register-transfer level using
hardware-description languages such as Verilog or VHDL,
the capability to perform system-level debugging becomes
crucial for developer productivity.

To this end, a HDL simulator [57] was extended with an
operating system-level virtual network interface using the
Linux TAP mechanism. This allows the simulated HDL
models of NetStage and the Handler under development
to participate in actual network communication, receiving
and sending real traffic. Despite the limited throughput and
high latency, this capability has proven invaluable for the
development of the NetStage Core as well as application-
specific Handlers.

IV. HIGH-LEVEL PROGRAMMING OF NETSTAGE

Even with the extended simulation/debugging support,
developing Handlers at the RTL level is an activity gen-
erally unfamiliar to most networking experts. It is much
preferable to allow the domain experts to express their
application at a familiar abstraction level, leading to pro-
gramming in so-called domain-specific languages (DSL).

As a first step in this direction, we developed Malacoda
[58][54], a DSL that allows network security engineers to
easily describe vulnerability emulations, which are then
automatically compiled to Handlers for integration into the
NetStage packet pipeline. Other DSLs could be formulated
for other application domains, e.g., complex event process-
ing, deep-packet inspection, or content-based routing.

In practical use, Malacoda has also proven useful to as-
sist experienced hardware designers by quickly generating
Handler skeletons in HDL, which could then be quickly
extended manually with special-purpose features.

A. The Malacoda Language

When designing Malacoda, we surveyed how network
security experts commonly customize honeypots. As an
example, the Nepenthes honeypot [47] is programmed in
scripts that follow a dialogue-based approach, where an
incoming packet is inspected for patterns, which trigger
the sending of appropriate response packets, mimicking the
behavior of a vulnerable network application. The scripts
are commonly structured as follows:

• Describe a sequence of steps (states) reflecting the
progress of a communication session.

• Evaluate the incoming request packet.
• Craft a response packet from static template data,

filling-in placeholders with dynamically computed
data (e.g., excerpts from the request packet).

• Notify an administration station if specific states have
been reached during a communication session.

As Perl [59] is a popular programming language in
the system administration and networking domain, Mala-
coda provides a Perl subset suitable for easily expressing
honeypot behaviors, and amenable for compilation into
high-performance NetStage Handlers. Special commands,
summarized in Table I, provide frequently used actions.

TABLE I
MALACODA COMMANDS

addresponse(SOURCE) Append a given byte sequence to the
response packet buffer.

addresponse(SOURCE, s, n) Copy n bytes starting at index
s from SOURCE to the response
packet.

log (SOURCE): Create a log packet on the adminis-
trative interface from the given byte
sequence.

replace(s, SOURCE) Replace a single byte or a byte se-
quence in a response packet under
construction with the given value
starting at index s.

close: Send a close-connection notification
(only available for TCP).

Listing 1 shows an excerpt from a Malacoda description
emulating a simple Telnet login into a shell which accepts
any user / password combination. The keyword dialogue
begins the activity description, which consists of a sequence
of interactions with the client.

Listing 1. Sample Malacoda Telnet emulation

8

// Emulate login to a root shell
TELNET_VEH {
// stateful dialogue description
dialogue {
//initial state
DEFAULT:
addresponse("Connected to localhost.

localdomain\nlogin:");
$STATE = LOGINWAIT;
log("TELNET: Connection");
...

SHELL:
if ($INPKG =˜ /ˆls/) {
addresponse("web-password.txt\n");
addresponse("[localhost]#");

}
elsif($INPKG =˜ /ˆwhoami/) {

...

Fundamentally, the Malacoda dialogue is expressed as
a finite-state machine (FSM), with NetStage tracking the
current state per connection in the GASM (see Section
III-E1). In Malacoda, these states are identified by symbolic
names and set using the reserved variable $STATE. A
new connection always starts in the initial state identified
by the name DEFAULT. The initial state is also entered
for connectionless traffic (e.g., arriving UDP packets). The
response packet may be constructed incrementally using
multiple addresponse calls, it will be sent automatically
once all actions in a state have completed. The incoming
request packet can be accessed using the reserved variable
$INPKG, and used, e.g., in RE matching. More complex
response packet templates can be read from external files,
preserving the clear structure of the Malacoda source code.

In addition to the system-maintained reserved variables,
Malacoda allows the definition of user-defined variables.
They can be declared having flexible (a maximum length
needs to be set) as well as fixed lengths, as shown in the
following example:

dynamic variable1[8]; //flexible length

fixed variable2[4]; //fixed length

In Malacoda, all variables have global scope within
a script and exist during the entire lifetime of the
connection, possibly spanning multiple packets. The
declarations only determine the size of the storage space
reserved in the GASM, as Malacoda is typeless and
treats all variable values as raw (hardware-level) byte
sequences. They can, e.g., be used for arithmetic as well as
string-operations, with the context of each use determining
the interpretation of the byte sequences (see the next
section for details).

Listing 2 shows an excerpt of a DNS server, demonstrat-
ing the use of $INPKG both for RE matching, as well as to
pre-populate the contents of the response packet (which is
selectively overwritten afterward by the replace command).

