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Abstract—
Many high-level synthesis (HLS) tools aim at the hardware

translation of input programs with relatively short loop bodies,
often with a very regular control flow. However, codes from
domains such as control engineering and numerical simulation
often have a considerably different structure with large loop
bodies holding (tens of) thousands of individual operations.
Compilation of such codes not only requires the sharing of
hardware operators, but also the efficient storage and forwarding
of many intermediate results. Both academic as well as industrial
synthesis tools have great difficulty coping with such input
programs.

We present Nymble-RS, a C-to-hardware compiler optimized
to translate such complex programs. When evaluated on codes for
the domain of convex solvers, the generated accelerators reach
clock frequencies of over 200 MHz (exceeding those achieved
by a state-of-the-art industrial tool by more than 3x), and offer
speed-ups of up to 5x over software executing on the 800 MHz
Cortex-A9 CPUs used in typical reconfigurable system-on-chips.

I. INTRODUCTION

Many HLS tools aim at the translation of relatively short
input programs to hardware. Often, these algorithms (e.g.,
from signal and image processing applications) also have a
very regular control flow, consisting of one more small-bodied
loop nests that are often amenable for optimizations such as
unrolling and pipelining.

However, codes from domains such as control engineering
and numerical simulation often have a considerably different
structure with large loop bodies holding (tens of) thousands
of individual operations (often floating point). Compilation
of such codes not only requires the sharing of hardware
operators, but also the efficient storage and forwarding of
many intermediate results. Both academic as well as industrial
synthesis tools have great difficulty coping with such input
programs.

We have thus concentrated our efforts on creating a HLS
system capable of translating this type of irregular “C”-code
into accelerators executing on FPGAs. Using LLVM as the
front- and mid-end (providing target-independent optimiza-
tions), and building on our HLS back-end Nymble [1], we have
created Nymble-RS, a HLS engine aggressively exploiting
resource sharing to fit the required computations on FPGAs.
As a target architecture, we aim for a platform containing one
or more software-programmable processors tightly coupled to
reconfigurable logic. Such chips are readily available from
multiple manufacturers (e.g., Xilinx Zynq, Altera SoCs etc.).

We evaluate our approach by compiling solver codes for
complex optimization problems into hardware. While these
“C” programs are light in control flow, they contain many
thousands of double-precision floating point operations. This
structure is unsuitable for a direct compilation to the purely
spatially distributed model of computation (one hardware oper-
ator per operation) commonly used on FPGAs, as the resulting
hardware would have excessive chip area requirements. Also,
the solver codes employ pointer-based data structures that
some HLS systems also cannot deal with.

We compare our approach with other academic and indus-
trial “C”-based HLS systems as well as with the software
performance achieved on high-performance embedded hard-
core processors (e.g., 800 MHz ARM Cortex-A9 including a
hardwired double-precision floating-point unit (FPU)).

The key contributions presented in this paper are 1) the
use of distributed and partitioned microcode to control mul-
tiplexers for resource sharing, 2) a spilling mechanism to
reduce register usage in hardware data paths, and 3) a case
study using the developed tool to accelerate solvers for convex
optimizations targeting the Xilinx Zynq platform.

After looking at related work (Section II), we give a brief
overview of convex optimization to show the nature of the
computations managed by our tool (Section III). Section IV
presents the required techniques we had to employ to create
area-optimized hardware implementations for the complex,
highly irregular solver codes. Among the technologies dis-
cussed here are the synthesis of controllers using distributed
hierarchical micro-code, data transport optimizations trading-
off between shift registers, local memories, allocation of
dedicated registers, as well as an extended schedule-dependent
tree-height reduction. The impact of the different techniques
is evaluated in Section V and summarized in Section VI with
a brief look towards future work.

II. RELATED WORK

A. High-Level Synthesis

An increasing number of HLS tools, originating both from
industry and academia, is capable of translating (often differ-
ing) subsets of C into synthesizable RTL HDL code.

Commercial tools include Mentor Catapult[2], Xilinx Vi-
vado HLS [3] and Synopsis’ Synphony C Compiler [4].
All of these tools have in common that they provide only
hardware synthesis, they do not consider hardware/software-
co-execution and interfacing in a heterogeneous system such978-1-5090-5602-6/16/$31.00 c©2016 European Union



as an ACS. Hardware/software co-synthesis is supported in
academic tools, e.g., in Nymble [1], LegUp [5], ROCCC [6],
COMRADE [7], and Garp CC [8].

