
978-1-4673-9406-2/15/$31.00 c©2015 IEEE

Energy-Efficient Reconfiguration of Flash-based
FPGAs in Heterogeneous Wireless Sensor Nodes

Andreas Engel and Andreas Koch

Embedded Systems and Applications Group (ESA)
Technische Universität Darmstadt, Germany

{engel,koch}@esa.tu-darmstadt.de

Abstract—Field Programmable Gate Arrays (FPGAs) can be
used as hardware-accelerators in Wireless Sensor Networks
(WSNs). Their in-field reconfigurability can be utilized for bug
fixing and capability enhancements, but the distributed nature
of WSNs strongly demands Over-the-air Programming (OTAP)
for reconfiguration to avoid manual maintenance at every single
network node. In this paper, the implementation of OTAP for
Microsemi IGLOO FPGAs utilized in heterogeneous WSN motes
is described. As the entire configuration bitstream can not be
buffered at the sensor node at once due to memory limitations,
a paging mechanism is utilized and improved to minimize the
energy-intensive radio network traffic required for the bitstream
configuration and verification. By applying lossless bitstream
compression, the overall configuration time can be reduced by
11 % to 24 %, depending on the complexity of the configured
hardware design. The energy spent during the configuration
process is reduced by 11 % to 37 % using this compression.
Another approach utilizes the prediction of page requests to
overlap the wireless transport of the next page with the processing
of the current page. This prediction mechanism reduces the
configuration time by 40 %, independently of the actual bitstream
content. The required configuration energy is also reduced by
40 % using the page prediction.

I. INTRODUCTION

In the last years, more and more FPGAs are utilized
in WSNs as hardware-accelerators for energy-efficient data
aggregation [1], [2], encryption [3], [4], or the realization of
complex routing protocols [5]. Besides the lower non-recurring
engineering cost of FPGAs, most research groups avoid
application-specific integrated circuit hardware-accelerators to
keep their WSN platforms flexible after deployment. The
flexibility to reprogram the FPGA on-site can be exploited
to fix bugs in the post-laboratory development stages, or
to adapt the WSN’s capabilities to recent encryption and
communication standards. Some authors also propose Partial
Dynamic Reconfiguration (PDR) to frequently and regularly
switch between different hardware-accelerated algorithms on
small FPGAs [6], but this work is focused on irregular
and unplanned reconfigurations of complete bitstreams, that
can not be generated and stored on the WSN mote before
deployment.

A WSN typically consists of many nodes distributed over
a large area. In some applications, the nodes are also hard
to reach for human operators. In all cases, being able to
reconfigure the nodes via the wireless infrastructure greatly
improves the maintainability and flexibility of the network.

This process is referred to as OTAP and requires some specific
hardware features. First, the communication protocol must be
able to actually transport the new bitstream to a specific or all
WSN nodes. Second, the WSN nodes must be able to receive
and buffer or immediately process the bitstream. The buffer
memory might be located outside the FPGA, from where
it can be loaded after resetting the reconfigurable hardware.
This is the typical use-case for FPGAs with a Static Random
Access Memory (SRAM) configuration storage, and it does
not require an FPGA-external Microcontroller Unit (MCU) to
manage the reconfiguration process. Alternatively, the received
bitstream can be stored directly into the configuration memory
of the FPGA. In this case, the bitstream reception overlaps
with the actual reconfiguration, and the entire process has
to be controlled by an FPGA-external MCU. The latter must
have access to the programming interface (e.g., a Joint Test
Action Group (JTAG) port) of the FPGA. In both scenarios,
if the targeted bitstream buffer is a Flash-based Non-Volatile
Memory (NVM), the sensor node must be able to generate
the voltage required to modify the Flash memory, which is
typically higher than the voltage required to only read the
NVM. And finally, the limited energy buffer as well as the
constrained computational resources of the low-power sensor
nodes must be able to support the entire bitstream transport
and configuration process.