Listing 2. DNS emulation in Malacoda

// Emulate DNS response
DNS_VEH {

dialogue {

// A stateless Handler only has the default
state

DEFAULT:
if ($INPKG[31] = "0") {

if ($INPKG =˜ /ˆ.{13}www\\08malcobox\\02de
/) {

addresponse($INPKG);
replace(3,"

\\81\\80\\00\\01\\00\\01\\00\\02
\\00\\02");

addresponse("\\c0\\0c
\\00\\01\\00\\01\\00\\00\\1c
\\20\\00\\04\\51\\a9\\91");

...
log("DNS: Request for www.malcobox.de");
...

B. Compiler Design

The Malacoda compiler translates the source code to
hardware-synthesizable VHDL, which can then be submit-
ted to standard FPGA vendor tools for mapping to the
actual FPGA device(s). Due to the highly specialized nature
of Malacoda, much of the complexity of conventional high-
level language compilers [60] can be avoided. ANTLR
v3 [61] was used in the development of the compiler to
generate not only the lexer and parser, but also the complete
Abstract Syntax Tree (AST) representation.

The AST is traversed to perform semantic analysis. In
addition to building a symbol table of FSM states and
variables, the pass collects information about a number
of language constructs central tables. These include all
conditions in the program (including regular expressions),
all output packets (response and log), as well as all variable
assignments. This is a departure from traditional compiler
organization as, due to the specialized execution semantics
of Malacoda, most of these constructs will be executing in
parallel later. Additionally, the total number of bytes used
for response packets is tracked for later optimization of the
packet construction logic. The AST is decorated (shown
in Figure 5) with basic block boundaries and the control
predicates of each basic block.

The top VEH node has the individual state nodes as
children. Each state node corresponds to a state block of
the VEH dialog description. The state nodes can contain
either if/elsif/else constructs or grouped statements nodes as
children. If/elsif nodes contain a reference to their control
condition and may have nested grouped statement nodes or
another if/elsif/else block as children. A grouped statement
collects all single occurrences of a particular statement
within a basic block. E.g., it will be often the case that
there are multiple addresponse statements in a basic block
(to increase the readability of the VEH description). As
only a single response packet will be created per execution
cycle, all of these separate addresponse statements for
constructing that packet will be aggregated into a single
grouped statement that performs the construction task of
the formerly separate statements.

The decorations in the AST are evaluated during code
generation. VHDL code is generated by expanding VHDL
code templates (Figure 6), replacing placeholders with ac-
tual signal declarations and output assignments. The static

9

VEH

ATTRIBUTES (Name,

Optimizations)

STATE 0

ID

STATE 1

ID

IF

CONDITION
ELSE

COMMAND

RESPONSE

COMMAND

SETVAR
COMMAND

RESPONSE

COMMAND

LOG

Fig. 5. Decorated abstract syntax tree for Malacoda descriptions

part of the template describes the buffered interface to
the NetStage core and a skeleton FSM for receiving and
sending messages, which is then extended with Handler-
specific processing.

Code generation proceeds as follows: First, the static
contents of response and log packets are inserted into
the template. Then, all individual conditions are translated
into their underlying hardware (e.g., regular expression
matchers, simple comparators), computing boolean signals.
A condition evaluation block combines these predicates
into the more complex expressions that actually control
the execution of the basic blocks within a state (also
considering intra-state control flow, if any). The contents of
the basic blocks are assembled from code block templates
for the different possible statements. These include packet
generation (response and log) and variable assignments.
Note that a Malacoda program will at least contain the
DEFAULT state, but may include an arbitrary number
(within device limits) of additional states.

C. Target Microarchitecture

In order to reach the required throughput, the processing
engines created by the compiler have an internal data width
of 16 Bytes and aim to produce/consume one of these
words per clock cycle. To this end, intra-word parallelism
is exploited whenever possible. For example, RE matching
tries to perform parallel matching of search strings (e.g.,
by generating dedicated comparators for each offset of a
literal search string in the target string). The composition
of an output packet from individual data sources is also
performed in parallel. In the DNS server example in Listing
2, the sequence addresponse/replace/addresponse is com-
piled into a wide combinational circuit creating the entire

Interface and Basic

Signal Definition

Response Template

Bytes

Conditions

Read ICH, iterate over

entire packet and store

result of condition match

BEGIN PROCESS

Condition Evaluation

for Application State

DEFAULT

Code Block 1

Code Block 2..n

(optional)

Condition Evaluation for

Application State 2..n

(optional)

Write outgoing ICH and

finalise packet

Write log message 1..n

(optional)

END PROCESS

Fig. 6. Handler template

output packet in a single clock cycle (see Section IV-C4
for more details).

1) Handler Execution Cycle: The VHDL code that is
generated by the Malacoda compiler reflects the structure
of the basic Handler module described in Section III-D.
Packets are read from an input buffer, processed by the
corresponding hardware block, and any responses generated
are finally written back to an output buffer. A central state
machine controls the entire operation.

Figure 7 shows a sample execution cycle of a compiled
Handler. Similar to execution models of VLIW processors
or the Verilog non-blocking assignment, writes to Malacoda
variables only take effect after the end of an execution
cycle, all in parallel. Thus, the processing engine compiled
for a Handler can begin a new execution cycle by evalu-
ating all current conditions in the Handler in parallel. The
Malacoda statements associated with each true condition

10

R

RP4RP3RP1

ICH

S2S1DEF

LM2LM1

read incoming packet and

evaluate conditions

execute conditional

branch commands

(response packet

(RP) generation etc.)

write ICH for

response packet

generate optional log

message packet

state?

cond? cond? cond?

