
978-1-5386-3797-5/17/$31.00 c©2017 IEEE

Synthesis of Interleaved Multithreaded Accelerators
from OpenMP Loops

Lukas Sommer, Julian Oppermann, Jaco Hofmann, and Andreas Koch

Embedded Systems and Applications Group (ESA)
Technische Universität Darmstadt, Germany

{sommer, oppermann, hofmann, koch}@esa.tu-darmstadt.de

Abstract—Similarly to CPUs and GPUs, FPGA-based accel-
erators can also profit from exploiting thread-level parallelism.
Thus, the synthesis tools for generating the circuits from high-
level languages need to be extended appropriately.

We present an extension of the Nymble hardware/software-co-
compiler for the automatic synthesis of hardware accelerators
from OpenMP worksharing loops, and describe modifications
to the datapath- and memory-architecture for multi-threaded
execution.

The new execution model employs both spatial as well as
thread-level parallelism in the microarchitecture of the generated
accelerator, with the aim to efficiently hide memory access
latencies.

We are able to gain raw speedups of more than a factor of
3x, and improve the utilization of the computing unit by more
than factor 8x, when executing four threads instead of a single
one on the computing units.

I. INTRODUCTION

Recently, FPGAs are increasingly employed in large data-
centers as an alternative to GPUs as dedicated hardware accel-
erators. An example for the use of FPGAs in high-performance
computing (HPC) scenarios is Microsoft’s Bing and Azure
Cloud [1], where all compute nodes are equipped with FPGAs
for compute and high-speed network-processing tasks. FPGA-
based acceleration has also been used successfully for high-
speed network security monitoring [2].

High-level synthesis (HLS) of accelerator designs from
high-level language input programs is a powerful method to
automatically implement FPGA-based hardware accelerators.
As of today, HLS-tools mainly gain their speedup over a
sequential execution on a CPU by exploiting the instruction-
level parallelism (ILP) present in the input programs. However,
the instruction-level parallelism contained in applications is
typically limited, e.g., by data-dependencies between opera-
tions or by control-flow.

For the successful employment of HLS-generated FPGA-
designs in HPC-scenarios, the limited amount of speedup
resulting from the exploitation of instruction-level parallelism
is not sufficient. This is especially true in light of today’s
FPGA sizes, which provide an increasing amount of resources
to the user.

To make full use of the available resources and in order
to make HLS-based FPGA-designs more suitable for use in
high-performance computing, HLS-tools recently started to
make use of thread-level parallelism (TLP). Yet, the automatic

parallelization and extraction of thread-level parallelism from
input programs is difficult at best and impossible for a large
range of problems.

User-annotations guiding the compiler in the parallelization
and extraction of TLP from the input program are a possible
and powerful alternative. A popular standard for such user-
annotations is OpenMP [3]. The use of OpenMP directives for
HLS allows to use existing programs as input, without the need
for the insertion of special hardware annotation by the user.
Furthermore, OpenMP’s shared memory computation model
is perfectly suited for FPGA-based hardware accelerators,
because their architecture often combines the FPGA with an
external memory, to which all threads running on the FPGA
have access.

From the microarchitecture perspective, TLP can be ex-
ploited by carrying out each thread’s computations on a dedi-
cated hardware computing unit. However, this solution leaves
plenty of room for improvement: Due to the latency caused by
accesses to main memory, the computing unit will be idle a
significant portion of the execution time, leaving the underly-
ing hardware resources unused. By interleaving the execution
of multiple threads on the computing units, these latencies
can efficiently be bridged with other computations, improving
the hardware resource utilization. Therefore it is the aim of
this work to extend the existing Nymble hardware/software-
co-compiler to synthesize hardware accelerators comprising
computing units, which are able to interleave the execution of
multiple threads in a time-sliced manner on the same FPGA
area.

The rest of this work is structured as follows. Section II
gives an overview of the existing approaches for OpenMP-
based HLS. In Section III we describe the Nymble hardware-
software-co-compiler, on which this work is based. Section IV
presents our novel hardware execution model and explains
all necessary modifications to the hardware datapath- and
memory-architecture. In Section V we evaluate our approach,
Section VI concludes and gives an outlook to future work.

