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Abstract—Time synchronization is essential for most Wireless
Sensor Network (WSN) applications and the required precision
increases with the sampling- and communication rates. These
algorithms require a significant amount of computational effort,
especially for the clock drift estimation. In this paper, an improved
Rolling Linear Regression (RLR) is proposed. By performing a
coordinate transformation on each update of the regression table,
the required arithmetic operates on smaller absolute numbers
without loss of accuracy. On an 8 bit microcontroller (MCU),
the improved algorithm is executed at least 22 % faster than
the conventional Linear Regression (LR) algorithm. In addition,
a hardware-accelerated implementation of the improved RLR
is proposed, which further reduces the time spent for LR by
another 66 % on the heterogeneous Hardware-Accelerated Low
Power Mote (HaLoMote). Finally, the influence of the regression
table size and the synchronization period on the accuracy of a
multi-hop time synchronization protocol is investigated. For a 10 s
synchronization period, the synchronization inaccuracy can be
kept below 1 µs even at the fifth hop.

I. INTRODUCTION

Time synchronization is required in WSN applications
mainly for two reasons. First, data sampled from spatially dis-
tributed sensors cannot be properly interpreted without knowl-
edge of the exact sampling time. The acceptable uncertainty
is typically a small percentage of the application’s sampling
period, which may range from several seconds in environmental
monitoring [11] down to several milliseconds in vibration-
based structural health monitoring [9] or even below in acoustic
localization applications [3]. Thus, synchronization protocols
with an accuracy of a few microseconds are required for the
more demanding applications.

A second reason for precise synchronization derives from the
large power consumption of the radio transceiver idly waiting
for incoming messages. If sender and receiver are synchronized,
the radio protocol can define short periods of time in which
transmissions can be initiated and received, thus limiting idle
listening.

The local time at a sensor node a at a certain absolute time
t is represented as a timestamp aptq – fa ¨ pt´ ta,0q, which
is the value of an oscillator driven counter with oscillation
frequency fa and start-up time ta,0. If two nodes a and b
exchanged their timestamps papteq, bpteqq at a time te, then
node b can calculate the timestamp of node a at any subsequent

time ts ą te as

aptsq “ apteq ` fa ¨ pts ´ teq

“ apteq `
fa
fb
pbptsq ´ bpteqq

“ bptsq ` apteq ´ bpteq `
fa ´ fb

fb
pbptsq ´ bpteqq (1)

“ bptsq ` apteq ´ bpteq
loooooomoooooon

offset compensation

`pfa ´ fbq ¨ pts ´ teq
looooooooooomooooooooooon

drift compensation

Even if both nodes run at the same nominal frequency, the
temperature and voltage dependency of the oscillators result
in small relative frequency deviations fa´fb

fb
, typically in the

range of a few part per million (ppm), as shown in Figure
3. Manufacturers specify the maximum frequency uncertainty
over the entire operating temperature range at even higher
values (e.g., ±40 ppm for the TI CC2530). Without explicit drift
compensation, the timestamps used for offset compensation
have to be exchanged at a rate of at least pfa ´ fbq{p∆t ¨ fbq
to keep the synchronization uncertainty below ∆t. Even if
the timestamp exchange could be piggybacked onto regular
application payload, the resulting additional communication
demand is undesirable for small ∆t.

To actually perform the drift compensation, node b has to
estimate its clock drift relative to node a. This can be achieved
by calculating the LR on the last n ě 2 exchanged timestamp
pairs papte,iq, bpte,iqqni“1 — pai, biq

n
i“1 as

fa
fb
“

∆a

∆b
“

řn
i“1pn ¨ ai ´ saqpn ¨ bi ´ sbq

řn
i“1pn ¨ bi ´ sbq2

(2)

with sa –
řn

i“1 ai and sb –
řn

i“1 bi. Instead of performing
the whole regression in Opnq for every newly exchanged
timestamp pair, the RLR [13]

fa
fb
“

∆a

∆b
“

n ¨ sab´ sa ¨ sb

n ¨ sbb´ sb ¨ sb
(3)

can be calculated in Op1q by updating the rolling sums sa, sb,
sbb –

řn
i“1 bibi, and sab –

řn
i“1 aibi.