This paper targets the second scenario, i.e., the reconfigu-
ration of an FPGA by a dedicated MCU, which receives the
configuration bitstream wirelessly from a gateway node, as
shown in Fig. 1. More concrete, heterogeneous wireless sensor

Gate
way

Routing
Nodes

MCU FPGA
JTAG

MCU FPGA
JTAG

MCU FPGA
JTAG

Heterogeneous Sensor NodesWireless InfrastructureBitstream

Fig. 1. Targeted OTAP scenario: Wireless bitstream transport from a gateway
to the MCU of one (or many) heterogeneous sensor node(s), from where the
bitstream is written into the configuration memory of an FPGA using a JTAG
interface.

nodes based on Microsemi IGLOO low-power FPGAs such
as the HaLOEWEn [1], the PowWow [7], or the low power
Cookie mote [8] are of special interest. The IGLOO device
family is based on a Flash configuration memory accessible
by a JTAG port. This paper further assumes that there is
no memory available on the sensor node sufficiently large to
store the entire configuration bitstream at once. Unencrypted
IGLOO bitstreams for the AGL1000 device utilized by the
HaLOEWEn mote have a constant size of 915 kB independent
from the actual hardware design, when stored in the format
required for direct JTAG programming. The MCU internal
SRAM is typically much smaller, and additional external low-
power memory is not available as single 1 MB SRAM module
with a serial interface. So, either multiple smaller SRAM
modules with an inter-integrated circuit interface would have
to be mounted on the sensor node (e.g., 8 × 1Mbit), which
would occupy a large area on the Printed Circuit Board
(PCB) of the WSN node (e.g., 60 mm2 for eight small outlint
packages). Alternatively, a single large SRAM module with
a parallel memory interface would have to be connected to
the MCU, which would require at least 21 General Purpose
Input/Output (GPIO) pins for a 1024×8 bit module. As both,
the PCB area and the MCU GPIO pins are restricted resources
in WSN motes, not being able to buffer the entire bitstream
at once is a realistic restriction.

Microsemi provides a software library called DirectC [9] en-
abling the use of MCUs as JTAG programmers for Microsemi
devices. DirectC already supports a paging mechanism used
to load and buffer the bitstream in smaller junks. However,
DirectC is not optimized for OTAP applications, where the
number of page accesses has to be minimized to reduce
the network traffic and thus the overall energy spent on the
bitstream transport. The main contributions of this paper are
therefore,

• the description of a wireless communication protocol
supporting the existing DirectC paging mechanism,

• the reduction of the number of wireless packets to be
transmitted during bitstream programming and verifica-
tion by means of page compression and prediction,

• the evaluation of the achieved improvements in terms
of reduced time and energy spent for the configuration
process on the HaLOEWEn mote.

The remaining parts of this paper are organized as follows.
Section II provides an overview of related research efforts for
OTAP of FPGAs. Section III describes the basic paging mech-
anism of DirectC. The OTAP-related drawbacks of DirectC
are outlined in Section IV. Furthermore, this section details
the basic concepts of a wireless bitstream transfer protocol as
well as the improvements applied to minimize the required
network traffic. Section V evaluates the achieved reduction of
the configuration time and energy, while Section VI concludes
this work with some suggestions for further improvements.

II. RELATED WORK

A number of wirelessly reconfigurable heterogeneous sensor
nodes with FPGA-based hardware accelerators have been

reported, such as [10], [11], [12]. However, those authors
did not report details about the achievable reconfiguration
performance such as the required time or energy, and can
therefore not be compared to the current work. The following
analysis is thus focused on related work actually reporting
their required OTAP duration.

A Programmable System-on-Chip (PSoC) extension board
for an IEEE 802.15.4 transceiver-based WSN mote was pro-
posed in [13]. A dedicated complex programmable logic
device and a large configuration storage was utilized for the
OTAP of a Cypress PSoC hardware-accelerator. The authors
report a configuration duration of 16 s, including 1 s for the
wireless transfer of the 32 kB bitstream.

The Cookie node described in [14] also consists of an
8 bit MCU and an IEEE 802.15.4 transceiver, but it utilizes
a Xilinx Spartan-3 FPGA as its hardware-accelerator. The
authors evaluated the time and energy required for the PDR of
the FPGA. The reconfiguration of six configurable logic blocks
(i.e., 8.7 kB configuration data) took 118 s and consumed
36.5 J.

The WSN mote proposed by [15] consists of a 16 bit MCU,
a low-power short range device transceiver and a Lattice iCE40
hardware-accelerator. The authors report 200 s to be required
for the entire OTAP procedure. The size of the bitstream is not
specified, but the Lattice device (iCE40LP1K) provides nearly
20× less logic resources than the Microsemi AGL1000 used
throughout this work.

As will be shown in Section V, the relative configuration
time per configuration bit achieved throughout this work
outperforms the systems described above.