Garp CC [8] offers automatic partitioning to execute a
C program on a MIPS processor augmented with a coarse-
grained reconfigurable array (CGRA). It is based on the SUIF
compiler infrastructure [9] and uses a modified GCC tool
chain. In addition to high level synthesis, it also provides
hardware/software partitioning without user intervention.

COMRADE, also based on SUIF, focuses on the compila-
tion of control-intensive C code into dynamically scheduled
accelerators [7]. The proposed compute model includes very
finely granular hardware/software partitioning, with the pro-
posed architecture allowing master-mode accesses to memory
shared between the reconfigurable compute unit (RCU) and
the software-programmable processor (SPP).

Nymble [1] extends many concepts of COMRADE while
continuing to offer finely granular hardware/software parti-
tioning. It uses the LLVM compiler framework as front-
end and for target-independent optimization. The generated
hardware kernels and software parts execute together in a
shared memory architecture in the same address space (al-
lowing transparent passing of pointers between software and
hardware). The MARC II configurable memory system [10]
is used to perform multiple concurrent read/write accesses. In
contrast to COMRADE, Nymble creates pipelined statically
scheduled accelerators, moving the focus away from control-
intensive applications to data-driven computation.

The C to hardware compilers ROCCC and LegUp are also
based on the LLVM compiler framework. While ROCCC lacks
support for many commonly used C constructs, e.g., pointers
and variable-distance shifts, LegUp supports a large subset of
C-code. ROCCC can be seen as a specialized tool, providing
good results on a smaller subset, while LegUp does well even
in the general case.

A limitation that LegUp shares with many other compilers
is the partitioning granularity: Only complete functions are
translated into hardware. Nymble is more selective: It can
translate just part of function to hardware, and even exclude
sections within that area, moving them back to software,
as required. For LegUp, the partitioned local address spaces
between CPU and FPGA also complicate the handling of
pointer-based data structures and often require copying and
relocation.

B. Resource Sharing

Ideally, reconfigurable computing is performed in a fully
spatial model, associating an individual hardware operator
with each operation in the algorithm (input program). This
approach allows hardware-accelerators to often exceed the per-
formance of software-programmable processors, which reuse
(time-multiplex) the same limited number of compute ele-
ments for all operations.

However, the fully spatial approach quickly becomes in-
feasible on current-generation reconfigurable devices when
floating point operations are considered. On most FPGAs,

appropriate hardware operators have to be composed from
many low-level primitives, requiring significantly more chip
area than integer operators. In practice, large numbers of such
operators cannot be implemented with high throughput and
low latency.

Thus, even for reconfigurable computing, resource shar-
ing must be considered for costly floating point operators.
However, a number of aspects closely tied to the underlying
FPGA architecture have to be considered: First, the fully
spatial approach allows the use of operators specialized for
each operation (e.g., in terms of bit widths, number formats,
or constant inputs). When attempting to reuse operators, this
specialization can often only be performed in a more lim-
ited fashion and needs special care. One technique extracts
recurring operation patterns from the original DFG to execute
on the same operator, and accepts small variations in bit
widths for a greater degree of reuse [11], [12]. However, the
shared operator will then have the maximum of the bit widths
required by the operations, and may end up being slower than
specialized operators.

Second, reusing operators requires wide multiplexers (64b
for double-precision data) on their inputs to connect them to
the different data sources. Such multiplexers require significant
area and delay, depending not only on the FPGA architecture
but also the interface of the shared operator itself [13].

Third, the multiplexers must be controlled over time, estab-
lishing the connections required by the execution schedule.
In the fully spatial paradigm, a commonly used controller
architecture uses a Petri net-like N -hot approach, where the
activation state of each operator is controlled by an associated
flip-flop, and multiple of these flip-flops may be active in
parallel (easily supporting pipelined execution).

However, when attempting to do aggressive resource shar-
ing, this established approach can be inferior to the use of
microcoded controllers. Microcode has often been used to
drive hardwired compute elements, but mainly in HLS for
ASICs and ASIPs [14]. In Section IV-B, we present a refined
scheme better suited for mapping to FPGAs.