RP2

CLR

log?

cleanup (e.g., free input

buffer) and restart fsm

no state

state=S1

state=S2

no

Fig. 7. Sample execution cycle of a compiled Handler

are then executed in program order, sequenced as separate
states of the control FSM. Multiple statements performing
writes to different parts (bytes) of a wide variable (or reply
packet) are executed in parallel, as described in the prior
section.

2) Conditions and Regular Expressions: The compila-
tion of Malacoda conditions yields different hardware for
basic and complex conditions. Basic conditions are those
requiring matching a constant byte sequence at a constant
offset within a variable or packet, including across 16B
word boundaries for wider variables (or packets). These
conditions, collected from the entire Malacoda source code
of the Handler, are directly turned into wide comparators,
all evaluated in parallel.

All other conditions are considered complex, and are
implemented using RE matchers. The efficient hardware
realization of RE matching has been the subject of intense
study, e.g., in [62], [63]. However, these solutions are
not ideal for typical Malacoda applications. First, they are
generally optimized to support a large number of search
strings (e.g., the entire set of Snort [5] patterns). Malacoda
handlers, on the other hand, usually require just 5 to 10
regular expressions each. Second, the larger base area of
the more powerful matching engines is not amortized over
so few search strings.

In contrast, the RE matchers compiled from Malacoda
rely on simple FSMs and thus require only limited hardware
area for administrative purposes. The actual matching,

however, is done using custom-generated networks of max-
imally parallel comparators for each RE, allowing single-
cycle matching of all search hits within a single 16B input
word. While delivering the required throughput of at least
10 Gbit/s, such an approach is indeed only practical for
the limited number of search strings contained in a typical
Malacoda Handler.

3) Variable Access and Allocation: Each Malacoda vari-
able is implemented in two registers. One holds the current
value as retrieved from GASM and bundled with the ICH-
wrapped packet, the second one the new value to write
to GASM at the end of the current execution cycle. At
the start of each execution cycle, both registers will be
initialized to the GASM-retrieved value. Separate regis-
ters are used to avoid inadvertent overwrites in Handlers
with variable latency-execution cycles and reused (time-
multiplexed) hardware. Thus, the semantics of variable
writes taking place only after the end of the cycle can
always be guaranteed.

The compiler allocates per-connection variables in the
GASM. For simplicity, dynamic variables are allocated
with their maximum sizes and contain a byte tracking
their length, allowing up to 255 Bytes per variable. Static
variables always have a fixed size and avoid the length byte.
Thus, a simple contiguous addressing scheme can be used
in the compiler.

4) Response Packet Generation: To achieve high
throughput and aiming for non-blocking Handler execution,
all operations affecting a single 16B data word execute in
the same cycle. This is illustrated in the example shown in
Figure 8 and will now be discussed in greater detail.

Response packets are generated by copying static data
from stored templates (see Figure 8), which can then be
further modified using Malacoda commands (e.g., using
replace) at run-time. The Malacoda compiler implements
the storage of the 16B templates either as LUTs (for small
templates), or as BRAMs (for larger ones).

The actual generation of response packets not only has to
deal with the retrieval of data from a template, but also its
run-time modification. While the latter is quite easy when
just overwriting data at fixed offsets in the template data
(shown for replace in the figure), the system also has to
deal with variable-length parts of the packet and dynamic
variables. Figure 8 shows this as appending a template to
a variable-length input package (retrieved from $INPKG)

In that case, the current offset into the 16B word needs to
be tracked during packet construction and the dynamic parts
have to be placed into the output packet at dynamically
calculated offsets (see Figure 8). To achieve this within one
clock cycle, a barrel shifter is used to make the template
data available shifted to any of the 16 positions in the 16B
output word. Appending it to the packet-under-construction
then just consists of selecting the correctly (for the current
offset) shifted version of the template and selecting these
bytes as contents of the output word.

11

: 4 : R E Q : A D M \n

4 : A C K : A D M \n : A C C E S

16B Input Buffer Word

16B Output Buffer Word

Register with static word from template memory

A C C E S S G R A N T E D \n

: A C C E S

: A C C E S S G R A N T E D

 :

: A C C E S S G R A N T E D \n 0 / 16

1

15

Length

10

.

.

.

16 signals with shifted

register word

addresponse($INPKG);

replace(2,“ACK“);

addresponse(“:ACCESS GRANTED\n“);

A C K
Output

Generation

Fig. 8. Single-cycle output word generation

D. Compiler Optimization

Beyond the straighforward compilation flow sketched
in Section IV-B, Malacoda performs a number of highly
domain-specific optimizations.

For some protocols (e.g., DNS), the response packet
contains much of the data received in the original request
packet. The compiler detects this by looking for an ad-
dresponse($INPKG) command (which copies the input
buffer to the output buffer) in the Malacoda program. If
such a construct is detected, dedicated wiring is generated
to perform this zero-overhead forwarding in hardware as
soon as an input packet arrives. This avoids having to read
the entire packet again when building the output packet.
Additional static or dynamic data can be appended at the
end of the copied block. Note that this operation is specula-
tive: If a control condition would actually select a different
execution path, the prematurely copied packet is instantly
discarded from the output buffer simply by resetting the
buffer write pointer. But no execution time is wasted copy-
ing the packet data. Note that if an addresponse($INPKG)
construct is not present in the Malacoda program, the costly
forwarding wiring is not created.