A platform independent OTAP improvement was proposed
in [16]. The authors observed that for typical firmware updates,
the new configuration will only slightly differ from the pre-
vious one. So a dictionary-based delta compression algorithm
can significantly reduce the required network traffic. As the
authors evaluated their concept using powerful processors and
transceivers typically used in mobile phones, their results can
not be easily transferred to the WSN domain.

Besides [14], no other research described above actually
analyzed the energy consummation of the reconfiguration pro-
cess. Furthermore, all authors strictly separated the bitstream
transfer from the configuration process. The wireless paging
strategy and the corresponding energy consumption analysis
described in this work thus significantly extends the existing
literature.

III. DIRECTC SOFTWARE LIBRARY

DirectC [9] is a software library provided by Microsemi. It
is used to let an MCU control the JTAG port of a Microsemi
FPGA device in order to program the bitstream provided in
the proprietary binary DAT format is loaded into the FPGA-
internal configuration memory. DirectC is configurable by
preprocessor directives such that only the features required
for the selected device (e.g., NVM programming, encryption,
sending debugging messages, bitstream paging) are included in
the compiled firmware. This is essential to reduce the memory

footprint of the JTAG library, which has to fit in the memory
constrained MCU next to the actual MCU application code.

Microsemi also provides an alternative JTAG programming
library called STAPL Player [17]. It is intended for generic
JTAG programmers supporting multiple device families at
runtime, as the actual device-specific programming algorithm
is encoded in the bitstream files. This flexibility is not required
for the OTAP of a specific FPGA included in a heterogeneous
WSN mote. Furthermore, Microsemi suggests to use DirectC
for resource constrained MCUs [9]. Therefore, the STAPL
Player is not considered in this work.

When reconfiguring a Flash-based IGLOO FPGA, DirectC
is working in six phases. In the initial sanity check phase, a
header section within the bitstream is loaded to check whether
the bitstream is actually targeting the device type attached
to the JTAG port. Furthermore, a 16 bit Cyclic Redundancy
Check (CRC) sequence of the entire bitstream is calculated by
DirectC and compared to the checksum stored in the bitstream.
If both consistency checks were passed, the FPGA is prepared
for the subsequent steps in the setup phase. Afterwards, the
entire configuration memory is deleted in the erase phase
and rewritten in the following write phase. The bitstream
written to the configuration memory is compared against the
provided bitstream in the verification phase. Finally, the FPGA
is prepared for deployment in the final release phase.

To port DirectC to a specific MCU, several functions have to
be implemented for delaying the program execution, accessing
the GPIO pins connected to the FPGA JTAG port, displaying
debug messages, and loading bitstream pages into the MCU-
internal memory. The latter (named dp_get_page_data)
is called with a single parameter, i.e., the start address of
the requested page. This page load function is the hook to

Gateway MCU FPGA
start

dp_get_page_data
(address)

request page(address)

response(data)

JTAG
commands

exit code

extract page

Loop

MCU idle
tTU

Fig. 2. Baseline OTAP page loading procedure.

the wireless network. In the baseline implementation of the
proposed OTAP protocol described in Fig. 2, a page request is
sent by the DirectC-executing MCU to the gateway node using
the existing routing infrastructure of the WSN application. The
gateway node extracts the requested page from the overall
bitstream and sends the page back to the requesting sensor
node. Afterwards, DirectC analyzes the received page and
programs the relevant bits into the FPGA using the appropriate
JTAG commands. This page load and evaluation process is
repeated, until an error occurred in the verification phase, or
the FPGA was successfully reconfigured. The corresponding
exit code is sent back to the gateway node, as shown in Fig. 2.

IV. IMPROVED WIRELESS PAGEING

In this section, a list of improvements for the baseline
DirectC-based OTAP protocol described in Section III is
proposed.

A. Relocation of the checksum calculation

DirectC is requesting the entire bitstream three times during
the configuration process, i.e., in the sanity, the write, and
the verification phase. The write phase is obviously required.
The verification phase is vital to detect write errors, which
might be caused by unstable supply voltages during the erase
and write phase. The CRC-calculation in the sanity phase
however is only required to validate the bitstream file as such.
There is no need to perform this validation on the wireless
sensor node, so it can be relegated back to the gateway
thus reducing the overall network traffic by roughly 33 %.
Once validated, the checksum mechanism of the wireless
communication infrastructure itself ensures the integrity of
the bitstream pages on their way from the gateway to the
destination sensor node.