The dominating arithmetic operations required in Equations
2 and 3 are the multiplications, which are applied to full
timestamps (e.g., ai ¨ bi) or even sum of timestamps (e.g.,
sa ¨ sb). As high precision synchronization typically requires
large timestamps (e.g., 48 bit to represent 9 years with 1 µs



resolution), considerable computational effort has to be spent
even for the RLR algorithm.

Therefore, an improved RLR algorithm and its implementa-
tion on a software processor and a hardware-accelerator are the
main contribution of this work. Furthermore, reasonable syn-
chronization intervals and regression table sizes are investigated
in a multi-hop network topology.

The remainder of this work is structured as follows. Section II
summarizes current research related to clock drift compensation
and efficient LR implementations. Afterwards, the improved
RLR algorithm is proposed in Section III-A and its integration
into a multi-hop radio stack is described in Section III-B.
Various software- and hardware implementation are detailed
in Sections III-C and III-D. Their resource requirements are
compared against each other in Section IV-B after deriving rea-
sonable regression settings from the achievable synchronization
accuracy in Section IV-A. The work is concluded in Section V.

II. RELATED WORK

A large variety of wireless time synchronization protocols
have been proposed in the last decade [8], and only a few
of the described clock drift estimators are not based on LR.
The R4Syn protocol [7] uses a Maximum-Likelihood-Estimator
that introduces the same computational complexity as Equation
3. In contrast, the Kalman filter used in [2] can be executed
10 % faster than a LR with a table size of two. However, for
synchronization periods up to 10 s, the average synchronization
error of the Kalman filter proved to be larger than for the LR
based clock drift estimator.

The Flooding Time Synchronization Procotol (FTSP) [12]
has become one of the most popular reference implementations
for high precision synchronization protocols. It performs the
clock drift compensation with a LR over the last 8 synchroniza-
tion points without justifying the selected regression table size.
At a 30 s synchronization period, FTSP achieves an average
accuracy of 1.5 µs. While no details about the regression
implementation or its resource requirements are given in [12],
publicly available FTSP implementations (e.g., provided as
TinyOS module) are based on the simple LR described in
Equation 2.

Several improvements of the FTSP have been suggested. In
[4], a temperature dependent correction factor is introduced to
respond faster to temperature induced clock drift variations.
The authors report an average accuracy of 1.1 µs after a 20 K
temperature variation at a single node. The Recursive Time
Synchronization Procotol (RTSP) [1] is also based on FTSP,
but it uses automatic Medium Access Control (MAC) times-
tamping, i.e., the timestamps corresponding to the transmission
or reception of the IEEE 802.15.4 start of frame delimiter
(SFD) are captured by the radio transceiver without software
intervention. Furthermore, RTSP dynamically adjusts the syn-
chronization period depending on the current clock drift and
accuracy at each node. The average accuracy was improved to
0.3 µs, although restricting the regression table to two entries to
simplify the computational effort for the clock drift estimation.

The slope calculated by Equation 2 and 3 can be de-
scribed as the ratio between the covariance of a and b and
the variance of b. Thus, efficient formulations of the rolling
(co-)variance directly result in an efficient RLR algorithm.
The invariance of the (co-)variance against translations (i.e.,
varpb`∆bq “ varpbq) has been used to improve the numerical
stability of the algorithms in closed form (i.e., without sliding
windows) [5]. To the best of our knowledge, the application
of a translation to the rolling (co-)variance and its impact on
the computational requirements of the algorithms has not been
described before.

While the LR calculation is the most compute-intense part
of the drift compensation, in context of the entire WSN op-
eration, the time-synchronization procedure requires only little
computational effort, as it is executed only infrequently. How-
ever, LR has also been suggested for use in more demanding
applications, such as RSSI-based node localization [14], or
predictive data reduction [6]. It is thus worthwhile to examine
the acceleration of the LR algorithm on resource-constrained
embedded systems.

