
Improved High-Level Synthesis for Complex
CellML Models

Björn Liebig1 �, Julian Oppermann1, Oliver Sinnen2, and Andreas Koch1

1 Embedded Systems and Applications, Technische Universität Darmstadt, Germany
{liebig,oppermann,koch}@esa.informatik.tu-darmstadt.de

2 Parallel and Reconfigurable Computing, University of Auckland, New Zealand
o.sinnen@auckland.ac.nz

Abstract. In this work, we present the use of a new high-level synthesis
engine capable of generating resource-shared compute accelerators, even
from very complex double-precision codes, for cell biology simulations.
From the domain-specific CellML description, the compilation pipeline is
able to generate hardware that is shown to achieve a performance similar
to or exceeding current generation desktop CPUs, and has energy savings
of up to 96% even for a single accelerator, which requires just 25-30%
area on a mid-sized FPGA.

Keywords: High-Level Synthesis, CellML, FPGA, Floating-Point

1 Introduction

For the simulation of biological systems at the cell level, CellML [1] has proven
to be a useful domain-specific representation, from which simulation models for
a number of execution platforms can be created. Since experiments commonly
require a multitude of simulation runs with different input data, achieving energy
efficiency has become an objective in addition to raw simulation performance.
To this end, automatic generation of FPGA-based simulation accelerators from
CellML descriptions has already been successfully investigated [2, 3]. However,
the purely throughput-oriented spatial architectures of prior art cannot compile
more complex cell descriptions due to chip size constraints, and then only provide
single-precision floating point accuracy.

We present the use of a new high-level synthesis engine capable of generating
resource-shared compute accelerators even for very complex double-precision
simulation codes, for use in a domain-specific CellML-to-accelerator compilation
pipeline.

The key contributions presented in this paper are 1) a source-to-source trans-
formation that enables more efficient high-level synthesis of the intermediate C
used in the CellML compilation pipeline, 2) adaptions of a high-level synthesis
engine for CellML compilation, and 3) a case study using the developed tool flow
to accelerate five of the largest CellML models on the the Xilinx Zynq platform in
double-precision. These models could not be translated using prior approaches,

2

Listing 1.1. Exerpt from CCGS output for [5], reformatted for readability
void computeRates(double VOI , double* CONSTANTS , double* RATES , double* STATES , double* ALGEBRAIC) {

RATES [0] = CONSTANTS [2] * STATES [2] * STATES [3] * (1.0 - STATES [0]) - CONSTANTS [3] * STATES [0];

ALGEBRAIC [0] = 1.0 / (1.0 + exp(CONSTANTS [5] * (STATES [1] - CONSTANTS [6])));

RATES [2] = (ALGEBRAIC [0] - STATES [2]) / CONSTANTS [687];

ALGEBRAIC [9] = CONSTANTS [116] / (1.0 + pow(CONSTANTS [119] / STATES [10], CONSTANTS [117]));

...

}

as their fully spatial realization exceeds the FPGA size. We demonstrate signifi-
cant performance gains compared to CPU execution, and better energy efficiency
than a GPU implementation.

2 Related Work

2.1 CellML-based Simulation

A CellML model is an XML-based description of a cell comprised of intercon-
nected components, and expressed as a system of ordinary differential equations
(ODE). OpenCMISS [4] is a simulation workbench where instances of cell models
are used as the data points in larger grids (or other spatial arrangements), e.g.,
to simulate a piece of ventricular tissue. Roughly, the simulation approach is as
follows: The interactions between the neighboring grid cells are computed at dis-
crete macro time steps. In order to progress the state of each cell from the current
to the next macro time step, numerical integration of the ODE system is used.
The simulation accuracy depends on the granularity of the integration steps: the
more micro time steps are used to discretize the time between two macro time
steps, the better the approximation. As the integration phase is done for each
cell independently, the resulting potential for acceleration on parallel architec-
tures is huge [4, 2]. Note that this observation has a direct impact on us aiming
for smaller accelerators: Even though we concentrate here on single-accelerator
performance, we could tile the entire FPGA with independent processing el-
ements, as the accelerators are not bottlenecked by memory bandwidth. This
use of MIMD computation structures also allows FPGA-based systems to scale
beyond the SIMD/SIMT-approach used by GPUs.