B. Reduction of repeated page transfers

In addition to the two remaining phases requiring to load the
entire bitstream (i.e., write and verification), some DirectC-
related peculiarities cause specific pages to be requested
multiple times even within one phase. As shown in Fig. 3,

Header Directory Data Blocks CRC

Buffered in dedicated 99 B Header Page

Block ID Address Length Description

1 123 9 B Design name
2 132 174 B Boundary scan pattern
3 306 4 B Encryption key
4 310 4 B Datastream checksum
5 314 936 000 B Datastream
6 396314 208 B Lock configuration

Fig. 3. DirectC DAT format consisting of a header, a directory, a fixed number
of data blocks, and a CRC checksum. AGL1000 bitstreams always contain
the six specified data blocks.

the DAT file format is organized as a 69 B header followed by
a directory, a number of data blocks, and a 16 bit CRC footer.
The directory describes the type, position, and size of the data
blocks with 9 B per entry. All DAT bitstreams for AGL1000
devices contain the six data blocks specified in Fig. 3. As the
header and the directory is required several times throughout
the entire configuration process, a dedicated node-local buffer
for both structures is managed next to the actual page buffer.
As the first 24 B of the header are not actually relevant for
the configuration, a 69B − 24B + 6 · 9B = 99B buffer
is sufficient for this purpose. After the first header access,
subsequent accesses to this DAT file region do not require an
explicit wireless page request anymore.

Another source of inefficiency within the paging mechanism
provided by DirectC is the request of a new page, as soon as
one of the last 16 B within the current page is accessed. At
first, this sounds like a reasonable preloading strategy suitable
to exploit the linear bitstream access pattern mainly used
throughout the configuration process. However, the remaining
16 B of the current page are not actually processed while
the next page is loaded. Instead, DirectC stalls until the next
page is available, thus effectively reducing the available page
size. Even worse, the loaded pages overlap by 16 B as shown
in Fig. 4, thus increasing the overall network traffic. This
inefficient preloading behavior was thus disabled to improve
the wireless paging mechanism.

...

page i

page i+1

...

16 B
16 B

16 B

Fig. 4. Overlapping pages in original DirectC implementation. The crossed
memory is never read.

C. Page Compression

As stated in Section I, the size of the bitstreams in the
DirectC DAT format is not affected by the actual hardware
design. This indicates a large amount of redundancy and thus
a high potential for a lossless bitstream compression, at least
for designs with a low resource utilization. By reducing the
number of bytes required to represent a specific bitstream
page, the time and energy required to wirelessly transmit
the compressed page is also reduced. However, the time and
energy required to decompress the pages at the resource
constrained sensor nodes also has to be considered.

To exploit this potential, three compression schemes have
been implemented, namely Run-Length Encoding (RLE), Run-
Length Encoding with Marker (RLEM), and a static Huff-
man codec [18]. More complex dictionary-based compression
schemes are not suitable for this OTAP application, as the
transmitted pages are relatively small (about 100 B as limited

Gateway MCU FPGA
start

dp_get_page_data
(address)

request page(address)

response(codec, data)

JTAG
commands

exit code

extract page

compress page

select codec

decompress page

Loop

MCU idle

tD

tTC

tC

Fig. 5. OTAP page loading procedure with compressed pages.

by the wireless payload), and the dictionaries themselves
would exceed the memory capabilities of the MCU.

RLE replaces every sequence of repeated bytes bn by a
pair of bytes (n, b) ∈ {0, . . . , 255}2 with n > 0. As RLE
allows a run-length of n = 1, the compressed page may
even be larger than the uncompressed page. This deficiency
is mitigated by the RLEM scheme by applying an escape
mechanism. Only for n > 1 or m = b the byte sequence
is replaced by a triple (m,n, b) ∈ {0, . . . , 255}3 marked with
a rarely occurring symbol m. The analysis of some sample
bitstreams yielded m = 87 to be most appropriate. Finally,
the more sophisticated Huffman codec assigns bit sequences of
different lengths to each byte of the uncompressed page, such
that more frequently occurring bytes are represented by shorter
bit sequences. Instead of deriving bitstream- or page-specific
Huffman codes, a static bit sequence-assignment matching the
statistical properties of two sample bitstreams (denoted as D1
and D2 in Section V) is used by the Huffman codec. The
decoders for all three compression schemes were implemented
on and optimized for the resource constrained MCU.