The compiler also selects appropriate storage for the
packet templates: LUT-based storage is fast (allows 0-cycle
combinational access), but eventually becomes inefficient
for larger templates. On-chip BRAMs can easily hold these,
but add an additional cycle to state execution for data
access. The Malacoda compiler switches between both stor-
age methods depending on the template size: Experiments
have shown that templates smaller than 1024 bytes are best
stored in LUTs, all larger templates will be maintained in
BRAM.

The barrel shifter-approach (shown in Figure 8) allows
fast dynamic editing of variable contents. However, it
requires significant chip area. The compiler thus specifically
checks whether such editing is actually required in the cur-
rent Malacoda program. In the absence of such commands,
the shifter will be replaced by appropriate static wiring
instead.

Hardware support for persistent state storage using the
GASM is also created on demand: If the Malacoda program

contains only the DEFAULT state and does not declare any
custom variables, the logic for GASM access (read and
store to ICH) is omitted to conserve hardware resources.

V. EXPERIMENTAL EVALUATION

This section discusses a system-level evaluation of Net-
Stage, the Malacoda compiler, and the Malcobox honeypot
application. It is structured into two subsections presenting
the characteristics of the hardware implementation and
the packet-processing performance. Experiences gathered
during a one-month live test of the Malacoda-compiled
Malcobox honeypot connected to a direct 10G Internet
uplink are given in [54].

A. Reconfigurable Target Platform

QDR-II

SRAM

QDR-II

SRAM

Microblaze

MAC

Network Core +
Handler

AXI

AXI

MDIO

MAC
QDR-II
SRAM

Controller

QDR-II

SRAM

PHY/

SFP+

XAUI

XAUI

PHY/

SFP+

FPGA

Fig. 9. NetStage on a NetFPGA 10G platform

For these experiments, we have used the NetFPGA 10G
card as reconfigurable processing platform. Similar to the
NetFPGA Loopback example design [64], we employ a
MicroBlaze soft-core processor embedded in our design
for quick and easy configuration of the SFP+ transceiver
module parameters. Note that the MicroBlaze does not
touch any packet data at all, thus maintaining our security
requirement of using only hardware resilient against mal-
ware injection attacks for the actual packet processing. The
system uses two 10G ports, one for the Internet uplink, the
second one for the administrative interface. To gauge the
impact of having available low-latency off-chip memory, we
can also selectively enable the use of the QDRII SSRAM
memory present on the card.

12

The original NetFPGA 10G example design used differ-
ent clocks for the network interface and the core packet pro-
cessing logic. While this allows lower-speed core logic to
be integrated into the system, it leads to deteriorated place-
and-route results. Since the NetStage core was carefully
optimized to also reach the 156.25 MHz of the network
interface, we have been able to eliminate the separate core
clock (and the associated clock domain crossing logic)
in NetStage, and achieved significantly improved mapping
results as a consequence.

B. Hardware Synthesis Results

Logic synthesis and FPGA mapping has been performed
using the ISE, PlanAhead, and EDK tools from the Xilinx
software suite, using version 13.3 [65]. Two different con-
figurations have been synthesized: a) contains only the basic
components, while b) is a full featured design that also uses
the external QDRII SSRAMs on the NetFPGA 10G card
for holding the GASM and has a statistics module enabled.
Both configurations contain six Handler Slots. Table II lists
the corresponding results.

TABLE II
LOGIC SYNTHESIS RESULTS FOR NETSTAGE COMPONENTS

Module LUT Reg. Bits BRAM Clock
[MHz]

(a) w/o external SSRAM and w/o statistics

NetStage Core 16,441 19,363 107 164
Empty Slot 535 684 4 286
Core/Slot Routing 2,962 2,955 25 175

NetStage Total 19,402 22,935 135 164

(b) external QDRII SSRAM and statistics module enabled

NetStage Core 29,903 29,696 85 164
Empty Slot 937 976 4 286
Core/Slot Routing 3,953 3,306 25 190

NetStage Total 35,945 36,188 113 164

Without external state data, the NetStage core requires
10% of the LUT resources and 33% of the BRAMs. The
high number of BRAMs reflects the many internal buffers
linking the different modules in the core. In relation to the
FPGA size, the total size of the infrastructure including
core, management, slots, and routing, is relatively small
(just 12% of LUTs), which leaves sufficient area for the
Handlers. Compared to earlier NetStage versions [66],
[51], the increased number of register bits here is due
to additional pipeline registers, inserted to achieve more
reliable timing closure on the different NetStage platforms.

When adding the statistics option in configuration b),
the logic/register resources increase by more than 50%
compared to configuration a). This is due to the many per-
formance counters which are then inserted into the system.
Additional area is required for making the counters readable
over the administrative interface. For both configurations,
the critical path is identical. It passes through the highly
parallelized implementation of the IP-layer checksum.

Comparing these synthesis results to related work is im-
peded both by the different feature sets of other approaches,
as well as the scarcity of published results in general. Dini
Group, Inc., [21] reports a resource usage of 3,889 FFs and
6,885 LUTs for their single connection core, with software-
support for connection establishment and ARP / ICMP.
Intilop [20] gives only a number of ‘less than 30,000’
slices for their full-featured hardware TCP core. NetStage
in configuration a), which appears to be the most similar
one, requires 23,859 slices.