III. ROLLING LINEAR REGRESSION WITH COORDINATE
TRANSFORMATION

A. Description of the Coordinate Transformation

As stated in Section I, the computational complexity of the
RLR algorithm (Equation 3) is dominated by the multiplica-
tions that have to be applied to full timestamps and sum of
timestamps. Let pa0, b0q, . . . pap, bpq be the timestamp pairs
exchanged between node a and b at a certain point in time.
The coordinate transformation translates these synchronization
points into

pap,k, bp,kq – pap ´ ak, bp ´ bkq @k ď p (4)

such that the latest exchanged timestamp pair is mapped to
the origin of the coordinate system. This translation does not
effect the slope calculated by the LR, but it limits the size
of the numerical data to be processed to n ¨ ∆c, where n
is the regression table size and ∆c is the maximum number
of oscillator cycles between two timestamp exchanges. The
arithmetic operations for the Rolling Linear Regression with
Coordinate Transformation (RLRCT) can thus be implemented
more efficiently than without applying the coordinate transfor-
mation.

The following formulas are stated only for the a values, but
the same statements hold for the b values. To apply the proposed
transformation to the rolling sums of the RLR with minimal
effort, the regression table buffers the translation steps

dak – ak ´ ak´1 @p´ n ă k ď p (5)

between the last n synchronization points. The absolute coordi-
nates ap,k can be recovered for p´ n ď k ď p by accumulating



the translation steps:

p
ÿ

i“k`1

dai
p5q
“

p
ÿ

i“k`1

ai ´
p

ÿ

i“k`1

ai´1

“ ap `
p´1
ÿ

i“k`1

ai ´
p´1
ÿ

i“k

ai “ ap ´ ak
p4q
“ ap,k (6)

At the next synchronization point (i.e., reception of ap`1),
the coordinate transformation (i.e., translation by dap`1) must
be applied to all coordinates, as

ap`1,k

p6q
“

p`1
ÿ

i“k`1

dai “ dap`1`

p
ÿ

i“k`1

dai
p6q
“ dap`1`ap,k (7)

As the RLR does in Equation 3, the RLRCT also relies on
updating the rolling sum

sap –

p
ÿ

k“p´n`1

ap,k (8)

“ ap,p
loomoon

0

´ap,p´n `

p´1
ÿ

k“p´1´n`1

ap,k

p7q
“ ´ap,p´n `

p´1
ÿ

k“p´1´n`1

dap ` ap´1,k

p8q
“ n ¨ dap ´ ap,p´n ` sap´1 (9)

Instead of explicitly calculating ap,p´n, another rolling sum is

Algorithm 1: Update procedure for Rolling Linear Regres-
sion with Coordinate Transformation

Input: Received synchronization point pa, bq
Input: Previously received synchronization point pâ, b̂q
Input: Accumulators sda, sdb, sa, sb, num, den
Input: Regression table T
Output: Slope represented as fraction of num and den

1 da – a´ â;
2 db – b´ b̂;

3 â – a;
4 b̂ – b;
5 pd̂a, d̂bq Ð T Ð pda, dbq ; // en/dequeue

6 sda `“ da´ d̂a ; // Equ. 10

7 sdb `“ db´ d̂b;

8 sa `“ n ¨ da´ sda ; // Equ. 9
9 sb `“ n ¨ db´ sdb;

10 t – pn´ 1q ¨ sdb;
11 num `“ sdb ¨ sa` sda ¨ sb´ t ¨ sda ; // Equ. 12
12 den `“ sdb ¨ sb ¨ 2 ´ t ¨ sdb ; // Equ. 13

introduced as

sdap – ap,p´n

p6q
“

p
ÿ

i“p´n`1

dai

“ dap ´ dap´n ` sdap´1 (10)

The sum of coordinate products

sabp –

p
ÿ

k“p´n`1

ap,k ¨ bp,k

“ ap,p ¨ bp,p
loooomoooon

0

´ap,p´n ¨ bp,p´n `

p´1
ÿ

k“p´n

ap,k ¨ bp,k

p7,10q
“ ´ sdap ¨ sdbp `

p´1
ÿ

k“p´n

pdap ` ap´1,kqpdbp ` bp´1,kq

p8q
“ sabp´1 ` dap ¨ sbp´1 ` dbp ¨ sap´1

` n ¨ dap ¨ dbp ´ sdap ¨ sdbp (11)

is not actually handled as rolling sum in RLRCT. Instead, the
whole numerator of Equation 3 is accumulated as

nump – n ¨ sabp ´ sap ¨ sbp

p9q
“ n ¨ sabp ´ pn ¨ dap ´ sdap ` sap´1q

¨ pn ¨ dbp ´ sdbp ` sbp´1q

p11q
“ n ¨ sabp´1 ´ sap´1 ¨ sbp´1 ´ pn` 1q ¨ sdap ¨ sdbp

` sdappn ¨ dbp ` sbp´1q ` sdbppn ¨ dap ` sap´1q

p9q
“ nump´1 ´ pn` 1q ¨ sdap ¨ sdbp

` sdappsdbp ` sbpq ` sdbppsdap ` sapq

“ nump´1 ´ pn´ 1q ¨ sdap ¨ sdbp

` sdap ¨ sbp ` sdbp ¨ sap (12)