Fig. 5 details the integration of the compression scheme
into the page loading procedure. After the requested page was
extracted from the bitstream at the gateway node, all available
compression schemes are applied. The codec with the best
compression ratio for the specific page is selected and reported
back to the requesting sensor node along with the compressed
page. If none of the implemented compression schemes actu-
ally reduces the page size, it is transmitted uncompressed. The
execution time tC of the encoder can be neglected, as it is per-
formed on the gateway node with unconstrained memory and
computational resources. However, the page decompression is

executed on the low-power sensor node. To realize a benefit
from the page compression, the additional time tD spent for
decoding the page must be smaller than the reduced time
spent for the page transmission, i.e., tTU > tC + tTC + tD.
Here, tTU and TTC are the transmission durations for the
uncompressed (see Fig. 2) and compressed (see Fig. 5) pages.

D. Page Prediction

As shown in Figs. 2 and 5, the DirectC-executing MCU
has to be stalled until the requested page was received. To
further speedup the configuration process, these idle times
have to be eliminated by already requesting the next page
while processing the current page. To request the next page
from the gateway before DirectC actually provided the address
of the next required page, the page access pattern must be
reliably predictable.

Fig. 6 shows the page access pattern during the entire
configuration process for the maximum supported page size
derived in Section V after eliminating most of the repeated
page requests, as described in Section IV-B. The first access
fetches the dedicated 99 B header buffer starting at address 24
in the sanity check phase. In the setup phase, the boundary
scan register of the FPGA is configured with the pattern read
from data block 2 located at address 132 (see Fig. 3). In the
erase phase, the some design-related information provided in
data block 4 (address 310) and 1 (address 123) is written to
the user row area within the FPGA. During the write and
verification phases, the requested addresses are strictly linear
and increasing by the page size while iterating data block 5.
Finally, data block 6 is read with two additional page requests
in the release phase. This page access sequence is only
influenced by the selected page size and the targeted FPGA
device, but not by the actual hardware design represented
by the bitstream, even if page compression is activated. The
page access sequence can thus be recorded for a baseline
configuration process and hard-coded in the gateway firmware
for proper page prediction.

Fig. 7 shows, how the page prediction is integrated into the
page loading procedure. The predicted page request sent from

0 1 2 3 4 5 6 8435 8438 16868 16871

Header + Directory

Data Blocks

sanity
setup

erase write verification release

24

132

310

123

314

425

536

936155

936266

314

425

536

936155

936266

936377

936488

Index of Page Request

R
eq

ue
st

ed
P

ag
e

A
dd

re
ss

Fig. 6. DirectC page access sequence for the AGL1000 device and a page
size of 111 B. Note the dotted axis discontinuities.

Gateway MCU FPGA
start

reqest predicted page

dp_get_page_data
(address)

reqest predicted page JTAG
commands

exit code

predict page address

extract page

compress page

select codec

response(addr,codec,data)

predict page address

extract page

compress page

select codec

response(addr,codec,data)

validate address
decompress page

Loop

MCU idle

Fig. 7. OTAP page loading procedure with page prediction and compression

the MCU to the gateway does not include a page address.
Instead, this address is predicted at the gateway based on the
sequence of already transmitted pages, as described above.
The optionally compressed page response also includes the
predicted page address. The actual DirectC page load function
(dp_get_page_data) first compares the address of the
last received predicted page with the actually requested page
address. Also unlikely, this validation may fail due to network
communication errors, e.g., superfluous retransmissions due
to missed acknowledgements. Those mispredictions are not
DirectC-related, but have to be handled by falling back to
unpredicted explicit page requests. After a positive address
validation, the received page is decompressed and the next pre-
dicted page is requested. Instead of waiting for the response,
DirectC can immediately continue to process the last received
page. In the best case, the next page response is received
before the next call to the page load function, thus completely
eliminating the stalling of the MCU.