II. RELATED WORK

There have been a number of approaches to integrate
OpenMP into High-Level Synthesis, ranging from mere
source-to-source transformations to complex hardware execu-
tion models featuring direct access to memory from the accel-

erator. Similar to our approach, some of these approaches are
based on OpenMP worksharing loops, indicated by #pragma

omp parallel for in the input program.
Leow et al. [4] as well as Dziurzanski et al. [5] pursue a pure

hardware approach and need to emulate shared memory by
registers (Leow) and global signals (Dziurzanski), respectively,
because their hardware implementation does not include a
memory system with access to shared memory.

In their work, Cilardo et al. [6], [7] use an OpenMP-
annotated input program as starting point for the synthesis
of specialized hardware accelerators in a System-on-chip,
combined with general-purpose processors. All elements of
the resulting MPSoC have full access to the memory via the
communication network of the SoC.

The integration of OpenMP support into the LegUp high-
level synthesis system [8] by Choi et al. [9] features multiple
levels of parallelism in hardware. The resulting system is com-
posed of a MIPS processor and multiple hardware accelerators,
which have direct access to memory via the interconnect.

All of the approaches presented above exploit thread-
level parallelism with the concurrent execution on multiple
hardware units. The set of iterations is partitioned onto
multiple identical hardware kernels, which each conduct the
computations of a single thread. However, in none of the
these approaches multiple threads are executed on the same
hardware datapath in an interleaved or concurrent fashion.
Each distinct datapath is only running a single thread at a
time and this 1:1-relationship between computing units and
threads is maintained throughout the execution time. Only
Choi et al. are able to pipeline execution of multiple threads
in a limited number of cases. Our approach, in contrast, is
intended to exploit thread-level parallelism in multiple ways,
by distributing the computation across multiple computing
units and, at the same time, running multiple threads on each
computing unit in an interleaved manner.

Concurrent execution of multiple threads has been used in
existing approaches [10], [11], [12]. In contrast to our work,
these approaches do not use OpenMP as a starting point for
high-level synthesis. The thread-level parallelism originates
from threads explicitly managed by the user or from multiple
instances of the same program running in distinct processes
and requires significant effort from the user. Contrary to these
approaches, our work allows users to incrementally modify
the program by inserting OpenMP-pragmas, which manage
thread-level parallelism. Moreover, our support for OpenMP
provides the user with a clearly defined shared memory model
and synchronization mechanisms.

Both approaches also integrate thread pipelining, which we
do not use in our current implementation.

III. NYMBLE HW/SW-CO-COMPILER

Our work is an extension of the Nymble hardware/software-
co-compiler [13], which aims for the automatic synthesis of
a large subset of C (including, e.g., pointer operations and
irregular control flow in loops) for so-called Adaptive Com-

puter Systems (ACS), comprising an FPGA as reconfigurable
computing unit (RCU) and a general-purpose processor.

Nymble allows the extraction of arbitrary sections of code,
usually delimited by pragmas for synthesis, to a dedicated
hardware accelerator. Furthermore, it also automatically pro-
vides all means necessary to interface between the software
running on the GPP and the hardware accelerator.

For the high-level synthesis of the extracted hardware part
in the Nymble compiler, the pragma-denoted section of the
input program is represented as a hierarchical tree of so-
called control-memory-data-flow-graphs (CMDFG), with one
CMDFG per loop in the hardware code region. A CMDFG
does not only model a program’s data flow between operations,
but also incorporates the control flow of the input code. To
this end, the control flow in the CMDFG is represented by
conditional data flow and predicates, which are added to
operations with side-effects (e.g., memory accesses). The tree
of graphs contains one CMDFG per natural loop in the input
program and reflects the nesting hierarchy of the loops in the
program. During the execution of an inner loop, the graph of
the surrounding loop does not continue its execution.