Algorithm 2: Update procedure for Rolling Linear Regres-
sion (without Coordinate Transformation)
Input: Received synchronization point pa, bq
Input: Accumulators sa, sb, sab, sbb
Input: Regression table T
Output: Slope represented as fraction of num and den

1 ab – a ¨ b;
2 bb – b ¨ b;

3 pâ, b̂, âb, b̂bq Ð T Ð pa, b, ab, bbq ; // en/dequeue

4 sa `“ a´ â;
5 sb `“ b´ b̂;
6 sab `“ ab´ âb;
7 sbb `“ bb´ b̂b;

8 num – n ¨ sab´ sa ¨ sb ; // Equ. 3
9 den – n ¨ sbb´ sb ¨ sb



The denominator of Equation 3 is accumulated accordingly:

denp “ denp´1 ´ pn´ 1q ¨ sdb2
p ` 2 ¨ sdbp ¨ sbp (13)

Algorithm 1 summarizes the RLRCT update procedure. It
consists of 15 additions and nine multiplications (four of them
with a small constant). As shown in Algorithm 2, it is assumed
that the RLR buffers the additional values

pabk, bbkq
p
k“p´n`1 – pak ¨ bk, bk ¨ bkq

p
k“p´n`1

in its regression table to avoid the recomputation of abp´n

and bbp´n required in line 6 and 7. The RLR requires fewer
operations (10 additions, six multiplications) than the RLRCT,
but under certain circumstances, the latter can be implemented
more efficiently, as will be shown in Section IV-B. Furthermore,
the RLRCT requires less memory to represent the regression
table.

B. Integration into a Wireless Synchronization Protocol

The heterogeneous HaLoMote [10] was chosen as the target
platform for the RLRCT-based synchronization protocol. It
incorporates an 8 bit MCU (TI CC2531 Radio System-On-Chip)
that provides a 40 bit timer driven by a 32 MHz oscillator and
supports automatic MAC timestamping.

As in the FTSP, a single node is selected as time reference,
i.e., its local time represents the global time all other nodes
try to synchronize with. As this paper focuses on the LR-based
drift compensation, dynamic reselection of the reference node
is not considered here further.

We propose to insert the synchronization layer between the
MAC and the network layer. While violating the compliance
with standardized protocols like Zigbee, this design ensures that
all nodes get synchronized, even if they are just routing packets.
The synchronization layer adds up to 6 B to the radio packet.
The first Byte indicates whether or not the sender has already
been synchronized to the reference, i.e., it is the reference or
it received a sufficient number of timestamps to perform the
offset and drift compensation between its local clock and the
reference clock. If the sender is synchronized, a 5 B timestamp
aptTXq is appended to represent the senders assumption of the
global time of the SFD transmission.

To calculate this timestamp, the sender first inserts the PHY
and the MAC header and the first byte of the synchronization
header into the radio buffer and initiates the transmission. After
the SFD was transmitted at time tTX, the sender calculates

Algorithm 3: Conversion from local to global time
Input: Local timestamp b
Input: Last exchanged synchronization point pâ, b̂q
Input: Clock drift represented as num and den
Output: Global timestamp a corresponding to b

1 t – b´ b̂;
2 a – â` t` pt ¨ pnum´ denqq{den ; // Equ. 1

aptTXq from the captured local time bptTXq. At the refer-
ence node, the local time is used as global time, while all
other nodes apply Algorithm 3 to the local timestamp. This
algorithm realizes Equation 1 based on the outcome of the
clock drift compensation described in the previous section.
More specifically, the ratio between num and den equals the
ratio between the oscillator frequencies of the reference node
and the local node, i.e., num{den “ fa{fb. While Algorithm
3 could be simplified (i.e., a – â ` pt ¨ numq{den), the
proposed formulation avoids large intermediate results by not
multiplying the entire local timestamp difference with the large
numerator. To avoid a radio buffer underrun, Algorithm 3 must
be finished before the previous header data was transmitted (i.e.,
8 B{250 kbit{s “ 256 µs).