While it would be possible to build a front-end to parse and interpret CellML
directly, we instead rely on the “C Code Generation Service” (CCGS) [6], which
infers a sequential execution order for the underlying initial-value problem. We
use the generated highly idiomatic C code as a domain-specific IR for the rest of
the compile flow. Listing 1.1 shows an excerpt from the translation of a model by
Faville et al. [5]. One execution of the function computeRates corresponds to one
micro time step in the numerical integration. VOI is the “variable of integration”,
which is usually the time. CONSTANTS is a read-only array that contains model
parameters. The current state of each component in the model is passed as the
read-only array STATES. Intermediate values are stored in the array ALGEBRAIC. Its
elements are always written before read. Finally, the values in the output-only
array RATES represent the rates of change of the components for the next micro

3

time step. All arrays use the C type double, have statically known sizes and are
accessed by literal indices. Each statement in the equation-evaluation code is an
assignment to one of the aforementioned arrays.

2.2 CellML-specific HLS with ODoST

The vast potential for parallel processing motivated ODoST [2, 3], a high-level
synthesis system custom-made to construct accelerators for the numerical inte-
gration phase. ODoST reads the C code derived from a CellML model, generates
a fully-spatial datapath for the computeRates function and handles hardware syn-
thesis for the accelerator. Internally, floating-point (FP) operators generated by
FloPoCo [7] are used.

The proposed architecture is deeply pipelined and favors throughput instead
of latency: while the computation of subsequent micro-time steps for a single
cell cannot be pipelined, the accelerator can begin to compute a micro-time
step for a different cell in every cycle. The fully-spatial design does achieve
the optimum throughput of one result per clock cycle, but may have excessive
hardware requirements for larger models, even after applying additional standard
and domain-specific compiler optimizations [8].

In contrast, our approach constructs latency-optimized, non-pipelined micro-
time step accelerators for even the largest CellML models. It leverages the intel-
ligent resource-sharing and fast FP operators proposed by Liebig and Koch [9],
and allows us to flexibly trade-off parallelism (number of function units) with
area limits.

2.3 Generic HLS with Nymble

As the base for our CellML-specific work described here, we build on the Nymble
[10] HLS framework with the Nymble-RS extensions [9] for resource-shared
micro-architectures.

Nymble [10] itself uses the LLVM compiler framework as front-end and for
target-independent optimization. It can translate just parts of functions to hard-
ware, and even exclude sections within that area, moving them back to software,
as required. The generated hardware kernels and software parts execute together
in a shared memory architecture in the same address space (allowing transparent
passing of pointers between software and hardware). Nymble has already been
used as base for research in domain-specific compilation [11] and the synthesis
of advanced micro-architectures [12, 13].

Nymble-RS allows the area-efficient high-level synthesis of complex irregu-
lar codes having unstructured non-vectorizable FP computations in large loop
bodies. It uses numerous techniques, such as hierarchical microcode, schedule-
sensitive tree height optimization, and multiple mechanisms for intermediate
value storage, to tightly control the area of the generated accelerator. As it tar-
gets scientific HPC, it also includes highly optimized double precision operators
faster than the ones offered by FloPoCo [7].

4

2.4 Industrial and academic HLS systems

Many other academic and industrial HLS tools are capable of translating (often
differing) subsets of C into synthesizable RTL HDL code [14].

Most industrial tools such as Vivado HLS [15] or Mentor Catapult[16] focus
only on the hardware synthesis itself. They do not support hardware/software-
co-execution and interface synthesis in a heterogeneous system. This restriction
also applies to the academic compilers Bambu [17] and DWARV [18]. For FP,
DWARV does not support typical maths functions [18], while Synphony C and
Catapult do not support FP at all [14]. Bambu does supports FP operations
using the FloPoCo-Library[7]. However, it lacks the floor operation which is
required in many CellML models.