The work presented in [10], [11], called Nymble-SMT, is
also based on the Nymble compilation framework. This ap-
proach uses loop-pipelining with a dynamically varying initi-
ation interval. To ensure the minimal latency required to main-
tain loop-carried dependencies between iterations from the
same threads, this implementation uses complex backpressure
logic with tokens. In addition, dynamic operator multiplexing
is required to resolve concurrent use of shared operators from
different iterations of the same thread. As a consequence,
the relative costs for the implementation of the Nymble-SMT
multithreading model can be very high, especially for integer
benchmarks which use only relatively simple operators. In this
work we extend Nymble with an alternative multithreaded ex-
ecution model (Section IV-A) and the corresponding controller
implementation. To support thread-switching in the computing
units, we augment Nymble’s CMDFG-model with thread-
context stores and implement an algorithm that inserts context
stores only where necessary (Section IV-B). More details on
the basic mapping from CMDFG to hardware datapath and
the hardware/software-interface can be found in [13].

In contrast to Nymble-SMT, our model does not use loop
pipelining to reduce the cost and complexity of the controller
implementation. In order to support loop pipelining with a
static II in our multithreaded model, we would need to add
logic to synchronize stalls across all CDFGs of the graph-
hierarchy. Besides that, the size of a thread’s context, i.e. the
elements that need to be stored and restored upon stall and
reactivation, increases when applying loop pipelining.

Being based on OpenMP, our implementation incurs less
overhead in the hardware/software-interface, as a single data-
transfer and invocation is sufficient, compared to Nymble-
SMT where each thread has to go through the HW/SW-
interface. Contrary to Nymble-SMT, our approach supports the
duplication of datapaths, which allows for the concurrent exe-
cution of multiple threads on distinct resources. Our approach

float a;
float x [SIZE];
float y [SIZE];

#pragma omp parallel for schedule(static)\
shared(a, x, y) private(i)\
num_threads(NUM_THREADS)
for(i=0; i<SIZE; i++){
 y[i] = a * x[i] + y[i];
}

Fig. 1. Example of an OpenMP worksharing loop.

employs a fair round-robin hardware thread scheduler, whereas
Nymble-SMT uses a static prioritization scheme which can
lead to the starvation of threads. Furthermore, we implemented
a new cache- and memory-infrastructure which allows for
shared memory between threads and higher operation frequen-
cies of the kernels compared to Nymble-SMT.

IV. NYMBLE-OMP

The aim of this work is to extend the existing implemen-
tation of Nymble to support the synthesis of multithreaded
FPGA-accelerators based on OpenMP input programs. We
therefore need to add support for processing of loop-nests
marked as OpenMP worksharing loops by the pragma omp

parallel for to Nymble. To this end, we implement the
detection and extraction of OpenMP worksharing loops in
Nymble’s frontend. Nymble-OMP will then construct a hierar-
chical tree of CMDFGs for all loops in the annotated loop-nest.

The execution on the hardware datapaths synthesized from
the resulting set of CMDFGs follows a novel execution
model. The new execution model facilitates the interleaved
execution of multiple threads on each hardware datapath, and
the distribution of the input problem among multiple identical
computing units running concurrently.

The following sections describe our novel execution model
and necessary modifications to Nymble’s datapath architecture
in detail.

A. Execution Model

The basic idea of OpenMP worksharing loops, such as the
one shown in the code snippet in Fig. 1, is to distribute the
work specified by the loop body across a team of threads.
From the set of iterations of the annotated loop, each thread
is assigned a subset, whose size is dependent on the chosen
distribution scheme.

On a typical multi-core CPU, the threads in the team will
be distributed across the cores present in the CPU, where the
execution of multiple threads will be interleaved in a time-
sliced manner in case the number of threads specified by the
user exceeds the number of cores.

In contrast, the existing OpenMP-based approaches pre-
sented in Section II synthesize a dedicated hardware comput-
ing unit per thread and carry out each thread’s computation

Fig. 2. Thread state diagram.

on distinct hardware resources without interleaving. The ad-
vantage of this model is that a thread can always be executed
if it is ready to do so.

However, not all operations’ latencies can be determined
statically during the HLS-scheduling process, which is es-
pecially true for cached memory accesses that can cause a
significant delay in case of a cache-miss. We refer to this kind
of operation as variable-latency operations (VLO).