Upon reception of the SFD of a radio packet at time tRX,
the receiver timer captures the local timestamp bptRXq. The
difference between tRX and tTX results from the propagation
delay between sender and receiver (i.e., 3.3 ns/m) and should
not be significant for node distances of a few meters. In
practice, however, tRX ´ tTX “ p3.51˘ 0.04q µs was measured
for 210 transmissions by observing the automatically gener-
atable SFD sampling events at five different receiver nodes
located less than 10 cm away from the transmitter. A similar
systemic offset was observed by [1]. It is compensated for
by subtracting ∆SFD – 3.51 µs ¨ 32 MHz “ 112 from the local
timestamp before updating the LR parameters with Algorithm
1.

In this manner, the synchronization information is flooded
over multiple hops into the network. To perform a certain action
(e.g., sensor sampling) simultaneously, all synchronized nodes
must agree on a certain global time, convert this time into their
local time by applying Algorithm 4, and configure their timers
to generate an interrupt at the calculated local time.

C. MCU Implementation

To analyze the benefits of the proposed RLRCT, Algorithm
1 and 2 as well as Equation 2, and an optimized version for
n “ 2 was implemented on the CC2531 MCU. Furthermore,
Algorithm 3 and 4 were implemented as required by the
synchronization layer.

The 8051-ISA compliant compilers (e.g., SDCC, IAR or
Keil) support up to 64 bit integer arithmetic operations. How-
ever, this is not sufficient for the LR implementation with 40 bit
timestamps. Furthermore, the default operator granularities of
8 bit, 16 bit, 32 bit and 64 bit are not efficient, as the main ben-

Algorithm 4: Conversion from global to local time
Input: Global timestamp a
Input: Last exchanged synchronization point pâ, b̂q
Input: Clock drift represented as num and den
Output: Local timestamp b corresponding to a

1 t – a´ â;
2 b – b̂` t´ pt ¨ pnum´ denqq{num ; // Equ. 1



efits of the RLRCT algorithm arise from optimized narrowed
sizes.

Thus, the required operators where implemented in 8051
assembler with up to 96 bit wide representations at a granularity
of 8 bit. All intermediate variables and accumulators are located
in the directly addressable memory and the assembler routines
operate on that memory without accessing the stack. The
implementation is thus optimized for execution speed at the
expense of a large code memory footprint.

D. FPGA Implementation

To further speed-up the LR and the timestamp conversion, a
dedicated hardware-accelerator was implemented on the target
platform’s Field Programmable Gate Array (FPGA). As de-
scribed in [10], the HaLoMote supports hardware (HW) kernels
that can be controlled by the MCU, i.e., providing inputs,
starting and observing the execution and reading back the
results. On the FPGA, arithmetic operations of arbitrary width
can be implemented with a granularity of 1 bit and multiple
operations can be executed in parallel. Thus, the RLRCT is
well suited for hardware-acceleration.

Three HW kernels were implemented for Algorithm 1, 3 and
4. As the synchronization protocol does not require parallel
execution of these, they share some control and operator logic
to reduce the required FPGA resources.

Three different architectures were implemented to trade off
execution speed against resource requirements. All architectures
buffer the regression table in Block RAM (BRAM) and perform
the slope division (i.e., line 2 of Algorithm 3 and 4) as sequen-
tial shift-subtract steps, while the additions and multiplications
are executed as single-cycle combinatorial logic.

In the Full Parallel architecture, every arithmetic operation
of Algorithm 1 is implemented with dedicated logic. The data
dependencies result in a seven cycle datapath for the LR. In the
Single MAC architecture, a single multiply-accumulate operator
is implemented and the registers buffering the accumulators
and intermediate results are sequentially multiplexed to this
operator, resulting in a 21 cycle computation for the LR.