III. CONVEX OPTIMIZATION AS BENCHMARK DOMAIN

This section gives a brief overview of convex optimiza-
tion, which is a key component of many advanced control
systems (e.g., trajectory planning for collision avoidance in
autonomous cars) and has been a major motivation for this
work. Convex optimization is a subclass of mathematical
optimization, which in general. may be defined as follows:
Given an objective function f : Rn → R, m constraint
functions gi : Rn → R, i = 1, ...,m and m constraints
b1, ...., bm ∈ R:

minimize f(x)
subject to gi(x) ≤ bi, i = 1, ...,m

The vector x is also called the optimization variable in this
case. A function h : Rn → R is called a convex function if it
satisfies the inequality f(αx + βy) ≤ αf(x) + βf(y) for all
x, y ∈ Rn and all α,β ∈ R+

0 with α+ β = 1 [15].



Many optimization problems can be transformed to a convex
optimization problem. E.g., maximizing a concave function
f : Rn → R is equivalent to the convex minimization of −f .

The convexity property makes such problems easier to
solve than the general case [15], and allows the creation of
efficient automatic solvers [16], [17]. CVXGEN, which targets
problems that can be modeled as convex quadratic programs,
is one such tool which has shown superior performance over
competing approaches [18].

The generated C code for the solver consists of many float-
ing point operations, is almost branch-free, and does not make
any library calls. It is thus suitable for stand-alone execution
in embedded systems lacking complete library support. The
solver code relies on three key data structures: The values of
the input parameters, the optimization variables, and a work
area for temporary intermediate values. They are realized as
C structures that contain several arrays of double precision
values. In almost all cases, data is addressed directly, with
only very few pointers being used. These properties also make
the code attractive for compilation to reconfigurable hardware,
and its use as highly scalable compute-intensive benchmarks
for the evaluation of HLS tools.

IV. AREA-EFFICIENT HLS FOR
COMPLEX IRREGULAR C-CODE

Branch-free code is very interesting for hardware synthesis,
as the degree of parallelism is now only limited by data
dependencies and available resources (no control dependencies
exist). However, the relatively large chip area required for
individual floating point operators, combined with the large
number of operations in typical auto-generated solvers, require
sharing of operators among multiple operations. This section
presents some of the techniques Nymble-RS uses to generate
resource-shared hardware implementations of the solvers. As
will be seen, fitting the long irregular (not dominated by
small-bodied loops) solver computations at all into mid-size
FPGAs (40-120K LUTs) requires significant efforts for the
tools. Nymble-RS uses static scheduling, but is able to handle
variable-latency operations such as cached memory accesses
by stalling/restarting the entire datapath. We refer to the
statically determined execution order as stages, which may
differ from the actual clock cycles due to cache misses and
other main memory latencies.

Sharing a hardware operator between N different oper-
ations in the Control Data Flow Graph (CDFG) usually
results in the creation of a N -to-1 multiplexer for each input.
Two aspects have to be considered for this approach: First,
especially for integer arithmetic operators, the size of the
multiplexer would often exceed the size of the actual operator.
Most hardware compilers thus multiplex only operators when
we actually save area (e.g., floating point operations, cache
ports to main memory etc.). Second, increasing degrees of
sharing lead to denser interconnections between data sources
(intermediate value storage, outputs of other operators). How-
ever, once a connection between a data source and an input
multiplexer has been created, the connection can be reused for
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Fig. 1. Reducing the number of NOPs using shift registers

all data originating from that source. Thus, even though an
operator is reused for different operations in different stages,
the multiplexer width no longer grows. At most, all inputs of
all operators are connected to all data sources, leading to a
worst case of O(n2) connections for n operators. While the
hardware of each multiplexer is relatively simple even with
64b-wide inputs, the quadratic growth of the interconnection
density can lead to place-and-route problems later. Note that
intermediate registers (see below), which also act as operators
in this model, also contribute to the growth of interconnection
density and multiplexer size.

A. Storing Intermediate Values

An intermediate result computed earlier in the schedule has
to be retained until the last time (indicated by the number
of the schedule step, here called stage) it is used, thus
defining its lifetime. The way these intermediate results are
stored significantly affects the required chip area. In a spatial
approach, each intermediate result would have a dedicated
register connected to its source operator for buffering the
value. But this is not practical for larger programs containing
thousands of floating point operations, as it would require
thousands of 64 bit registers, which would then cause a
massive growth in the size of operator input multiplexers.