If at runtime a variable-latency operation does not finish
within its assumed latency, this results in a stall of the
hardware, i.e., the computation on the hardware computing
unit is stopped until the VLO completes.

As a consequence, the employed hardware resources are
not utilized to their full extent as they remain idle for a
significant fraction of the execution time, e.g., if a data item
must be retrieved from main memory. With a more efficient
utilization of the hardware resources one could either achieve
the same runtime performance with fewer hardware resources
or improve the performance of the system with the same
number of hardware resources.

Thus, the central goal of our execution model is to hide
statically unpredictable latencies, such as latencies caused by
cached memory accesses, with the execution of another thread
on the same hardware computing unit.

In case the executing thread hits a stall, i.e., if the execution
of a datapath operation takes longer than statically assumed
for HLS-scheduling, we perform a thread-switch, replacing
the currently active thread by some other available, execution-
ready thread.

In order to be able to perform a thread-switch, we need to
remove the 1:1-relationship between threads and computing
units, as used by existing approaches. Instead of mapping
each thread in the execution context to a dedicated computing
unit, we assign a set of threads to each computing unit. The
execution of all threads assigned to each computing unit is
then interleaved in a time-sliced manner. In doing so, a thread-
switch is only performed in case the currently executing thread
encounters a stall.

At runtime, a thread can be in one of four different states,
shown in Fig. 2, in our execution model. The single thread
in state Active executes until it hits a stall, causing the state
transition to state Stalled. As a consequence, one of the
available threads is chosen as next thread to be executed and
activated. We currently use a round-robin scheme to select

the next thread from the set of threads in state Available
for execution, but many other selection schemes, such as
techniques used for hardware-only schedulers in GPUs [14],
are conceivable and could be implemented in our controller
architecture.

At the same time, the execution of the variable-latency
operation continues in the background, until it is completed
and the previously stalled thread becomes available again.

The cycle of execution, stall, and reactivation continues for
each thread until the thread eventually completes all iterations
it was assigned at the beginning of the hardware execution and
changes to state Finished.

Stage 6

Stage 5

Stage 4

Stage 3

Stage 2

Stage 1

TCS

VLO

SES

OP4

SES

OP3

TCS

M
C

O

TCS

VLO
TCS

OP2

TCS

OP1

Fig. 3. Example for the two different kinds of data storage in the datapath
(SES = single element storage, TCS = thread context storage, VLO = variable-
latency operation, MCO = multi-cycle operation).

B. Datapath architecture and composition

Our multithreaded execution model requires the hardware
datapaths in the computing unit to be able to store the thread
contexts of all non-active threads, i.e. all threads stalled or
available for execution, which have been assigned to that
computing unit.

On a CPU, a thread context is typically defined by the
values held in registers, which are stored and restored in case
of a thread context switch. In Nymble’s CMDFG model (cf.
Section III), all data- and control-flow values are represented
by data flow edges in the associated CMDFGs, so a thread’s
context is defined by the values that flow between the operators
comprised in the hardware computing unit.

In order to carry values across clock cycle boundaries and
to store thread context in the datapath, we insert two different
types of intermediate storage elements into the hardware
datapaths:

• Single element storage (SES) only holds a single data
item, but require significantly fewer hardware resources
(registers in particular) for their hardware realization.

• Thread context storage (TCS) is able to store a single
data item per thread and can be indexed by a thread’s
unique ID to retrieve the value for a particular thread.

We use registers for the implementation of both kinds of
storage elements, because TCS typically store 4-8 elements

(max. 512 bit) and an implementation in block RAM would
be a waste of memory resources.

Our datapaths are statically scheduled, i.e. each operation
is assigned a time-step, called stage in the Nymble context. It
would be a waste of resources to insert thread context storages
in more locations than absolutely necessary. In general the
insertion of a thread context storage to hold a value is
required only if a thread switch can occur between the time
the value is produced by an operation, and the time it is
consumed by its latest (in the schedule) user. Expressed as
a rule, an operation OP that produces a data value must be
provided with a thread context storage if any of the stages in
the interval [Start(OP),Last Use(OP)[contains a variable-
latency operation.