Finally, the µArchitecture shown in Figure 1 buffers all
accumulators next to the regression table in a dual-port BRAM.
To efficiently utilize the BRAM, the larger accumulators (i.e.,

T0H T0L T1H T1L T2H T2L

A B

ADD
SUB

MUL

SUBABS
ADDNEG

SUBNEG

out

Dual
Port
RAM

p++

in T1 ąą 1 mask

OR

RR

Fig. 1. HW Kernel (µArchitecture) for RLRCT

num and den) occupy two memory locations. Three registers
(T0 to T2) can be fed with data from the BRAM, inputs of the
HW kernels (i.e., timestamps), results from previous operations,
or some shifted values required for the slope division. Two
out of these registers are selected as inputs (A and B) for the
arithmetic unit, which can calculate an addition, a subtraction,
a multiplication, an absolute difference, or a conditional opera-
tion. The latter is either an addition or a subtraction depending
on a flag in one of the input registers. To simplify the control
logic of the µArchitecture, the pipeline delay resulting from
BRAM and register access is handled by the instructions coded
in dedicated logic. Furthermore, predication logic is used to
implement the sequential divisions without branches.

IV. EVALUATION

In this section the synchronization accuracy of the proto-
col described in Section III-B is analyzed for different con-
figurations of the synchronization period and the regression
table size. These results are not effected by the proposed
RLRCT implementation, but by the actually utilized WSN hard-
ware (e.g., oscillator stability, timestamp accuracy and radio-
triggered timestamp capturing) as well as the network topology
and other environmental conditions (e.g., temperature stability).
After restricting the design space to reasonable configurations,
the resource requirements of the various LR implementations
are compared against each other.

A. Achievable synchronization accuracy

The network setup shown in Figure 2 was used to evaluate
the achievable synchronization accuracy. Five receiver nodes
are located in the broadcast range of a gateway node. The latter
dumps measurement results to the PC over a serial connection
and acts as the time reference in the synchronization protocol.
All nodes are not more than 1 m apart from each other, so
the propagation delay is smaller than 3 ns and can be ignored.
Note that the synchronized nodes are required to be within
the broadcast range of the gateway only to simplify the test
of the synchronization accuracy. The synchronization protocol
itself relies on exchanging timestamps along the linear multi-
hop chain and does not require any broadcasts.

Once per second, the gateway initiates a new measurement
consisting of two phases. The test phase is started by a broad-
cast from the gateway to all other nodes (message 1 in Figure 2).
The gateway captures the broadcast transmission time aptTXq.
Each receiving node i captures its local broadcast reception

Gateway PC

N3N2N1 N4 N5

17

2 123 134 145 15

6 16

8 9 10 11

Fig. 2. Network setup for timestamp capturing: test messages (1-6) and update
messages (7-16)



time biptRXq, derives the local broadcast transmission time as
biptTXq « biptRXq ´∆SFD, and calculates the corresponding
assumed global time aiptTXq using offset and drift compensa-
tion. These timestamps are reported back to the gateway in a
linear chain starting at node 5 (messages 2 to 6). The actual
synchronization accuracy Ai and the actual clock drift Di of
node i relative to the reference are derived from the received
timestamps as

AiptTXq – aiptTXq ´ aptTXq

DiptTXq –
aptTXq ´ aptTX ´ 1 sq

biptTXq ´ biptTX ´ 1 sq
´ 1

where tTX ´ 1 s denotes the broadcast event of the previous
test phase.

Immediately after the test phase, the update phase is started
by the gateway transmitting a unicast request (7) to node 1,
which is forwarded in a linear chain (message 8 to 11) to
node 5. Each node captures its local request reception time
and the subsequent local request transmission time and reports
them back to the gateway (message 12 to 16). The actual syn-
chronization update (i.e., insertion of the exchanged timestamps
into the regression table and update of the slope parameters) is
only performed in every tenth update phase. Thus, the effective
synchronization period of the whole network is 10 s. However,
the timestamps captured during the update phase allow for an
offline simulation of the whole synchronization protocol. This
simplifies the analysis of the impact of the regression table size
and the synchronization period on the synchronization accuracy.
All data presented below for a regression table size other than
two, or a synchronization period other than 10 s, result from
these simulations.