TABLE III
SYNTHESIS RESULTS FOR COMPILED HANDLER MODULES

Handler LUT FF BRAM Max.
Clock

[MHz]

SMB 2,371 1,497 4 202
DNS 2,821 1,444 0 204
MSSQL (Slammer) 1,841 1,289 0 225
Telnet 3,910 1,642 0 176
Mail 2,464 1,541 0 204
Web 2,394 1,357 4 214

To collect application-level results, six different Han-
dlers, emulating typical network services or actual vulnera-
bilities, have been developed and compiled using Malacoda
[54]. They include a Web server, a Telnet CLI, a Mail
server, a DNS server, an SMB login monitor and a Slammer
worm [67] detector. Note that these Handlers are not
toy examples, they are full-capability implementations that
have been used in a real data center environment to capture
attack attempts.

Table III shows the synthesis results for these Handlers.
Since they all follow the same microarchitecture template
(see Section IV-B), they are close in size and require just
2 to 4 percent of the device resources each. Comparing the
quality-of-results of the Malacoda-compiled handlers with
the original manual implementations [66] is difficult due to
the alterations (described in detail in [54]) that had to be
made to the Handler microarchitecture. The modifications
consist mainly of more pipeline registers, but also of a
better modularization of functionality in the Malacoda-
generated microarchitecture, as compared to the carefully
hand-optimized designs of our earlier work.

In practice, the TX240T device on the NetFPGA 10G
card supports around eight Malacoda-compiled Handlers,
before place-and-route will run into difficulties. The final
static2 bitstream of the Malacoda-compiled design, includ-
ing the basic infrastructure from configuration b) and the
six Handlers, requires a total of 46,582 LUTs, 46,019 FFs
and 184 BRAMs.

C. Packet Processing Performance

While the performance of the NetStage Core (latency
and throughput) is mostly independent of the application,
the performance of each single Handler does depend on

2The use of dynamic partial reconfiguration in NetStage is described in
[53]

13

its individual complexity. Table IV shows the application-
level throughput at the Handler in Gb/s, running at the
current system target frequency of 156.25 MHz, and using
the message sizes listed in brackets. Factors affecting
performance are a fixed number of clock cycles overhead
per packet for administrative functions (e.g., processing
the internal control header data, preparing notifications),
and a variable number of clock cycles dependent on the
payload size of the packet for content-related activities.
Note that these performance numbers are guaranteed, as all
processing blocks are implemented using dedicated (non-
shared) resources that do not suffer from increased system
load.

TABLE IV
PERFORMANCE FOR EXAMPLE HANDLER OPERATIONS

Handler Operation Gb/s

Web GET (78 Byte IN, 405 Byte OUT) 15.6

Send Mail (800 Byte IN, 14 Byte OUT) 16.9

Telnet uname (6 Byte IN, 30 Byte OUT) 7.0

As Table IV shows, the constant number of overhead
cycles becomes especially costly for very small payloads.
However, only that specific Handler is slowed down, the
NetStage core continues to process connections (including
the TCP/IP stack) to other Handlers at the full speed of up
to 20 Gb/s. Should tiny-payload performance be critical for
certain applications, the limitation could be worked around
by running multiple independent instances of the Handler,
and performing load-balancing between them for higher
aggregate throughput.

Next to throughput, latency is another key characteristic
of a network processor architecture. As before, the lack
of published third-party results hampers an objective com-
parison. Only Dini Group, Inc., reports information on the
latency of its IP block between the arrival of first byte at
the core input and the availability of the first byte on the
application side (time to first byte, TTFB) for a 100 Byte
packet payload, giving a latency of 120ns [68]. NetStage,
which is optimized for a multitude of parallel connections
as opposed to Dini’s single-connection architecture, still
manages to achieve a TTFB of 270ns for the same 100
Byte TCP payload size. Again, the added latency is due to
the store-and-forward design of NetStage.

To put this into perspective, note that on a regular Linux
server system, even with a highly optimized network card
and software stack such as Myricom DBL (Datagram By-
pass Layer), the user-level read latency is about 1.5µs [69].
This demonstrates the significant performance advantage of
hardware-level network processing over purely software-
based solutions.

VI. SUMMARY AND OUTLOOK

The security of computer systems and networks is one
of the key issues for the future growth of the Internet. But

novel attack patterns and huge traffic rates easily overload
purely software-based network security solutions.

The approach proposed here not only offers performance
efficiency exceeding that of many software solutions, but
also a resiliency against malware injection attacks (e.g.,
due to buffer overflows), as no software-programmable
processors exists in the system that could be compromised.

Our reconfigurable NetStage architecture allows rapid
prototyping of FPGA-based applications supporting au-
tonomous Internet communication without any CPU. Net-
Stage encompasses a core implementation of the fundamen-
tal Internet communication protocols, a set of supporting
services, a flexible interface for embedding application-
layer protocols directly into the processing pipeline, and
utilities to support development for the platform. The
entire system has been evaluated as base for Malcobox,
a completely hardware implemented honeypot, under real-
world conditions [54].

A commonly voiced complaint against solutions rely-
ing on reconfigurable computing is the lack of high-level
programming tools, requiring domain experts to also be
experienced hardware designers. We have addressed this
for the honeypot domain by defining the Malacoda language
and implementing the associated compiler, allowing domain
experts to program the system in a familiar notation, yet
exploiting the performance and attack resilience of the
NetStage base.