The CMDFG-excerpt in Fig. 3 depicts some typical
scenarios showcasing examples for applications of the rules
described above. VLOs are generally provided with a thread
context storage in the following stage. The multi-cycle
operation (MCO, multiple clock cycles fixed latency) must be
provided with a thread context storage as it spans across Stage
3, in which a thread switch can happen due to the VLO in
Stage 2. Operation 1 (OP1) has been provided with a thread
context storage because its last use (OP3), which is decisive
for the rule, is again in Stage 3, where a thread switch can
happen. In contrast to VLOs, thread-context storage linked to
simple operations must be added to the same stage, as simple
operators cannot hold the value. Operation 2 is also provided
with a thread context storage due to the fact that the stage
it has been scheduled in contains a VLO. For Operation 3,
a simple single element storage is sufficient, as no thread
switching can happen between its start in Stage 3 and its last
use in Stage 4. The same holds true for Operation 4, because
a potential thread switch caused by the variable-latency
operation in Stage 5 will not occur in Stage 5, but in Stage 6.

With the thread-context storage included in the datapaths,
the context of all currently non-active threads can be stored
within the datapath, and restored when a thread’s execution is
resumed.

However, the interleaved execution of multiple threads on
a computing unit is not the only way we can make use of
the thread-level parallelism in OpenMP worksharing loops.
Just as common in today’s multicore CPUs, and similar to
the previous approaches presented in Section II, we further
exploit thread-level parallelism by including multiple identical
computing units in the hardware accelerator and distributing
the computations of the worksharing loop across these com-
puting units. The computing units work in isolation from each
other. Thread context is not shared and threads do not migrate
between units.

C. Memory architecture

In order to make use of potential spatial and/or temporal
locality exhibited by memory accesses, we insert a cache-
infrastructure in front of the interface providing access to the
external RAM on the device. We use a direct-mapped cache

Memory

Crossbar

C
ac

he
0

C
ac

he
1

C
ac

he
n

C
ac

he
n-

1

CU CU

Fig. 4. Cache- and memory-architecture, n is the total number of threads
across all computing units.

with a write-through strategy for writes to memory. Each cache
uses 512 cache-lines with 16 32-bit words in each cache-
line. A dedicated AXI4 master interface is used in the kernel
interface for memory accesses. The cache IP we use in our
implementation provides a single AXI4 slave interface, but
does not yet support reordering of accesses, i.e., a cache miss
will delay all subsequent accesses, even if they want to access
data present in the cache.

If such a cache would be shared by multiple threads,
accesses from different threads can delay each other, with
a potentially negative impact on performance. In order to
achieve maximum performance, we instantiate a dedicated
cache per thread, allowing each thread to access memory
independently.

This model, depicted in Fig. 4, is compliant to the OpenMP
shared memory model, which allows for threads to have
their own view of memory between synchronization points
[3]. In addition to the shared memory, the OpenMP standard
allows for each thread to have thread-private memory, e.g., for
individual loop counters. However, in our CMDFG-model such
thread-local values are only present as intermediate values in
the CMDFGs and are thread-private by design. Therefore we
do not need to make any arrangements for explicit thread-
private memory in our memory architecture.

V. EVALUATION

In this section we evaluate how our new execution model
affects performance and the effects of the necessary changes to
the datapath- and memory-architecture. We compare our new
execution model to single-threaded execution and consider
speedups as well as the costs of the hardware implementation
of our execution model.

Similar to related work [9], [12], we use benchmarks
with integer arithmetic. Our testcases are taken from the
Adept benchmark suite [15]. Additionally we added an im-
plementation of the sparse matrix-vector multiplication using
the compressed row storage format. Furthermore, we also
use floating-point implementations of each testcase for our
evaluation. Compared to the integer versions, these testcases

exhibit a different memory access behavior, i.e., memory
accesses happen less frequently as the computation for each
element takes longer. By including floating-point versions
in our evaluation, we can study the effects of the memory
access behavior in more detail. For our evaluation, vector-
based benchmarks are set up to process 2000 element, matrix-
based benchmarks work on matrices of 50×50 elements.