V. EVALUATION

To evaluate the concepts proposed in Section IV, the
improved DirectC paging mechanism was implemented on
the HaLOEWEn mote (version 3), mainly consisting of a
Microsemi AGL1000 FPGA used as hardware-accelerator and
a Texas Instruments CC2531 Radio System-on-Chip (RF-SoC)

TABLE I
COMPARISON OF HARDWARE DESIGNS USED TO GENERATE BITSTREAMS

Design Logic Cells Utilization Description

D1 716 3 % Generic application: y = x5

D2 5677 23 % Generic application: y = x50

D3 20714 84 % Realistic SHM application [19]

to interface the WSN. The latter combines an 8 bit MCU with a
IEEE 802.15.4 wireless transceiver capable of handling 128 B
frames with up to 116 B payload at 250 kbit

s . The maximum
DirectC page size transferable without frame segmentation is
limited to 111 B, as another 4 B field for the page address
and 1 B field for the selected codec have to be included
in page response frames (see Fig. 7). Maximizing the page
size minimizes the overhead caused by the frame header.
Thus, a page size of 111 B is used throughout the remaining
evaluation.

To evaluate the compressibility of the bitstreams, three
different hardware-designs shown in Table I have been syn-
thesized. While the first two are of synthetic nature used to
easily scale the core utilization, the third represents a realistic
design in the Structural Health Monitoring (SHM) application
domain of the heterogeneous sensor node.

A. Memory Footprint

The memory required on the for compression and page
prediction is not critical, as the gateway node is considered to
be not resource-constrainded. Thus, only the memory footprint
for the MCU on the heterogeneous sensor nodes are reported
here.

When disabling all DirectC features not required for the
AGL1000 core programming (e.g., without bitstream security)
and compiling the firmware with the Small Device C Compiler
(version 3.5.0), the resulting footprint for the three CC2531
memory regions amounts to 117 B (46 % of 256 B) internal
DATA, 528 B (6 % of 8 kB) external DATA, and 19.8 kB (7.7 %
of 256 kB) CODE. Nearly 40 % of the occupied external DATA
is used for the page and header buffer. The page decom-
pression is performed in-place and thus does not increase the
memory footprint off the constrained MCU.

B. Compression Ratio

First, the compression ratio achievable by the different com-
pression schemes are evaluated. Fig. 8 shows the compression
ratio (i.e., the compressed size relative to uncompressed size)
achieved for different combinations of compression schemes
selectable for each page. The page sequence actually trans-
mitted during the complete configuration procedure (Fig. 6)
is taken into account. Thus, duplicated page transmissions are
also considered.

For the first three bar groups of Fig. 8, a specific com-
pression scheme was enforced. As expected, the compression
ratio improves with the complexity of the codec and degrades
with the core utilization of the bitstream. If all compression
schemes (including the uncompressed transmission) can be

RLE RLEM Huffman All

10

20

30

40

50

60

70

80

90

48

31

25

20

60

40

30
28

94

66

41
38

Selectable Compression Schemes

C
om

pr
es

si
on

R
at

io
(%

)

Bitstream: D1 D2 D3

Fig. 8. Comparison of achievable compression ratios for different bitstreams.

selected for every transmitted page, the compression ratio
improves even further and reaches 20 % in the best case.

C. Configuration Time

To evaluate the influence of the page compression and
prediction mechanism on the overall configuration time, the
five scenarios shown in Fig. 9 were considered. Each of the
three bitstreams was configured ten times for each scenario.
The observed worst case standard deviation was smaller than
0.5 s and is thus not shown in Fig. 9. All improvements
described in Sections IV-A and IV-B are applied.

Without page compression and page prediction (first bar
group), the overall OTAP process takes 711 s. This duration

no

no

yes
yes
no

yes
no
no

yes
no
yes

no

yes

100

200

300

400

500

600

700

Page Compression:
With Huffman:

Page Prediction:

711

614

543

431 427

711

661

569

432 427

711
727

636

434 427

C
on

fig
ur

at
io

n
Ti

m
e

(s
)

Bitstream: D1 D2 D3

Fig. 9. Comparison of OTAP duration for different bitstreams and paging
strategies.

is only slightly improved by activating the page compression
(second bar group) for the simple bitstreams D1 and D2.
Even worse, the execution time for D3 is actually increased.
Detailed profiling revealed the Huffman decoder being the
bottleneck, so the Huffman codec was completely disabled
for the third bar group. With disabled Huffman codec, the
page compression reduces the configuration time for the three
bitstreams by up to 24 %.