Figure 3 shows the clock drift of the receiver nodes relative
to the reference clock. For the first 55 min, all nodes were kept
at a fixed temperature of about 21 ˝C. Under this condition, the
standard deviation of the drift amounts to 0.1 ppm at all nodes.
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Afterwards, node 3 was cooled down to 7 ˝C resulting in a drift
drop of about 3 ppm. In the same time, node 4 was heated up
to 52 ˝C before cooling down to 40 ˝C again. This resulted in
a drift step of 4.5 ppm and 2.5 ppm respectively. The insights
gained from this measurement are twofold. First, without clock
drift compensation, node 1 would have to exchange timestamps
with the reference node at least every 200 ms to keep the
synchronization inaccuracy below 1 µs. Thus, high precision
time synchronization has to provide drift compensation to keep
the communication overhead manageable. Second, even if the
sensor nodes in typical WSN applications will not be exposed
to sudden large temperature changes, a significant variation of
the clock drift can be expected if the subset of nodes that are
exposed to full sunlight is changing.

The influence of the node’s supply voltage on the clock drift
was also investigated as the supply of battery-powered sensor
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nodes can not be assumed to be stable. However, due to the
voltage converters inside the MCU, the reduction of the supply
voltage from 3 V to 2 V did not significantly influence the clock
drift at the corresponding node.

Figure 4 shows the actual clock drift of node 1 relative
to the reference (captured at 1 Hz as described above) and
its assumption about its clock drift derived by LR with a
synchronization period ranging from 10 s to 100 s and a fixed
regression table size of two. As expected, the estimation be-
comes more inaccurate with longer synchronization periods.
Figure 5 shows how this inaccuracy in drift estimation translates
into synchronization inaccuracy. The maximum absolute clock
deviations for the different synchronization periods are 0.7 µs,
2.4 µs, 5.7 µs and 8.3 µs respectively. In general, the appropri-
ate synchronization period depends on the concrete accuracy
demands of the application.
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Fig. 7. Impact of the regression table size on the synchronization accuracy at
node 1 (synchronization period = 10 s)
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Fig. 8. Impact of the regression table size on estimated clock drift at node 3
(synchronization period = 10 s)

Figure 6 shows the actual clock drift of node 1 relative to
the reference and its assumption about its clock drift derived by
LR with a regression table size ranging from 2 to 8 elements
at a fixed synchronization period of 10 s. Larger regression
tables have an effect similar to the smoothing of the drift
estimation occurring for larger synchronization periods. Indeed,
larger regression tables actually do not improve the average
synchronization accuracy, as shown in Figure 7. However, even
for a table size of 8, the maximum absolute clock deviation does
not exceed 1 µs.

The real benefit of larger regression tables becomes obvious
only if the actual clock drift is more spiky, e.g., due to tempo-
rary temperature fluctuations, as shown in Figure 8. While the
average clock deviation is not improved by the larger regression
tables as shown in Figure 9, the maximum absolute error is
reduced from 2.8 µs to 1.7 µs when choosing a table size of 8
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Fig. 9. Impact of the regression table size on the synchronization accuracy at
node 3 (synchronization period = 10 s)
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instead of 2.
Finally, the synchronization accuracy over multiple hops is

shown in Figure 10 (left). Even at the fifth hop, the maximum
absolute clock deviation can be kept below 1 µs. However,
the average deviation is increased by about 30 ns per hop.
This might be caused by the fixed compensation time for the
SFD delay as described in Section III-B. The accuracy of
this compensation is limited by the timestamp resolution of
1{32 MHz “ 31 ns. When simulating the synchronization with
∆SFD “ 111.5, the mean synchronization error is kept stable
over multiple hops as shown in Figure 10 (right).

B. Resources required for Linear Regression

As shown in Figure 5, the synchronization period should not
exceed 10 s to achieve a synchronization accuracy of 1 µs. At
a timestamp resolution of 1{32 MHz, the differences between
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Fig. 11. Overall execution time for the LR implementations
(LR = Equation 2, RLR = Algorithm 2, RLRCT = Algorithm 1,
HW = Accelerated µArchitecture, OPT = Optimized for n “ 2)

successive timestamps inserted into the RLRCT algorithm (i.e.,
da and db in Algorithm 1) can thus be represented with 29 bit.
Furthermore, regression tables with more than 8 entries do not
improve the synchronization accuracy, as shown in the Figures
7 and 9.