1) Individual Delay Registers: As a simple solution, in-
termediate values can be stored-and-forwarded from stage to
stage in individual registers, which could be modeled as No-
Operations (NOPs) in the CDFG. Note that we consider these
NOPs to be operations, which can then share actual hardware
registers (which act as operators in this case). We use a fast
linear-scan register allocator [19] to map NOPs to registers.
While feasible, using just individual delay registers would still
require too much chip area: Early experiments determined that
the datapaths created for the test cases used in this paper have
long value lifetimes, and would result in more than 75% of
all operations being NOPs.

2) Multi-Stage Shift Registers: Instead of individual reg-
isters, we can more efficiently hold values for longer time
intervals using shift registers as hardware operators. These
are expressed in the CDFG as multi-stage NOP operations,
and can be mapped very efficiently to FPGA primitives such
as SRL16 etc. A shift register of depth k can delay an
intermediate value for k stages. We can reuse shift registers to
delay values from multiple data sources: as long as their inputs
and outputs are accessed in different stages, the actual lifetimes
may overlap. Fig. 1 multiplexes a single k-stage shift register
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to store two values with overlapping lifetimes (since they are
enqueued/dequeued at different schedule stages). When using
this approach, we choose powers of two as the depths of the
predefined shift registers in our operator set, thus allowing the
easy composition of longer delays with only few shift register
operators.

3) Scratch Pad Memories: If many values have to be
retained for long lifetimes, even the use of shift-registers
requires too much area (see Table I). Instead, similar to
compiling into machine code for a register machine, we can
spill excess values from registers to on-chip BlockRAM banks.
We can employ the same infrastructure the compiler uses to
manage these banks as scratch-pad memories to delay values
for longer periods of time (Fig. 2), as long as these times
are shorter than the initiation interval (II) of a loop. If that
bound were exceeded, a value from the next iteration would
overwrite one still needed in the current iteration. For many
irregular computations (such as the complex solver codes
examined here), the II of outer loops will often be very
long (close the the total schedule length). This is actually
amenable for a resource-shared microarchitecture, as the reuse
of operators within the same iteration leaves them unavailable
for computing data for the next iteration.

We operate the scratch pads in a simple dual-ported mode
(one read and write in parallel). Thus, a single scratch pad
can accept only a single value per stage, and also produces
only a single value per stage. Since our datapaths need to
delay many values, and some of them are read or written in
parallel, spilling employs multiple scratch pads in parallel. We
explicitly chose this approach over true dual ported operation,
as in simple mode, we can give the logic synthesis tool the
freedom to flexibly pick the best implementation (BlockRAM
or LUT-based DistributedRAM) for each scratch pad.

Values are assigned to scratch pads by solving a graph
coloring problem that assigns all accesses occurring in the
same stage into separate banks. Our system can use the on-
chip memory banks both for storing local arrays and to delay
values, even mixing both uses within the same bank. New
scratch pads are created and sized automatically as needed,
they do not need to be predefined by the user.

4) Recomputation vs. Storage: The last approach we use to
reduce NOP-chains is to recompute values as needed, instead
of storing them. This can be done if, first, the inputs to the
computation are already available in the correct stage without
introducing the need to store additional intermediate values.
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Fig. 3. Example for time-multiplexing operators

Already stored intermediate values do get reused here. Second,
the required operators must be available (idle) in the target
stage. If both conditions hold, the value is not stored but
simply recomputed.

5) Combination of Methods: Nymble-RS exploits a combi-
nation of multiple of these methods to reduce area. As will be
shown in Section V-B, the most efficient results are achieved
by spilling longer lifetimes to scratch pads, and then using
individual registers allocated using linear scan to provide the
few remaining, very short NOP chains (spanning less than four
stages).

B. Distributed and Partitioned Microcoded Controllers

The translation of complex irregular “C” code may result
in a CDFG with thousands of stages, which would induce
a correspondingly large number of FSM states in the con-
troller. By itself, that would be manageable, as thousands of
states are still efficiently mappable to one-flipflop-per-state
controller implementations (note: not necessarily one-hot!).
For a resource-shared datapath, however, the true difficulty
(sketched in Fig. 3.a) lies in the extreme number of fan-
ins each hardware operator, shared between multiple stages,
would need to accept from the controller. Typically, these
would be one-hot input multiplexer select signals from each
associated controller state. This excessive number of signals is
not efficiently implementable, even when the logic synthesis
and mapping tools attempt to reduce routing congestion by
logic/register replication (see Section V-A for a discussion).