Further research is promising both on the hardware ar-
chitecture as well as compiler sides. For the former, adding
IPv6 support as well as transparent decryption/encryption
are of particular interest for many applications. For the
latter, the current proof-of-concept nature of the Malacoda
compiler offers much space for improvement, e.g., with
regard to more general variable accesses or better support
for logical and arithmetic functions.

ACKNOWLEDGMENT

This work has been supported by the Hessian Ministry
for Science and the Arts under the LOEWE program and
Xilinx, Inc.

REFERENCES

[1] Symantec, “Internet threat report 2011,” 04 2012.
[2] Pandalabs, “Pandalabs security report,” 2012.
[3] G. Chanda, “The market need for 40 gigabit ethernet (white paper),”

Cisco Systems, 2012. [Online]. Available: http://www.cisco.com
[4] F. Alserhani, M. Akhlaq, I. U. Awan, J. Mellor, A. J. Cullen, and

P. Mirchandani, “Evaluating intrusion detection systems in high
speed networks,” in Proceedings of the 5th. International Conference
on Information Assurance and Security - Vol.02, 2009, pp. 454–459.

[5] M. Roesch, “Snort - lightweight intrusion detection for networks,”
in Proceedings of the 13th USENIX conference on System adminis-
tration, 1999, pp. 229–238.

[6] H. Lange and A. Koch, “An execution model for hardware/software
compilation and its system-level realization,” in Field Programmable
Logic and Applications, 2007. FPL 2007. International Conference
on. IEEE, 2007, pp. 285–292.

[7] T. Katashita, Y. Yamaguchi, A. Maeda, and K. Toda, “Fpga-based
intrusion detection system for 10 gigabit ethernet,” IEICE Trans.
Information and Systems, vol. E90-D, pp. 1923–1931, 2007.

[8] G. S. Jedhe, “A scalable high throughput firewall in fpga,” in 16th In-
ternational Symposium on Field-Programmable Custom Computing
Machines, 2008.

14

[9] M. Blott, “Fpgas head for the cloud,” Xcell journal, vol. 80, pp.
20–23, 2012.

[10] H. Chen, Y. Chen, and D. Summerville, “A survey on the applica-
tion of fpgas for network infrastructure security,” Communications
Surveys Tutorials, IEEE, vol. 13, no. 4, pp. 541–561, Fourth 2011.

[11] R. Braden, “Requirements for Internet Hosts - Communication
Layers,” RFC 1122 (Standard), Internet Engineering Task Force,
Oct. 1989, updated by RFCs 1349, 4379, 5884, 6093, 6298, 6633.
[Online]. Available: http://www.ietf.org/rfc/rfc1122.txt

[12] J. Postel, “Transmission Control Protocol,” RFC 793 (Standard),
Internet Engineering Task Force, Sep. 1981, updated by RFCs
1122, 3168, 6093, 6528. [Online]. Available: http://www.ietf.org/
rfc/rfc793.txt

[13] D. Schuehler and J. Lockwood, “Tcp-splitter: A tcp/ip flow monitor
in reconfigurable hardware,” in High Performance Interconnects,
2002. Proceedings. 10th Symposium on, 2002, pp. 127 – 131.

[14] D. V. Schuehler, “Techniques for processing tcp/ip flow content in
network switches at gigabit line rates,” Ph.D. dissertation, Sever
Institute of Washington University, 2004.

[15] T. H. Vu, N. Q. Tuan, T. N. Thinh, and N. T. H. Nguyen,
“Memory-efficient tcp reassembly using fpga,” in Proceedings of the
Second Symposium on Information and Communication Technology,
ser. SoICT ’11. New York, NY, USA: ACM, 2011, pp. 238–243.
[Online]. Available: http://doi.acm.org/10.1145/2069216.2069261

[16] R. Yuan, Y. Weibing, C. Mingyu, Z. Xiaofang, and F. Jianping,
“Robust tcp reassembly with a hardware-based solution for backbone
traffic,” in Networking, Architecture and Storage (NAS), 2010 IEEE
Fifth International Conference on, july 2010, pp. 439 –447.

[17] A. Dollas, I. Ermis, I. Koidis, I. Zisis, and C. Kachris, “An open
tcp/ip core for reconfigurable logic,” in FCCM ’05: Proceedings of
the 13th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines. IEEE Computer Society, 2005, pp. 297–298.

[18] H. Jang, S.-H. Chung, and D.-H. Yoo, “Design and implementation
of a protocol offload engine for tcp/ip and remote direct memory
access based on hardware/software coprocessing,” Microprocess.
Microsyst., vol. 33, no. 5-6, pp. 333–342, Aug. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.micpro.2009.03.001

[19] C. Leber, B. Geib, and H. Litz, “High frequency trading acceleration
using fpgas,” in Field Programmable Logic and Applications (FPL),
2011 International Conference on, sept. 2011, pp. 317 –322.

[20] Intilop, “10 g bit tcp offload engine (toe) - hardware ip
core - top level product specifications.” [Online]. Available:
http://www.intilop.com/resources/product briefs/10G.pdf

[21] D. Group, “Tcp offload engine ip (toe) product overview,” 2012.
[Online]. Available: http://www.dinigroup.com/new/TOE.php

[22] PLDA, QuickTCP Core - Reference Manual, PLDA, 2012.
[23] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke,

J. Naous, R. Raghuraman, and J. Luo, “Netfpga–an open platform
for gigabit-rate network switching and routing,” in Proc. of the
2007 IEEE International Conference on Microelectronic Systems
Education, ser. MSE ’07. IEEE Computer Society, 2007, pp. 160–
161.