We compare our new multi-threaded execution model to an
execution model where only a single thread is running on each
computing unit. To this end, we examine four different con-
figurations: A single-threaded configuration with two threads
running on two computing units and three multi-threaded
configurations with two computing units running two, three
and four threads each (four, six, and eight threads total).

First, we evaluate the costs regarding hardware resources
for the implementation of our execution model. This includes
the necessary modifications to the datapath architecture (cf.
Section IV-B) and the implementation of the controller and
thread scheduler.

We use Vivado 2016.4 for the FPGA implementation, tar-
geting a Virtex 7 (XC7VX690T) device on a VC709 board.
The memory and host-connectivity-infrastructure is configured
to run at 200 MHz, independent from the actual operation
frequency of the hardware kernel.

The results for all four configurations are given in Table I.
The number of DSP blocks used is unaffected by the choice
of the execution model. As expected the number of occupied
BRAM-slices increases with an increasing number of threads,
as we need to spend more resources on the extra caches in
the design used for the additional threads (cf. Section IV-C).
The logic resources required for the implementation of the
additional caches, our thread-switching logic and the thread-
context storage also cause an increase in resource usage.

However, the biggest effect of our execution model with
regard to the synthesis results is the limitation of the operation
frequencies of the hardware kernels. The complexity of the
combinatorial computations and indexing of thread-context
storage causes the thread-switching logic to become critical
for the achievable frequency and causes the frequency to
decrease with an increasing number of threads interleaved on
the computing unit. This effect has also been observed by Choi
et al. in their work [9].

Despite the negative impact of the lower operation frequen-
cies on performance, we are still able to gain a significant
speedup over the single-threaded execution. The bar-plot in
Fig. 5 shows the relative speedup over execution with a
single thread per computing unit for each of our three mul-
tithreaded configurations. The execution times were obtained
by executing the resulting FPGA accelerator designs on the
VC709-board. The accelerated program is running on the host
computer and data is transferred to the external RAM on
the FPGA board using PCI Express. We use performance
counters inside the kernels and combine them with the clock
period achieved during FPGA implementation to calculate the
runtime. The data transfer time from host to FPGA and back
are not included in the runtime, as they are independent of the

TABLE I
FPGA IMPLEMENTATION RESULTS (POST-PLACE&ROUTE): VARYING NUMBER OF THREADS PER COMPUTING UNIT

1 thread per computing unit 2 threads per computing unit

Testcase Exec.-time Freq. LUT(%) FF(%) BRAM(%) DSP(%) Exec.-time Freq. LUT(%) FF(%) BRAM(%) DSP(%)
(µs) (MHz.) (µs) (MHz.)

AXPY Int. 3815 175 17.86 12.86 31.12 0.17 2013 165 20.63 15.23 34.46 0.17
AXPY Float 3997 175 18.34 13.06 31.12 0.11 2854 157 21.62 16.17 34.66 0.11
Dense MV Int. 4785 162 19.17 13.09 31.12 0.50 3175 150 23.42 17.00 34.66 0.50
Dense MV Float 5714 169 19.47 13.28 31.12 0.44 4873 135 23.68 17.18 34.66 0.44
SPMV Int. 1803 168 19.58 13.10 31.12 0.17 1209 162 23.98 17.11 34.66 0.17
SPMV Float 2086 180 19.23 12.54 30.92 0.11 1733 140 23.47 16.53 34.46 0.11
Vector Scaling Int. 3434 175 17.62 12.81 31.12 0.17 1877 155 20.80 15.74 34.66 0.17
Vector Scaling Float 3302 188 17.79 12.88 31.12 0.11 1873 157 20.93 15.81 34.66 0.11

3 threads per computing unit 4 threads per computing unit

Testcase Exec.-time Freq. LUT(%) FF(%) BRAM(%) DSP(%) Exec.-time Freq. LUT(%) FF(%) BRAM(%) DSP(%)
(µs) (MHz.) (µs) (MHz.)