As an alternative, we propose the use of partitioned dis-
tributed microcode. A binary-coded global micro-code pro-
gram counter (µPCg) keeps track of the global execution
state of the datapath. Each operators is provided locally with
a dedicated micro-code ROM that controls their individual
enable and select signals. By distributing the control signal
sequences to the operators, the fan-in per-signal reduces to just
one (the operator micro-code ROM, as shown in Fig. 3.b).

When this scheme is applied in its most basic form, each
operator ROM would need to have a depth equal to the global
number of stages. However, some operators are active only in
parts of the schedule (see Section V for a discussion), most of
the entries in their ROMs would zeros. As an alternative, we
create shallower ROMs that just encompass the range between
the first and last stages an operator is active (rounded up to
the next power-of-2), which are addressed using local program
counters µPCl. Each µPCl is started when the µPCg reaches
the start of the operator’s active stage range. Fig. 4 shows
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this for OP2, which is assumed to be active only in stages
1000. . . 1045 and thus more efficiently controlled by a 64-entry
microcode ROM.

When switching from per-stage state-registers in the con-
trollers to sequential microcode, we would normally lose the
capability for pipelining. While this would not have a major
impact on many of our use-cases, as heavily-resource shared
micro-architectures have only limited potential for overlapped
execution of iterations, we have devised a solution to lift this
limitation: Partitioning the address spaces of the microcode
ROMs leads to a µPC value of p activating the enable and
select signals for both the stage p, as well as for the stage s
where

(s < p) ∧ (s mod II = p mod II).

As an example, for II=600, an µPC=1011 would activate
both stages 1011 and 411 simultaneously. Note that compu-
tations for the partitioned microcode address spaces are all
performed at compile time and affect only the ROM contents,
no additional hardware is required at execution time. For
our benchmarks, this actually allows a small overlap of the
execution of two iterations.

C. Faithful Rounding Floating Point Units

One way to further reduce the latency and required area
of floating-point (FP) operators is the use of faithful round-
ing (FR) instead of IEEE754 Conforming Rounding (CR).
FR can be less precise than CR: While CR requires the
exact selection of the single representable value closest to
the infinitely accurate result, FR relaxes this slightly: Here,
an FP operator can arbitrarily return any one of the two
closest representable values bracketing the accurate result. In
literature, this rounding error is often expressed as a multiple
of the ”unit of least precision” (ULP). In CR, it cannot exceed
0.5 ULP, while FR has a maximum error of 1.0 ULP.

In Nymble-RS, we can selectively replace the Xilinx Core-
Gen FP multipliers and dividers by faithful rounding coun-
terparts, as discussed in [20] and [21], respectively. To our
knowledge, Nymble-RS is the first C-to-Hardware compiler
offering this feature.

D. Schedule-dependent Tree-Height
Optimization

Schedule-dependent tree-height optimization [22] has pro-
ven useful to reduce the height of trees of identical operations

by taking into account the availability time of input signals.
We have extended the technique beyond the usual arithmetic
(e.g., add, multiply etc.) to also recognize specific patterns
of comparators and multiplexers in the CDFG as min and
max operations, which can then also be subjected to this
optimization.

V. EXPERIMENTAL EVALUATION

For evaluating Nymble-RS over spectrum of realistic input
programs, we use CVXGEN to generate solver codes of
increasing complexity. Four example problems provided on
the CVXGEN website (SQP, SVM, Lasso, Portfolio) are
translated with different problem dimensions and settings.
In addition, Stan5p, a more complex example containing
a complete model-predictive control problem for collision
avoidance trajectory planning in autonomous ground vehicles,
is used as fifth benchmark.