When combining page compression and page prediction
(fourth bar group), the configuration time is improved even
further, reaching up to 39 % reduction. Surprisingly, the
page prediction without page compression (fifth bar group),
achieves even better results (i.e., 40 % configuration time
reduction). The main reason for this finding is that the page
prediction already hides the page transfer time behind the
actual page evaluation, as shown in Fig. 7. Another reduction
of the page transfer time, as it is achieved by the compression
stage, thus does not improve the overall configuration time.
Even worse, the required page decompression actually slows
down the configuration process. Therefore, page prediction
should be utilized instead of page compression. Only if page
prediction has to be (temporarily) disabled due to network-
related prediction erros, page compression should be activated.

To compare the configuration duration with the results
achieved by the related reseach described in Section II, the
deviating bitstream sizes have to be taken into acount. When
normalizing the configuration time to the bitstream size, the
OTAP implementation proposed in this work requires 0.47 s

kB
and thus clearly outperforms [14] with 13.6 s

kB , and still
slightly beats [13] with 0.5 s

kB .

D. Configuration Energy

To evaluate the overall energy spent during a configuration
process, the voltage and current at two supply rails were
sampled with a Hitex PowerScale device [20]. While the 3 V
rail (VDD) supplies the FPGA and RF-SoC core (including the

0 50 100 150 200 250 300 350 400
32

33

34

35

36

37

Erase Write Verificaton

Time (s)

I D
D

(m
A

)

0

1

2

3

4

5

6

I P
um

p
(m

A
)

IDD

IPump

Fig. 10. Current consumed during the configuration by both supply rails:
3.3 V VPump for the IGLOO Flash modification, and 3 V VDD for all other
components.

no

no

yes
yes
no

yes
no
no

yes
no
yes

no

yes

10

20

30

40

50

60

70

80

Page Compression:
With Huffman:

Page Prediction:

76.6

66.3

56.2

46.1 45.7

76.6

71.4

61

46.1 45.7

76.6
79

68.2

46.3 45.7

C
on

fig
ur

at
io

n
E

ne
rg

y
(J

)

Bitstream: D1 D2 D3

Fig. 11. Comparison of OTAP energy consumption for different bitstreams
and paging strategies.

wireless transceiver), the 3.3 V rail (VPUMP) is only required
during the Flash erase and write phase. Fig. 10 shows the
captured current flow for a configuration of bitstream D0 with
enabled page compression and page prediction. The voltage
and current samples were captured with the highest achievable
sampling frequency of 75 kHz to record even shorter current
spikes caused by the switching regulators of the HaLOEWEn
power supply architecture. The overall energy was derived by
integrating the current-voltage product over the configuration
time. Less than 3 % of the overall configuration energy is
drawn by the VPUMP rail.

To evaluate the influence of the page compression and
prediction mechanism on the overall energy consumption,
the five scenarios shown in Fig. 11 were considered. When
comparing Figs. 9 and 11, similar insights regarding the page
compression and prediction can be derived for the energy
consumption. The best results (i.e., 40 % energy savings) are
achieved for the page prediction without page compression.

VI. CONCLUSION

In this paper, the improved implementation of an OTAP
procedure targeting Microsemi FPGAs in heterogeneous WSN
motes has been demonstrated and evaluated. The implementa-
tion is based on the DirectC library provided by Microsemi for
JTAG programming. The main improvements of the DirectC
paging mechanism involve the lossless compression of the
transmitted pages and the prediction of page requests. The
latter effectively reduces the idle time of the MCU controlling
the configuration process. The page prediction was found to
be the most effective improvement, as it reduces the time and
energy required for the configuration by 40 % independently
from the actual bitstream content.

Some future work is required to further improve the effi-
ciency and robustness of the proposed OTAP procedure. First,
the current implementation does not fully exploit the dynamic

power management capabilities of the HaLOEWEn mote. For
example, the wireless transceiver is currently not turned off as
long as no bitstream page is expected to be received. Second,
the efficient and simultaneous reconfiguration of multiple sen-
sor nodes with the same, or slightly different bitstreams should
be investigated. Bitstream pages required by multiple nodes
should be broadcast, instead of using multiple transmissions
of the same page. Finally, the configuration traffic should also
be protected against malicious modifications by an appropriate
encryption scheme.

REFERENCES

[1] A. Engel and A. Koch, “Heterogeneous Wireless Sensor Nodes that
Target the Internet of Things,” IEEE Micro, vol. 36, no. 6, pp. 8–15,
2016.