AXPY Int. 1473 150 23.57 17.89 37.93 0.17 1372 126 27.16 21.29 41.67 0.17
AXPY Float 2617 133 24.56 18.84 38.13 0.11 2418 130 27.55 21.48 41.67 0.11
Dense MV Int. 2396 150 26.71 20.09 38.13 0.50 2312 132 30.60 23.17 41.67 0.50
Dense MV Float 3648 146 27.07 20.27 38.13 0.44 3635 134 30.76 23.35 41.67 0.44
SPMV Int. 1040 141 27.26 20.24 38.13 0.17 922 133 30.91 23.34 41.67 0.17
SPMV Float 1416 139 27.55 20.42 38.13 0.11 1227 139 31.33 23.51 41.67 0.11
Vector Scaling Int. 1291 150 22.86 17.54 37.93 0.17 1134 122 25.56 20.09 41.46 0.17
Vector Scaling Float 1443 150 23.66 18.38 38.13 0.11 1463 127 26.47 20.94 41.67 0.11

Number of LUTs, FFs, BRAM slices and DSP blocks are given as percentage for brevity. The total number of available resources are 433200, 866400, 1470 and 3600 respectively.

Fig. 5. Speedup compared to single threaded execution.

execution model used.
We are able to achieve a significant speedup in all testcases,

in some cases of more than a factor of 3x by interleaving the
computation of multiple threads. The geo.-mean speedups are
1.51x, 1.93x and 2.07x, respectively.

The impact of our execution model is also visible in Fig. 6,
which relates the number of idle cycles to the number of
overall cycles. While the single-threaded computing unit lies
idle for more than half of the execution time in almost
all cases, our execution model improves the utilization of
the computing units significantly. With an increasing number
of threads assigned to each computing unit, stalls can be
hidden more effectively with computations from other threads,
resulting in a reduction of the idle-cycles by more than factor
8x (testcase Dense MV Float).

Fig. 6. Percentage of idle cycles encountered during execution.

While there is a significant increase in speedup when going
from two threads per CU to three threads per CU for most
of the cases, this trend cannot always be sustained when
increasing the number of threads per CU to four. In those cases
the interleaving of three threads on each CU already leads to a
high utilization (cf. Fig. 6), leaving less headroom for an extra
thread. In combination with the reduced clock frequency, the
addition of another thread is not always beneficial, as can be
seen in testcase Vector Scaling Float.

As described earlier, the performance is also affected by
the frequency of memory accesses. As visible in Fig. 5, we
generally achieve a higher speedup for integer benchmarks,
where memory access happen more frequently, and the time
spent during stalls caused by memory accesses makes up for
a greater portion of the execution time. Especially in these

cases the strength of our execution model, the effective hiding
of memory access latencies, comes into play.

In summary, the synthesis of hardware accelerators from
OpenMP programs clearly benefits from the interleaving of
threads on the computing units in our execution model. The
number of idle cycles decreases significantly (up to factor 8x)
and speedups of more than a factor of 3x can be achieved.
The implementation of our execution model requires some
additional resources, especially for the extra caches. The
optimal number of threads is dependent on the input program
and the memory access behavior exhibited by the program.

VI. CONCLUSION AND OUTLOOK

In this work, we presented an extension of the Nymble
hardware/software-co-compiler to automatically generate mul-
tithreaded hardware accelerators from OpenMP worksharing
loops. The novel execution model presented here as well as
the modifications made to datapath- and memory-architecture
allow to interleave the execution of multiple threads on one
or more hardware computing units in a time-sliced manner.

We investigated the impact of our new execution model on
hardware resource consumption and performance and com-
pared our model to single-threaded execution. Our results show
that the HLS of FPGA-based accelerators clearly benefits from
our execution model. The interleaving of multiple threads on
a computing unit allows to efficiently hide latencies caused by
memory accesses. We were able to gain raw speedups of more
than a factor of 3x with four-way multithreaded execution and
improve the utilization of the computing units by more than a
factor of 8x.