For the smaller examples, the following dimensions were
entered into CVXGEN to create the solvers with static counts
of 13K. . . 57K operations (mostly FP): SQP (m = 3,n =
10→ 13 Kops), Lasso (m = 100,n = 10→ 57 Kops), SVM
(N = 20,n = 4→ 19 Kops), Portfolio (n = 25,m = 5→ 30
Kops). Stan5p has a total of 55 Kops.

void solve(void) {
init();
computeStartValue();
while ( !solution_found ) {
doOneIteration();

}
}

Fig. 5. Algorithmic structure of the key function of the solver

Fig. 5 shows the pseudo-code of solver core. After initial-
ization and computing a preliminary solution, the optimum is
sought in an iterative manner. With the exception of Lasso, the
while-loop requires more than 90% of the CPU computation
time in all of the test cases. Even in Lasso, more than half of
the execution time is spent there (≈ 55%). Using the hardware-
software co-synthesis capabilities of Nymble-RS, we mark
only the compute intensive while-loop for hardware execution
(saving chip area), leaving the remainder of the algorithm in
software.

Two domain-specific optimizations are performed in ad-
dition to the standard LLVM passes: First, to enable the
use of non-field sensitive alias analysis, the global structure
containing the arrays the algorithm works with is decomposed
into a global variable for each member, with all accesses
being transformed correspondingly. Second, as the original
code targets embedded CPUs, it tries hard to avoid divisions
(see Fig. 6.a). Here, the condition test uses multiplication
(cheaper) before performing the costly division. However, this
code makes a parallel execution (by unrolling) or pipelining
impossible. With the domain-specific knowledge that a[i] >
0, we transform this to the form in Fig. 6.b. Note that, for
fair comparison, the other HLS tools in this study are also
evaluated with this optimized code.



// (a) original , avoiding divisions
for (i=0; i<N; i++)
if ( minval*a[i] < b[i] )
minval = b[i] / a[i]

// (b) transformed into canonical min operation
for (i=0; i<N; i++)
if ( minval < b[i] / a[i] )
minval = b[i] / a[i]

Fig. 6. Transformation to canonical form of min operation

We target a Xilinx ZC706 board fitted with an XC7Z045
FPGA and use the “bare metal” software design flow. The
generated hardware is accessed by the software using the
AXI GP0 port, while the solver accelerator can access the
main memory and second level cache using the AXI ACP
port. Nymble-RS currently uses LLVM 3.3 as front-end and
for machine-independent optimization, while Xilinx Vivado
2016.2 is used for logic synthesis and place&route. The initial
evaluation uses a fixed microarchitecture of two FP adders, two
FP multipliers, and one FP divider (Section V-E will explore
other configurations). If not stated otherwise, the use of faithful
rounding was enabled.

A. Microcode-based Controllers

Fig. 7 compares the resources required for the accelerators
using conventional (dedicated state flip-flops) and microcoded
controllers. The results are taken from the Vivado 2016.2
post-synthesis report, as the conventional controllers would
not even fit on the Zynq device for the more complex solver
examples. Interestingly, the older Vivado 2014.1, does much
better on the conventional controllers than newer Vivado
versions (which require almost 3x the LUTs). However, even
comparing against the superior LUT numbers of the older
Vivado version, the area required is still about an order of
magnitude higher than that for our microcoded approach. On
the other hand, the small increase of BRAM usage stays far
below the limitations of the target device. Thus, microcode-
based control is a key enabler for creating accelerators for
complex irregular “C” code.

B. Handling of Intermediate Values

Table I examines the impact of the different intermediate
result handling mechanisms discussed in Section IV-A. As
baseline, we show a microcoded accelerator using just indi-
vidual registers. Then we allow beneficial recomputation of
values instead of storing them. The shift column additionally
enables the use of shift-registers for longer lifetimes, while
the spill column instead combines selective recomputation
with spilling values to scratch-pad memories. We show these
impacts only for the two smaller examples SQP and Lasso, as
even Nymble-RS will run out of memory on a 128 GB server
when trying to process the larger solvers restricted to base
mode (due to an excessive number of NOP operators). Again,
the results given are post-synthesis areas. Note that spilling
does also reduce the BRAM usage because reduced multiplex-
ers require less rom, which more than compensates the rams

100

1000

10000

100000

1000000

10000000

SQP Lasso SVM Portfolio Stan5p

L
U
T
s

0

20000

40000

60000

80000

SQP Lasso SVM Portfolio Stan5p

R
e
g
is
te
rs

0

50

100

150

SQP Lasso SVM Portfolio Stan5pB
lo
c
k
R
A
M
s

dedicated stage register microcoded architecture

Fig. 7. Dedicated state registers vs. microcode: Resources required

base recomp shift spill

Registers SQP 54512 37428 23552 17555
Lasso 52566 32332 26964 20993

LUTs SQP 254610 179300 51607 26653
Lasso 224593 129857 48805 28960

BRAMs SQP 581.5 306.5 69.5 61.0
Lasso 511.0 196.5 64.5 60.5

TABLE I
POST-SYNTHESIS AREA REQUIREMENTS FOR DIFFERENT INTERMEDIATE

VALUE HANDLING MECHANISMS

used as scratch pad. Here, 14 (SQP) and 17 (Lasso) scratch
pads have been inserted with a size between 1 to 993 64-bit
entries. Small scratch pads are automatically implemented in
LUT-RAM instead of BRAM.