The arithmetic operators required for the various LR imple-
mentations described in Section III-C and III-D were optimized
based on these assumptions and compiled with the SDCC
compiler (Version 3.4). The resulting execution times were
measured with an oscilloscope and are shown in Figure 11.
All Op1q implementations outperform the Opnq implementation
even for n “ 2. Furthermore, the proposed RLRCT is 22 %
faster than the RLR implementation. For n ą 2, the hardware
accelerator outperforms the best software implementation by
66 %. Note that 95 % of the time required by the hardware
accelerator is spent transferring the 80 bit timestamp pair from
the MCU to the FPGA. Future versions of the HaLoMote
will improve the inter-processor bandwidth. Nevertheless, if
a regression table of size 2 satisfies the application accuracy
requirements, the optimized software implementation (referred
to as OPT in Figures 11 to 13) actually computes the fastest
regression.

All software implementations of the time conversion require
118 µs for the offset and drift compensation. The hardware
accelerator requires only 72 µs, including the inter-processor
communication. As the time conversion has to be performed
more frequently than the LR (e.g., once per sampling cycle),
the sensor node benefits from the hardware accelerator even for
the smallest regression tables.

Beyond execution time, memory is another limited resource
on embedded systems. As shown in Figure 12, the proposed
RLRCT clearly outperforms the RLR in terms of required Ran-
dom Access Memory (RAM), as its regression table requires
only 2n ¨ 29 bit, while the RLR buffers 2n ¨ p40` 80q bit.
For regression tables larger than 12 entries, the RLRCT also
requires less RAM than the LR implementation and is thus
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(LR = Equation 2, RLR = Algorithm 2, RLRCT = Algorithm 1,
HW = Accelerated µArchitecture, OPT = Optimized for n “ 2)
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favourable in memory constrained systems.
As the assembler-based implementation of the arithmetic

operations are optimized for execution speed, the instruction
memory required by the different LR algorithms is relatively
large. As shown in Figure 13, RLRCT requires 15 % less Read
Only Memory (ROM) for storing instructions than RLR, al-
though the RLRCT has to perform more arithmetic operations.

Finally, the three different hardware-accelerator architec-
tures were synthesized for the Microsemi Igloo M1AGL1000
FPGA with Synplify Pro (ME I-2014.03M-SP1). The resulting
resource requirements are summarized in Table I. The Full
Parallel architecture does not fit on the target device, so its
usage is restricted to larger FPGAs. Both other architectures
occupy slightly more than half of the FPGA logic resources,
mainly due to the usage of combinatorial multipliers.

V. CONCLUSION AND FUTURE WORK

In this work, an improved Rolling Linear Regression (RLR)
algorithm was proposed to reduce the resources required for
time drift compensation, which is a key part of state-of-the-
art high precision wireless synchronization protocols such as
FTSP. By applying a coordinate transformation, the RLRCT
algorithm operates on smaller absolute numbers and can thus
be executed faster. For the specific requirements derived from
a multi-hop synchronization protocol with less than 1 µs clock
deviation at the fifth hop, RLRCT is 22 % faster than RLR

TABLE I
IMPACT OF HARDWARE ACCELERATOR ARCHITECTURE ON AREA AND

PERFORMANCE ON AN M1AGL1000 FPGA

Implementation Full Parallel Single MAC µArchitecture

Core Cells [%] 141 63 50
BRAM [%] 12 6 15
fmax [MHz] 8.7 7.1 8.5
Regression [cycles (µs)] 7 (0.8) 21 (3.0) 29 (3.4)
Conversion [cycles (µs)] 27 (3.1) 29 (4.1) 32 (3.8)

while requiring less RAM and ROM. Compared to the LR
implementation with linear runtime-complexity as used by
publicly available FTSP implementations, RLRCT is executed
83 % faster. Furthermore, an RLRCT hardware accelerator was
proposed for the heterogeneous HaLoMote, which reduces the
computation time by another 66 %.

Some improvements are envisioned for the proposed system.
First, the SFD delay compensation should be performed with
subtick precision by some kind of pulse-width modulation (e.g.,
alternating ∆SFD and ∆SFD´1 at an appropriate ratio). Second,
the hardware accelerator could be improved to spend less time
for inter-processor communication. The time thus gained could
be used to implement sequential multiplications, which would
reduce the required FPGA resources significantly. Furthermore,
the benefits of the proposed implementation for other LR-based
WSN applications such as RSSI-based localization should be
investigated.
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