[24] INVEA-TECH a.s., “Netcope product brief,” [accessed 15 Jul
2011]. [Online]. Available: http://www.invea-tech.com

[25] INVEATECH, “Combo product brief.” [Online]. Available: http:
//www.invea-tech.com/products-and-services/combo-fpga-boards

[26] P. Korcek, V. Kosar, M. Zadnik, K. Koranda, and P. Kastovsky,
“Hacking netcope to run on netfpga-10g,” in Proceedings of the 2011
ACM/IEEE Seventh Symposium on Architectures for Networking and
Communications Systems, ser. ANCS ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 217–218. [Online]. Available:
http://dx.doi.org/10.1109/ANCS.2011.40

[27] H. Fallside, “Internet connected fpl,” in FPL 2000, 2000.
[28] I. Gonzalez, F. Gomez-Arribas, and S. Lopez-Buedo, “Hardware-

accelerated ssh on self-reconfigurable systems,” in Field-
Programmable Technology, 2005. Proceedings. 2005 IEEE
International Conference on, dec. 2005, pp. 289 – 290.

[29] R. Sadoun, “An fpga based soft multiprocessor for dns/dnssec
authoritative server,” Microprocessors and Microsystems, vol. 35,
2011.

[30] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and
K. A. Vissers, “A low-latency library in fpga hardware for high-
frequency trading (hft),” in IEEE 20th Annual Symposium on High-
Performance Interconnects (HOTI 2012), 2012, pp. 9–16.

[31] D. Hildenbrand, J. Pitt, and A. Koch, “Gaalop-high performance
parallel computing based on conformal geometric algebra,” Geomet-

ric Algebra Computing, ISBN 978-1-84996-107-3. Springer-Verlag
London Limited, 2010, p. 477, vol. 1, p. 477, 2010.

[32] N. Rotem, “C to verilog.” [Online]. Available: http://www.
c-to-verilog.com/

[33] H. Gadke and A. Koch, “Comrade - a compiler for adaptive
computing systems using a novel fast speculation technique,” in
Proceedings of the International Conference on Field Programmable
Logic and Applications, 2007. FPL 2007, 2007.

[34] J. Huthmann, B. Liebig, J. Oppermann, and A. Koch, “Hardware/-
software co-compilation with the nymble system,” in Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC), 2013 8th
International Workshop on. IEEE, 2013, pp. 1–8.

[35] UG902: Vivado High Level Synthesis User Guide, Xilinx.
[36] Catapult Product Family Datasheet, Calypto Design Systems, Inc,

Available online at: calypto.com. [Online]. Available: calypto.com
[37] Synphony C Compiler Datasheet, Synopsys, Inc, Available online

at: www.synopsys.com. [Online]. Available: www.synopsys.com
[38] W. Meeus, K. V. Beeck, T. Goedem, J. Meel, and D. Stroobandt, “An

overview of today’s high-level synthesis tools,” International Journal
of Design Automation for Embedded Systems (DAES), 2012.

[39] Bluespec, “Bluespec vs. c/c++/systemc modeling - white paper.”
[Online]. Available: http://www.bluespec.com

[40] G. Brebner, “Packets everywhere: The great opportunity for field
programmable technology,” Proc. Intl. Conference on Field Pro-
grammable Technology, pp. 1–10, 2009.

[41] P. Jungck, R. Duncan, and D. Mulcahy, packetC Programming, 2012.
[42] R. Duncan and P. Jungck, “packetc language for high performance

packet processing,” in High Performance Computing and Communi-
cations, 2009. HPCC ’09. 11th IEEE International Conference on,
june 2009, pp. 450 –457.

[43] E. Rubow, R. McGeer, J. Mogul, and A. Vahdat, “Chimpp: a click-
based programming and simulation environment for reconfigurable
networking hardware,” in Proc. 6th ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems, 2010, pp.
36:1–36:10.

[44] M. Lavasani, L. Dennison, and D. Chiou, “Compiling high
throughput network processors,” in Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays,
ser. FPGA ’12. New York, NY, USA: ACM, 2012, pp. 87–96.
[Online]. Available: http://doi.acm.org/10.1145/2145694.2145709

[45] N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to
Intrusion Detection. Addison-Wesley Professional, 2007.

[46] N. Provos, “A virtual honeypot framework,” honeyD.
[47] P. Baecher, M. Koetter, M. Dornseif, and F. Freiling, “The nepenthes

platform: An efficient approach to collect malware,” in In Proceed-
ings of the 9 th International Symposium on Recent Advances in
Intrusion Detection (RAID. Springer, 2006, pp. 165–184.

[48] Dionaea, “Dionaea documentation.” [Online]. Available: http:
//dionaea.carnivore.it

[49] V. Pejovic, I. Kovacevic, S. Bojanic, C. Leita, J. Popovic, and
O. Nieto-Taladriz, “Migrating a honeypot to hardware,” in SECURE-
WARE ’07: Proc. Intl. Conf. on Emerging Security Information,
Systems, and Technologies. IEEE Computer Society, 2007, pp.
151–156.

[50] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: an automated
script generation tool for honeyd,” in Proceedings of the 21st Annual
Computer Security Applications Conference, 2005, pp. 203–214.

[51] S. Mühlbach and A. Koch, “An fpga-based scalable platform for
high-speed malware collection in large ip networks,” in Field-
Programmable Technology (FPT), 2010 International Conference on,
dec. 2010, pp. 474 –478.