The academic tool LegUp [19] has seen widespread use and much develop-
ment, which led to its recent commercialization as an industrial software prod-
uct. LegUp also leverages the LLVM compiler framework and supports a large C
subset as input, including FP operations. The tool supports hardware-software
co-synthesis in a heterogeneous system, which makes it another interesting can-
didate for CellML synthesis.

3 Proposed Compilation Flow

Figure 1 shows the compilation flow from an XML-based CellML model to the
FPGA hardware design. CCGS [6] is used to translate the actual CellML de-
scriptions from the CellML repository [20] to idiomatic C code. This code, rep-
resenting the equation systems, is optimized by CellML-opt [8] using the “z”
flow, which leads to the optimizations of LLVM’s aggressive size optimization
preset “-Oz” being applied before the actual hardware synthesis. At this stage,
no unsafe FP transformations are performed.

.c
.v

.cellml .c .c
CCGS modified

cellml-opt

HLS tool

Vivado

FPGA

Resource sharing

Automatic allocation

Fast floating-point
operators focus

of this
work

Fig. 1. CellML-to-accelerator compilation flow

In addition, CellML-opt
was modified in this work
to use actual local variables
for intermediate values, in-
stead of storing them in ar-
rays. This removal of mem-
ory operations allows the ac-
tual HLS to more flexibly se-
lect between multiple storage
mechanisms for intermediate
values, and also enables, e.g.,
schedule-sensitive tree height
optimization.

The output of the HLS
tool consists of Verilog RTL, which is then fed for actual logic synthesis into the
vendor tools (Xilinx Vivado, in our case). As the Nymble framework is a true
hardware-software-co-compilation system, it also performs interface synthesis to

5

access the newly generated accelerator from the software. For evaluation pur-
poses, we use a short software program here that performs only the numerical
integration step using the accelerators, instead of the full-scale OpenCMISS [4]
simulation framework.

3.1 Additional FP Operators for CellML Models

While Nymble-RS does already support a number of high-performance double
precision FP operations (dmul, dadd, dsub, ddiv), it needed to be extended with
the additional operations log, exp, floor and pow required by CellML simulation
models. In this initial prototype of the flow, these have not yet been optimized to
the same degree as the four basic operations, but instead are based on existing
implementations. In all cases, we aim for an fmax of 200 MHz on Xilinx Virtex
7-level technology.

The log function is realized by an instance of the Xilinx CoreGen log core.
For the target frequency, the core was configured to use 34 cycles, which ensures
operation above 200 MHz. For the exp function, we use the FloPoCo exp core [21].
However, since FloPoCo is using a non-IEEE754 conformant number format,
input and output must be converted from and to IEEE754 format. 200 MHz
operation thus requires a pipeline depth of 26, with an additional two cycles
required for the format conversion.

Compute
of bits

Clear required
mantissa bits

Conditional
Add "1"

Handle Overflow & Exceptions

Sign Mantissa Exponent

Increment
required?

Sign Mantissa Exponent

1
st cycle

2
n

d
 cycle

3
rd

 cycle

Fig. 2. Newly developed floor operator

Since no realization for the floor/-
ceil functions was available to us, a cus-
tom implementation was developed. As
shown in Figure 2, it operates as fol-
lows: The number of mantissa bits to
the right of the binary point is com-
puted from the exponent in the first
cycle. The second cycle clears the re-
quired number of mantissa bits, but
tracks if any of these were ’1’ before.
This latter information is used in the
third cycle to conditionally increment
the mantissa. Each of these operations
has only a small delay and allows op-
eration faster than 200 MHz. The first
stage has an even shorter delay, and can
be chained with a preceding multiplexer
in resource-shared architectures.

The final function required for
CellML models, pow(x,y), is realized as
exp(log(x) * y). While this introduces
a larger error (discussed in Section 4.3)
and is thus not fully IEEE754-compliant, it allows resource-sharing with other
exp, log and dmul operations and serves to fulfill our aim of generating area-
efficient hardware.

6

3.2 Heuristic for Automatic Allocation

Despite being generated from CellML descriptions in an idiomatic manner, the
actual operation mix varies wildly between different simulation models and
should be reflected in the accelerator micro-architecture, specifically the number
of FP operators for each operation type.