Our evaluation also showed that the optimal number of
threads per computing unit is dependent on the input program
and its memory access behavior. In the future, we want to
automatically determine the best number of threads using
compiler analyses. Besides that, we plan to add support for the
OpenMP offloading constructs [16] to our compiler, allowing
the user to clearly denote regions of code that should be
extracted to a hardware accelerator and which and how data
is mapped to the device memory. We also want to further
investigate the impact of the memory- and cache-architecture
on performance and how this infrastructure can be adapted to
the input problem.

REFERENCES

[1] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in Proceedings of
the 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Computer Society, October 2016.

[2] S. Muhlbach, M. Brunner, C. Roblee, and A. Koch, “Malcobox: De-
signing a 10 gb/s malware collection honeypot using reconfigurable
technology,” in Field Programmable Logic and Applications (FPL), 2010
International Conference on. IEEE, 2010, pp. 592–595.

[3] “OpenMP Application Programming Interface - OpenMP Standard 4.5,”
Nov. 2015.

[4] Y. Leow, C. Ng, and W. Wong, “Generating hardware from OpenMP
programs,” in IEEE International Conference on Field Programmable
Technology, 2006. FPT 2006, Dec. 2006, pp. 73–80.

[5] P. Dziurzanski, W. Bielecki, K. Trifunovic, and M. Kleszczonek, “A
System for Transforming an ANSI C Code with OpenMP Directives
into a SystemC Description.” in DDECS, vol. 6, 2006, pp. 151–152.

[6] A. Cilardo, L. Gallo, and N. Mazzocca, “Design space exploration for
high-level synthesis of multi-threaded applications,” Journal of Systems
Architecture, vol. 59, no. 10, Part D, pp. 1171–1183, Nov. 2013.

[7] A. Cilardo, L. Gallo, A. Mazzeo, and N. Mazzocca, “Efficient and
scalable OpenMP-based system-level design,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2013, Mar. 2013, pp.
988–991.

[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “LegUp: High-level Synthesis for
FPGA-based Processor/Accelerator Systems,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 33–36.

[9] J. Choi, S. Brown, and J. Anderson, “From software threads to parallel
hardware in high-level synthesis for FPGAs,” in 2013 International
Conference on Field-Programmable Technology (FPT), Dec. 2013, pp.
270–277.

[10] J. Huthmann, J. Oppermann, and A. Koch, “Automatic high-level synthe-
sis of multi-threaded hardware accelerators,” in 2014 24th International
Conference on Field Programmable Logic and Applications (FPL), Sep.
2014, pp. 1–4.

[11] J. Huthmann and A. Koch, “Optimized high-level synthesis of SMT
multi-threaded hardware accelerators,” in 2015 International Conference
on Field Programmable Technology (FPT), 2015, pp. 176–183.

[12] M. Tan, B. Liu, S. Dai, and Z. Zhang, “Multithreaded pipeline
synthesis for data-parallel kernels,” in Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided Design, ser.
ICCAD ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 718–725.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2691365.2691510

[13] J. Huthmann, B. Liebig, J. Oppermann, and A. Koch, “Hard-
ware/software co-compilation with the Nymble system,” in 2013 8th
International Workshop on Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC), Jul. 2013, pp. 1–8.

[14] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-aware Warp Scheduling
for GPGPU Workloads,” in Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, ser. PACT ’14.
New York, NY, USA: ACM, 2014, pp. 175–186.

[15] Nick Johnson, Michèle Weiland, Trevor Carlson, and Sudarshan
Balaji, “The Adept Benchmark Suite,” 2015. [Online].
Available: http://www.adept-project.eu/images/whitepapers/p_590591_
1446568406_Adept_Whitepaper_Benchmarks.pdf

[16] S. F. Antao, A. Bataev, A. C. Jacob, G.-T. Bercea, A. E. Eichenberger,
G. Rokos, M. Martineau, T. Jin, G. Ozen, Z. Sura, T. Chen, H. Sung,
C. Bertolli, and K. O’Brien, “Offloading support for openmp in clang
and llvm,” in Proceedings of the Third Workshop on LLVM Compiler
Infrastructure in HPC, ser. LLVM-HPC ’16. Piscataway, NJ, USA:
IEEE Press, 2016, pp. 1–11.