[52] S. Mühlbach, M. Brunner, C. Roblee, and A. Koch, “Malcobox: De-
signing a 10 gb/s malware collection honeypot using reconfigurable
technology,” International Conference on Field Programmable Logic
and Applications, vol. 0, pp. 592–595, 2010.

[53] S. Mühlbach and A. Koch, “A dynamically reconfigured network
platform for high-speed malware collection,” in Reconfigurable
Computing and FPGAs (ReConFig), 2010 International Conference
on, dec. 2010, pp. 79 –84.

[54] ——, “Malacoda: towards high-level compilation of network se-
curity applications on reconfigurable hardware,” in Proceedings of
the Symposium on Architecture for Networking and Communications
Systems, ANCS ’12, 2012, pp. 247–258.

[55] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “Netfpga: reusable
router architecture for experimental research,” in Proceedings of the
ACM workshop on Programmable routers for extensible services of
tomorrow, ser. PRESTO ’08. New York, NY, USA: ACM, 2008,

15

pp. 1–7. [Online]. Available: http://doi.acm.org/10.1145/1397718.
1397720

[56] H. Gadke-Lutjens, B. Thielmann, and A. Koch, “A flexible compute
and memory infrastructure for high-level language to hardware
compilation,” in Field Programmable Logic and Applications (FPL),
2010 International Conference on. IEEE, 2010, pp. 475–482.

[57] M. Graphics, Modelsim SE Documentation.
[58] S. Mühlbach and A. Koch, “A novel network platform for secure

and efficient malware collection based on reconfigurable hardware
logic,” in Internet Security (WorldCIS), 2011 World Congress on,
feb. 2011, pp. 9 –14.

[59] Perldoc, “Perl language reference.” [Online]. Available: http:
//perldoc.perl.org/perlsyn.html

[60] A. Koch, “Adaptive computing systems and their design tools,” in
Dynamically Reconfigurable Systems, M. Platzner, J. Teich, and
N. Wehn, Eds. Springer Netherlands, 2010, pp. 117–138. [Online].
Available: http://dx.doi.org/10.1007/978-90-481-3485-4 6

[61] T. Parr, The Definitive Antlr Reference: Building Domain-Specific
Languages, 2007. [Online]. Available: http://www.antlr.org/

[62] Y.-H. Yang and V. Prasanna, “High-performance and compact archi-
tecture for regular expression matching on fpga,” Computers, IEEE
Transactions on, vol. 61, no. 7, pp. 1013 –1025, july 2012.

[63] K. Wang, Y. Qi, Y. Xue, and J. Li, “Reorganized and compact dfa
for efficient regular expression matching,” in Communications (ICC),
2011 IEEE International Conference on, june 2011, pp. 1 –5.

[64] NetFPGA, “Netfpga 10g loopbacktest example design.”
[Online]. Available: https://github.com/NetFPGA/NetFPGA-public/
wiki/NetFPGA-10G-10G-Ethernet-Interface-Loopback-Test

[65] Xilinx ISE 13.3 - Synthesis and Simulation Design Guide, Xilinx.
[66] S. Muehlbach and A. Koch, “Netstage/dpr: A self-adaptable fpga

platform for application-level network security,” in Reconfigurable
Computing: Architectures, Tools and Applications, ser. Lecture Notes
in Computer Science, A. Koch, R. Krishnamurthy, J. McAllister,
R. Woods, and T. El-Ghazawi, Eds. Springer Berlin / Heidelberg,
2011, vol. 6578, pp. 328–339. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-19475-7 35

[67] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “Inside the slammer worm,” Security Privacy, IEEE,
vol. 1, no. 4, pp. 33 – 39, july-aug. 2003.

[68] D. Group, “Toe latencies product brief,” 2012. [On-
line]. Available: http://www.dinigroup.com/product/data/DNTOE/
files/TOE latencies v103.pdf

[69] Myricom, “Myricom dbl downloads.” [Online]. Available: https:
//www.myricom.com/dbl.html

Sascha Mühlbach Sascha Mühlbach received
his diploma in computer science and engi-
neering in 2006 from the Technical Univer-
sity Hamburg-Harburg (Germany). He has been
working for two major internet and telecommu-
nication providers as system engineer and techni-
cal product manager, before he joined the Cen-
ter for Advanced Security Research Darmstadt
(Germany) in 2009 as a doctoral researcher in
the field of hardware-based network security for
high-speed environments. His current research

interests include reconfigurable hardware architectures for network secu-
rity systems and hardware-efficient network intrusion detection algorithms.

Andreas Koch Andreas Koch received his
diploma in informatics and his doctorate in en-
gineering in 1992 and 1997, respectively, both
from the Technical University Braunschweig
(Germany). He then joined the University of
California at Berkeley as a Post-Doctoral Scholar
and returned to Braunschweig in 1999, con-
tinuing his research on hardware architectures
and design tools. After his habilitation in 2005,
Andreas Koch joined the Technische Univer-
sität Darmstadt (Germany) as Computer Science

faculty, heading the newly founded Embedded Systems and Applica-
tions Group. His current research interests include hardware/software co-
compilers, computer architecture and compute-intense embedded systems.
He is a member of ACM, GI, IEEE and a Principal Investigator at the
Center for Advanced Security Research (CASED) in Darmstadt.