C. High-Level Performance Optimization

For a high-level look at performance, we initially consider
the schedule length of the generated accelerators. Table II
shows a significant reduction when using schedule-dependent
min/max tree-height optimization and faithful rounding. The
average schedule length reduction of min/max tree-height
optimization is about 7.2%. Faithful rounding has an even
higher impact, yielding an average reduction of 17.6%, with
a maximum of 35.9% for Lasso.

D. Comparison to State-of-the-Art High-Level Synthesis Tools

For comparison with Nymble-RS, we have tried to synthe-
size the smallest test case SQP using a current industrial HLS
system for Xilinx devices1, and using the open-source LegUp
compiler. Both tools support FP operations and pointers.

Earlier tests with LegUp 3.0 had failed due to its lack of a
configurable upper limit for the number of floating point units.

1Anonymized due to licensing terms.



Schedule length
FR off FR off FR on

Benchmark THO off THO on THO on

SQP 3366 3049 2079
Lasso 3790 3472 2216
SVM 3886 3491 3068
Portfolio 5931 5532 5289
Stan5p 8650 8218 7315

TABLE II
PERFORMANCE IMPACT OF FAITHFUL ROUNDING (FR) AND min/max

TREE HEIGHT OPTIMIZATION (THO)
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Fig. 8. Quality comparison of results for both compilers

While even LegUp 4.0, which does allow setting such a limit to
force resource-sharing, still crashes in HW/SW co-compilation
mode (called hybrid mode), it is able to progress further
when using its pure hardware flow. Since LegUp does not
fully support Xilinx devices yet, we have chosen to target the
Altera Cyclone V family of chips for comparison. As LegUp
interprets the constraints on FP units on a per-function basis,
we set the limits to “one each of Mul/Add/Div”, which (over
the entire benchmark) still results in many more units being
instantiated than with Nymble-RS (which applies the limits
globally). To avoid this area explosion, we have experimented
with inlining, using both the static inline keywords, as
well as increasing the inlining threshold in LegUp’s LLVM
component. Even after this significant manual optimization
effort, we could not achieve any result smaller than 122,737
LUTs and 186,929 registers for SQP. This is about 6x and
11x larger than the hardware generated by Nymble-RS given
the same FP unit constraints. The LegUp-generated design
did not fit even on the largest Cyclone V, so no maximum
clock frequency can be given here. From simulation, we can
determine that it would require 232K clock cycles, which is
more than 7x of the slowest (=smallest, < 10% of Z7045)
SQP by Nymble-RS (31K cycles).

In 07/2016, the most recent version of the industrial tool
was also able to translate the benchmark “C” code into
hardware (earlier versions have failed). As with LegUp, we
performed significant manual effort to tune the code for the
tool: This included adding directives/pragmas for pipelining,
loop unrolling, inlining, as well as constraining the microarchi-
tecture to 1. . . 2 FP units each and allowing numerically unsafe
mathematical optimizations. Figure 8 compares the post-HLS
estimates as well as post-P&R results of the industrial tool
with the actual post-P&R results for Nymble-RS. We compute

the runtime of a single iteration as the initiation interval (II)
multiplied by the clock period (estimated and actual). Note
the large discrepancy between the post-HLS estimates and the
actual post-P&R delays for the industrial tool.

Despite fmax estimates of 140. . . 164 MHz, no hardware
could exceed 65 MHz on the target Z7045 SoC after P&R,
with many results being unroutable or not even fitting on the
Zynq device. For completeness, we also allowed the industrial
tool to target a large Virtex 7 device, which resulted in
post-P&R clock frequencies of 16. . . 84 MHz. Here, results
requiring fewer clock cycles often had difficulties reaching a
high fmax. Thus, even under optimal conditions (and a much
more generous target device), the industrial tool’s hardware is
at least 3x larger and 7x slower than the results of Nymble-RS
on the Z7045.