We extended Nymble-RS with the following heuristic to enable the HLS tool
to automatically make a sensible, though not necessarily optimal choice. The
only user-set constraint is the total number of FP units to be used, which serves
as a limit on the hardware area required by the accelerator.

The simple heuristic aims to reflect the mix of FP operations in the model
with the mix FP operators in the hardware, subject to the constraint that at
least one FP operator is available for the required operation types. The initial
minimum number of FP operators of each type is computed by determining the
fraction for each operation type of the total user-set number of FP operators,
based on the relative frequency these operation types occur in the model, and
rounding down. The initial solution is then incrementally refined by determining
the operators farthest away from their ideal ratio, and adding another operator
of this type. This happens until the user-set upper bound on the total number
of FP operators is reached.

While this heuristic already delivers good performance and energy efficiency
(see Section 4), it could serve as a initial solution for more intelligent iterative re-
finement, e.g., by simulated annealing, which could then also consider individual
operator areas.

4 Experimental Results

4.1 Test Setup
Table 1. Examples from CellML repository
[20]

Model # operations Source
+ - * / pow exp log b c other total

A 615 687 290 160 36 20 0 11 1819 [5]
B 310 386 133 42 57 6 1 29 964 [22]
C 452 411 0 0 0 0 0 30 893 [23]
D 342 456 106 11 45 3 1 12 976 [24]
E 330 448 98 8 45 3 1 11 944 [25]

For ease of integration, we target
the Xilinx Zynq XC7Z045 FPGA
on the ZC706 evaluation board,
running Xilinx “bare metal” soft-
ware environment. The generated
accelerators are accessed from the
ARM Cores by using the AXI GP0
port, while the hardware can access
the main memory and second level
cache using the AXI ACP port. We used a version of the Nymble-RS tools based
on LLVM 3.3 as front-end and for machine-independent optimization.

As our approach targets the translation of large CellML problems, five of the
largest models from the CellML repository [20] (at the time of writing) are used
as test cases in this evaluation. Table 1 lists the models with the number of their
FP operations.

In all tests and for all compilers, we allow inexact mathematical optimiza-
tions. For Nymble-RS, this includes the use of faithful rounding FP units. If

7

not stated otherwise, simulations are run on 10 cells, with 1 million micro-step
iterations each.

4.2 Design Space Evaluation

Table 2 shows the results when generating accelerators with an increasing num-
ber of FP operator units (and thus growing hardware area). Since it gave better
results than more recent versions, we used Vivado 2014.1 for synthesis. All timing
and area results shown are post-place-and-route.

Table 2. Design space exploration. II=Initiation interval, WCT=Wall Clock Time

Test # FP # FFs # LUTs # BRAMs # DSPs Schedule II fmax WCT (s)
Case Units Length (MHz)

A 12 27647 (6%) 46335 (21%) 36 (3%) 92 (10%) 319 305 193 15.803
16 33973 (8%) 56610 (26%) 50 (5%) 134 (15%) 238 229 184 12.446
20 36620 (8%) 65826 (30%) 56 (5%) 144 (16%) 231 204 164 12.439
24 38834 (9%) 68752 (31%) 60 (6%) 169 (19%) 226 215 169 12.722

B 12 27713 (6%) 42383 (19%) 27 (2%) 77 (9%) 224 202 202 10.000
16 30310 (7%) 47743 (22%) 31 (3%) 102 (11%) 212 192 199 9.648
20 33615 (8%) 52579 (24%) 38 (3%) 121 (13%) 191 179 188 9.521
24 33532 (8%) 57144 (26%) 37 (3%) 131 (15%) 191 179 182 9.835

C 12 21895 (5%) 37186 (17%) 21 (2%) 30 (3%) 202 186 203 9.163
16 24101 (6%) 43513 (20%) 24 (2%) 40 (4%) 177 161 204 7.892
20 27207 (6%) 52324 (24%) 25 (2%) 45 (5%) 158 142 191 7.435
24 28671 (7%) 55580 (25%) 32 (3%) 55 (6%) 148 132 191 6.911