[2] K. Shahzad and B. Oelmann, “Quantitative Evaluation of an FPGA based
Wireless Vibration Monitoring System in relation to Different Sampling
Rates,” in Proc. of the Int. Conf. on Circuits and Systems, 2014.

[3] J. Valverde, A. Otero, M. Lopez, J. Portilla, E. de la Torre, and T. Riesgo,
“Using SRAM Based FPGAs for Power-Aware High Performance
Wireless Sensor Networks,” Sensors, vol. 12, no. 3, pp. 2667–2692,
2012.

[4] A. Brokalakis, G.-G. Mplemenos, K. Papadopoulos, and I. Papaef-
stathiou, “RESENSE: An Innovative, Reconfigurable, Powerful and
Energy Efficient WSN Node,” in IEEE Int. Conf. on Communications,
2011, pp. 1–5.

[5] G.-G. Mplemenos and I. Papaefstathiou, “Fast and power-efficient hard-
ware implementation of a routing scheme for WSNs,” in IEEE Wireless
Communications and Networking Conference (WCNC), 2012, pp. 1710–
1714.

[6] F. Philipp and M. Glesner, “An event-based middleware for the remote
management of runtime hardware reconfiguration,” in 23rd Int. Conf. on
Field programmable Logic and Applications, 2013, pp. 1–4.

[7] O. Berder and O. Sentieys, “PowWow : Power Optimized Hard-
ware/Software Framework for Wireless Motes,” in 23rd Int. Conf. on
Architecture of Computing Systems (ARCS), 2010, pp. 1–5.

[8] V. Rosello, J. Portilla, and T. Riesgo, “Ultra low power FPGA-based
architecture for Wake-up Radio in Wireless Sensor Networks,” in 37th
IEEE Annual Conf. on Industrial Electronics Society (IECON), 2011,
pp. 3826–3831.

[9] Microsemi. DirectC. [Online]. Available: https://www.microsemi.com/
products/fpga-soc/design-resources/programming/directc

[10] A. Biedermann, B. Dreyer, and S. Huss, “A generic, scalable recon-
figuration infrastructure for sensor networks functionality adaption,” in
IEEE Int. SOC Conference, 2013, pp. 301–306.

[11] G. D. Mois, M. Hulea, S. Folea, and L. Miclea, “Self-healing capabilities
through wireless reconfiguration of FPGAs,” in 9th East-West Design
Test Symposium (EWDTS), 2011, pp. 22–27.

[12] P. Ruberg, A. Guitar, and P. Ellervee, “Flexible controller for educa-
tional robot kit,” in 2015 IEEE Int. Conf. on Microelectronics Systems
Education (MSE), 2015, pp. 17–20.

[13] I. Adly, H. F. Ragai, A. El-Hennawy, and K. A. Shehata, “Over-The-Air
Programming of PSoC sensor interface in wireless sensor networks,” in
15th IEEE Mediterranean Electrotechnical Conference (Melecon), 2010,
pp. 997–1002.

[14] Y. E. Krasteva, J. Portilla, E. de la Torre, and T. Riesgo, “Embedded
Runtime Reconfigurable Nodes for Wireless Sensor Networks Applica-
tions,” IEEE Sensors Journal, vol. 11, no. 9, pp. 1800–1810, 2011.

[15] S. Yamaguchi, T. Miyazaki, J. Kitamichi, S. Guo, T. Tsukahara, and
T. Hayashi, “Programmable wireless sensor node featuring low-power
FPGA and microcontroller,” in Int. Joint Conf. on Awareness Science
and Technology and Ubi-Media Computing, 2013, pp. 596–601.

[16] Y. Wee and T. Kim, “A new code compression method for FOTA,” IEEE
Trans. on Consumer Electronics, vol. 56, no. 4, pp. 2350–2354, 2010.

[17] Microsemi. STAPL Player. [Online]. Available: https://www.microsemi.
com/products/fpga-soc/design-resources/programming/stapl-player

[18] D. A. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–
1101, 1952.

[19] A. Engel, T. Siebel, and A. Koch, “A Heterogeneous System Archi-
tecture for Low-Power Wireless Sensor Nodes in Compute-intensive
Distributed Applications,” in 40th IEEE Conf. on Local Computer
Networks, 2015.

[20] Hitex. PowerScale with ACM technology. [Online]. Available:
https://www.hitex.com/de/tools/energy-optimization/powerscale