Remember that these experiments were performed on the
smallest of the solver codes. Attempts to run the larger solvers
through hardware synthesis either had failures in the flow, or
resulted in even larger area growth and slowdown for LegUp
and the industrial tool compared to Nymble-RS.

E. Design Space Exploration

Nymble-RS can flexibly scale the number of hardware
operators used in the solver hardware. However, more opera-
tors do not always yield a correspondingly faster accelerator,
as increasing the number of operators also leads to higher
interconnect demand in the FPGA, which at some point will
slow down fmax. Thus, Nymble-RS can be used for design
space exploration (DSE) to determine the best parallelism ./.
frequency trade-off for each solver.

We show the impact of DSE for both the smallest SQP
and the large Stan5p solvers in our benchmark suite in Table
III. We report the wall-clock-time (WCT) for executing the
complete application (hardware and software parts, as well as
data transfers). When increasing the number of FP adders and
multipliers, the schedules become shorter (due to exploiting
more ILP), but fmax slows down slightly (due to interconnect).
Especially for small solvers, using 4 (or more) has only small
impact on the schedule length due to data dependencies.

F. Speed-Up vs. Software on Zynq SoC

Figure 9 finally compares the WCT of executing a single
solve operation with and without hardware acceleration on
the ZC706 platform. We compare the performance of our
hardware accelerated solvers to pure software versions running
on the 800 MHz ARM Cortex-A9 core. The software version
of the solvers was compiled with -O3 and uses the hardwired
NEON FPU in the processor. Following the recommendation
of the CVXGEN authors, we also compiled the solvers with
gcc -Os, and used the faster of the two builds for the compar-
ison. In most cases, the hardware-accelerated solvers perform
significantly better than their software-only counterparts. Note
that the low system-level speed-up of Lasso is a benchmark-
specific anomaly of the software code generated by HW/SW-
co-synthesis not yet being optimal for the ARM processor.



Test Case # Mul/Add # FFs # LUTs # BRAMs # DSPs Schedule Length II fmax (MHz) WCT (ms)

1/1 15824 (4%) 20503 ( 9%) 40.5 ( 7%) 25 (3%) 3519 3494 200.8 0.154
SQP 2/2 17555 (4%) 26653 (12%) 61.0 (11%) 30 (3%) 2079 2054 178.0 0.113

3/3 18905 (4%) 34024 (16%) 58.0 (11%) 35 (4%) 1876 1851 178.3 0.105
4/4 20168 (5%) 39604 (18%) 59.5 (11%) 40 (4%) 1852 1827 177.9 0.104

2/2 18233 (4%) 38319 (18%) 146.0 (27%) 30 (3%) 7315 7290 178.2 0.440
Stan5p 3/3 19415 (4%) 44505 (20%) 183.5 (34%) 35 (4%) 5749 5724 166.5 0.385

4/4 20896 (5%) 58514 (27%) 251.5 (46%) 40 (4%) 5267 5242 157.5 0.377

TABLE III
DESIGN SPACE EXPLORATION. “WCT” IS WALL CLOCK TIME

Loop Speed-up: 2.9 2.6 3.7 3.7 5.0
System Speed-up: 1.8 1.1 1.9 2.1 2.7       .
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Fig. 9. Wall clock time on ZC706 platform with and without hardware
acceleration

VI. CONCLUSION AND FUTURE WORK

Nymble-RS significantly exceeds the performance of state-
of-the-art academic as well as industrial compilers for com-
piling floating-point-heavy irregular complex “C” code, even
when expending significant manual effort of optimizing the
code for the specific compiler, or allowing the competing tools
to target larger devices. Furthermore, the performance of the
accelerators created by Nymble-RS can be flexibly scaled,
achieving significant speedups even when dedicating just a
quarter of a mid-size FPGA to the accelerator circuit.

The speed-ups reported here are even more significant,
as they are achieved not over relatively slow simple soft-
core processors (often used as reference in related work), but
against 800 MHz dual-issue out-of-order cores with hardwired
FPU.

Future improvements to our flow will target the quality
of the software code generated during hardware/software co-
compilation, as well as consider the resource-shared use of
advanced microarchitectures (e.g., datapath fusion [23]).
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