D 12 27763 (6%) 42814 (20%) 28 (3%) 77 (9%) 179 167 200 8.350
16 29360 (7%) 46705 (21%) 30 (3%) 87 (10%) 169 158 202 7.822
20 31269 (7%) 51069 (23%) 29 (3%) 97 (11%) 161 150 190 7.895
24 33798 (8%) 56588 (26%) 32 (3%) 127 (14%) 158 149 173 8.613

E 12 27650 (6%) 42393 (19%) 34 (3%) 77 (9%) 179 163 201 8.109
16 29264 (7%) 47269 (22%) 29 (3%) 87 (10%) 166 155 196 7.908
20 31188 (7%) 50596 (23%) 32 (3%) 97 (11%) 157 147 188 7.819
24 33586 (8%) 54845 (25%) 32 (3%) 127 (14%) 156 148 188 7.872

As can be seen, increasing the number of FP units generally carries an fmax
penalty, often due to slower wiring. Thus, the fastest accelerator will not neces-
sarily be the largest one.

In general, using ca. 25. . . 30% of the Zynq Z7045 device (a mid-sized chip)
per accelerator achieves the best execution time. As discussed in Section 2.1, the
total simulation performance will ideally scale linearly by employing multiple
accelerators, so the remaining FPGA area can be put to good use.

4.3 Computation Accuracy

Table 3 compares the average and maximum relative error introduced by single
precision arithmetic (as used in ODoST) to the error introduced by our approach.
The errors shown here are computed relative to a IEEE745-compliant reference
software execution using double precision and compiled without -ffast-math.

8

The error introduced by single precision becomes rather large when one mil-
lion (or more) iterations are used for integration. Depending on the required sim-
ulation accuracy, single precision may not suffice, whereas our double-precision
based approach carries a much smaller average error.

Table 3. Average relative error

Average Relative Error Maximum Relative Error
single-precision our approach single-precision our approach

A 5.67E-02 2.22E-14 1.37E-00 6.74e-13
B 2.62E-04 1.16E-14 4.78E-03 1.46E-13
C 3.09E-03 1.78E-14 1.75E-02 6.96E-14
E 6.06E-03 3.04E-14 4.09E-02 1.82E-13
D 7.12E-02 9.43E-15 2.93E-01 4.79E-14

4.4 Comparison to State-of-the-Art HLS Tools

In order to evaluate the performance of our tool, we attempted to compare it
against other state-of-the-art HLS systems, both academic and industrial.

LegUp: With LegUp being the most prominent academic C-based HLS tool
in recent years, it is a natural reference. However, with its recent commercializa-
tion, the license terms for LegUp 5.1 prohibit comparative benchmarking, thus
limiting our evaluation to the latest open-source version 4.0, which does not
carry that restriction. Since LegUp 4.0 does not fully support Xilinx devices, we
target the Altera Cyclone V family of chips for comparison.

Unfortunately, a number of issues caused this attempt to fail: The use of
the floor function often leads to crashes during HLS. To get around this, we
temporarily removed the floor-calls and were able to proceed to logic synthesis
using the Altera Quartus II vendor tools. Here we ran into the problem that
Quartus prohibits the use of exp as a module name, which was present in the
Verilog RTL generated by LegUp. Manually renaming then leads to multiple
“module signcopy not found” error messages. As this module does not seem to
have been distributed with the virtual machine image the LegUp authors kindly
have made available for experimentation, we gave up here.

Industrial tool: We cannot publish the name of the industrial HLS tool we
used as a reference here due to license restrictions. For these experiments, we
employed a recent version of a C-based HLS tool targeting Xilinx devices. Logic
synthesis was performed using Xilinx Vivado 2017.2, all numbers reported are
post-place-and-route.

As before, we manually explored multiple combinations of inlining, unrolling,
and pipelining for the input C-code, all expressed using the tool’s directives, and
report only the best (=fastest) results here. For comparability, we set the upper
bound on the number of FP units for each operation type identically to that our
own tool uses, computed as discussed in Section 3.2, with an upper bound of a
total of 20 FP units. In addition, we permitted the industrial tool the use of one
dedicated pow operator, which our tool emulates using log and exp. However, for

9

unknown reasons, the industrial tool exceeded this restriction (by using 2 or 3
pow units instead) for the test cases marked in Table 4 with an asterisk.

In contrast to LegUp, the industrial tool was actually able to compile the
code for all of the models. However, for the largest model (case A, Faville), place-
and-route failed due to congestion. Attempts to alleviate this by using specific
anti-congestion settings in the Vivado tools failed. When the mapping process
did succeed, the generated accelerators where all larger and slower (sometimes
by an order of magnitude) than those of our system.

Table 4. Accelerators created by industrial HLS tool, relative to our approach

FFs LUTs DSPs BRAM II fmax WCT (s)

A 85K 134K 494 22 413 P+R failed
233% 204% 343% 39% 202%

B* 80K 84K 578 68 121 84.2 14.3
237% 160% 478% 179% 68% 45% 151%

C 55K 76K 135 0 169 153.3 11.0
201% 144% 300% 0% 119% 80% 148%

D* 69K 80K 404 23 1933 84.6 228.5
222% 156% 416% 79% 1289% 45% 2894%

E* 70K 79K 404 23 1230 83.1 148.0
224% 156% 416% 72% 837% 44% 1893%

4.5 Performance / Energy relative to CPU

To evaluate the performance and energy efficiency of our approach relative to
a fast CPU, we proceeded as follows: We use a fast desktop-class Intel Core i7
6700K CPU running at 4.2 GHz and compile with gcc 5.3.1 with -O3 -ffast-math.
On the FPGA side, we employ a Xilinx ZC706 Zynq 7045-based prototyping
board. We concentrate on single-core performance, since both the CPU and the
FPGA could easily scale to run multiple threads / accelerators in parallel.

We measure the execution time of simulating 10 cells with 1 million iterations
each. For the FPGA, we use the 20 FP unit variant of each accelerator, executing
at its specific maximum fmax. As before, we report wall-clock time for the
complete execution, including overhead for HW-SW interfaces.

Power measurements on the Intel CPU are performed using the Running Av-
erage Power Limit (RAPL) performance counters. On the FPGA, voltage and
current measurements are obtained by directly querying Channel 1 of the on-
board Voltage Regulator Module (VRM), which covers the Zynq’s programmable
logic and the ARM cores (both of which sleep here). In both cases, I/O power
consumption is not included. Afterwards, the total amount of energy used for
the computation is calculated by multiplying run time with average power con-
sumption. The results are shown in Table 5.

Our FPGA-based accelerators are significantly more energy-efficient than the
CPU, in the largest model A saving 96% of energy. On the performance side, the
FPGA-based accelerators are generally faster than the CPU, for the large model

10

Table 5. Execution Wall-Clock-Time (10 Cells, 1M iterations each), Power and Energy
Consumption (FPGA vs CPU)

Test Case A B C D E

WCT i7 6700K (s) 60.17 10.50 1.45 9.67 8.10
WCT XC7Z045 (s) 12.44 9.52 6.91 7.82 7.82
Speed-Up 4.84x 1.10x 0.21x 1.24x 1.04x

Power i7 6700K (W) 19.1 20.4 22.4 20.0 20.2
Power XC7Z045 (W) 3.6 3.0 3.0 3.1 3.2

Energy i7 6700K (J) 1149.8 214.2 32.5 193.6 163.7
Energy XC7Z045 (J) 44.9 28.9 22.1 24.4 24.7
Energy Reduction 96% 87% 32% 87% 85%

A by almost 5x. The outlier here is model C, which is significantly faster on the
CPU than on the FPGA. A closer examination of its code reveals an anomaly:
Most of the simulation models have a very irregular code structure (e.g., large
loop bodies with many different computations). But model C has very similar
computations (three multiplications and a subtraction) in more than half of its
lines of code. We assume that this code structure did allow the software compiler
to perform autovectorization (which is included in -O3), and thus achieves a much
higher performance.

4.6 Performance / Energy relative to GPU

We also compare our FPGA result to a GPU implementation. For that imple-
mentation, the C-code was used to create a CUDA Kernel. Note that we used
the C code generated by cellml-opt, as these optimizations improve the CUDA
performance as well. We simulate 100k cells to determine the average rate of cells-
computed-per-second on a single NVidia Tesla K80 GK210 GPU. The power is
measured using nvidia-smi. These results are shown in Table 6. While our ap-
proach has better latency, the Tesla-GPU produces more results per second (as
expected for a throughput-architecture such as a GPU). However, the FPGA is
more energy efficient (in terms of Joules per cell).

Table 6. Single FPGA kernel vs GK210 GPU

Test Case Latency [s] Throughput Power Energy per
for one cell [Cells per Second] [W] Cell [J]

A on FPGA 1.2 0.81 3.6 4.48
A on GPU 322.3 12.1 138.4 11.46

B on FPGA 1.0 1.05 3.0 2.89
B on GPU 91.3 38.69 131.6 3.41

C on FPGA 0.7 1.35 3.0 2.21
C on GPU 23.9 34.60 132.5 3.83

D on FPGA 7.9 1.27 3.1 2.44
D on GPU 72.0 39.64 145.7 3.67

E on FPGA 7.8 1.28 3.2 2.47
E on GPU 75.3 42.98 147.0 3.42

11

5 Conclusion and Future Work

We presented a new approach for hardware synthesis of larger CellML models
that offers superior latency and energy efficiency compared to CPU and GPU.
Furthermore, our specialized HLS tool significantly exceeds the quality-of-results
of a state-of-the-art industrial HLS system. The performance and size of the
accelerators created by our approach can be flexibly scaled, achieving significant
speed-ups in most cases even when dedicating just a quarter of a mid-size FPGA
to the accelerator circuit.

To extrapolate the power of our approach beyond the Virtex 7-class devices,
which were introduced in 2010, to current generation FPGAs, we have performed
an initial experiment compiling and mapping model A to a modern XCVU13P-3
UltraScale+ FPGA. We used a total 16 FP units and achieved an fmax of 316
MHz, which would yield a speed-up of 8.3x relative to the desktop class CPU
in single-accelerator performance. As each accelerator requires only 2.9% of that
FPGA’s area, an additional speed-up could be achieved by tiling accelerators, e.g.
8 accelerators implemented in parallel still reach 282 MHz. This huge potential
makes further research on reconfigurable computing for cell simulation highly
promising.

References

1. Cuellar, A.A., Lloyd, C.M., Nielsen, P.M.F., et al.: An overview of cellml 1.1, a
biological model description language. Simulation 79(12) (2003) 740–747

2. Yu, T., Bradley, C., Sinnen, O.: Odost: Automatic hardware acceleration for
biomedical model integration. TRETS 9(4) (2016) 27:1–27:24

3. Yu, T., Oppermann, J., Bradley, C., Sinnen, O.: Performance optimisation strate-
gies for automatically generated FPGA accelerators for biomedical models. Con-
currency and Computation: Practice and Experience 28(5) (2016) 1480–1506

4. Bradley, C., Bowery, A., Britten, R., et al.: Opencmiss: A multi-physics & multi-
scale computational infrastructure for the vph/physiome project. Progress in Bio-
physics and Molecular Biology 107(1) (2011) 32 – 47 Experimental and Compu-
tational Model Interactions in Bio-Research: State of the Art.

5. Faville, R.A., Pullan, A.J., Sanders, K.M., et al.: Biophysically based mathematical
modeling of interstitial cells of Cajal slow wave activity generated from a discrete
unitary potential basis (2009) CellML file: faville model 2008.cellml (Catherine
Lloyd).

6. Miller, A.K., Marsh, J., Reeve, A., et al.: An overview of the cellml API and its
implementation. BMC Bioinformatics 11 (2010) 178

7. de Dinechin, F., Pasca, B.: Designing custom arithmetic data paths with flopoco.
IEEE Design & Test of Computers 28(4) (2011) 18–27

8. Oppermann, J., Koch, A., Yu, T., Sinnen, O.: Domain-specific optimisation for the
high-level synthesis of cellml-based simulation accelerators. In: 25th Intl. Conf. on
Field Programmable Logic and Applications, FPL 2015, London, United Kingdom,
September 2-4, 2015, IEEE (2015) 1–7

9. Liebig, B., Koch, A.: High-level synthesis of resource-shared microarchitectures
from irregular complex c-code. In: Field-Programmable Technology (FPT), 2016
Intl. Conf. on, IEEE (2016) 133–140

12

10. Huthmann, J., Liebig, B., Oppermann, J., Koch, A.: Hardware/software co-
compilation with the Nymble system. In: 8th Intl. Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip, IEEE (July 2013) 1–8

11. Huthmann, J., Mller, P., Stock, F., Hildenbrand, D., Koch, A.: Accelerating high-
level engineering computations by automatic compilation of geometric algebra to
hardware accelerators. In: 2010 Intl. Conf. on Embedded Computer Systems: Ar-
chitectures, Modeling and Simulation. (July 2010) 216–222

12. Thielmann, B., Huthmann, J., Koch, A.: Precore - a token-based speculation
architecture for high-level language to hardware compilation. In: 2011 21st Intl.
Conf. on Field Programmable Logic and Applications. (Sept 2011) 123–129

13. Huthmann, J., Oppermann, J., Koch, A.: Automatic high-level synthesis of multi-
threaded hardware accelerators. In: 2014 24th Intl. Conf. on Field Programmable
Logic and Applications (FPL). (Sept 2014) 1–4

14. Nane, R., Sima, V.M., Pilato, C., et al.: A survey and evaluation of fpga high-level
synthesis tools. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems 35(10) (Oct 2016) 1591–1604

15. Xilinx, Inc: Vivado Design Suite User Guide – High-Level Synthesis. (2012)
16. Fingeroff, M., Bollaert, T.: High-Level Synthesis Blue Book. Mentor Graphics

Corp. (2010)
17. Pilato, C., Ferrandi, F.: Bambu: A modular framework for the high level synthesis

of memory-intensive applications. In: Field Programmable Logic and Applications
(FPL), 2013 23rd Intl. Conf. on, IEEE (2013) 1–4

18. Nane, R., Sima, V.M., Olivier, B., et al.: Dwarv 2.0: A cosy-based c-to-vhdl hard-
ware compiler. In: Field Programmable Logic and Applications (FPL), 2012 22nd
Intl. Conf. on, IEEE (2012) 619–622

19. Canis, A., Choi, J., Aldham, M., et al.: LegUp: High-Level Synthesis for
FPGA-based Processor/Accelerator Systems. In: Proc. Intl. Symp. on Field Pro-
grammable Gate Arrays (FPGA). (2011) 33–36

20. Lloyd, C.M., Lawson, J.R., Hunter, P.J., et al.: The cellml model repository.
Bioinformatics 24(18) (2008) 2122–2123

21. Detrey, J., de Dinechin, F.: Parameterized floating-point logarithm and exponential
functions for FPGAs. Microprocessors and Microsystems, Special Issue on FPGA-
based Reconfigurable Computing 31(8) (2007) 537–545

22. Grandi, E., Pasqualini, F.S., Bers, D.M.: A novel computational model of
the human ventricular action potential and Ca transient (2010) CellML file:
grandi pasqualini bers 2010 flat.cellml (Geoffrey Nunns).

23. Hornberg, J.J., Binder, B., Bruggeman, F.J., et al.: Control of MAPK
signalling: from complexity to what really matters (2005) CellML file:
hornberg binder brugge-man schoeberl heinrich westerhoff 2005.cellml (Catherine
Lloyd).

24. Iyer, V., Hajjar, R.J., Armoundas, A.A.: Mechanisms of Abnormal Calcium Home-
ostasis in Mutations Responsible for Catecholaminergic Polymorphic Ventricular
Tachycardia (2007) CellML file: iyer 2007 ss.cellml (Penny Noble).

25. Iyer, V., Mazhari, R., Winslow, R.L.: A computational model of
the human left-ventricular epicardial myocyte (2004) CellML file:
iyer mazhari winslow 2004.cellml (Steven Niederer).

