
Offloading OpenMP Target Regions to FPGA
Accelerators Using LLVM

Lukas Sommer∗, Julian Oppermann∗, Jens Korinth†, Andreas Koch∗
∗Embedded Systems and Applications Group, TU Darmstadt

{sommer, oppermann, koch}@esa.tu-darmstadt.de
†Computer Systems Group, TU Darmstadt

korinth@rs.tu-darmstadt.de

To provide sufficient compute power for future computa-
tional tasks, the use of heterogeneous systems, which incor-
porate one or more specialized accelerators, is indispensable.

However, programming such heterogeneous systems in a
portable way requires additional effort. In general, it would
be desirable to program a heterogeneous system with a sin-
gle codebase portable across different systems with different
accelerators available.

OpenMP is a well-established standard for the program-
ming of parallel architectures, especially in the field of high-
performance computing. In recent versions, the standard [1]
has been extended to account for the trend towards hetero-
geneous systems. Directives have been introduced to denote
regions of code that should be executed on a device in
a heterogeneous system. Additionally, the standard defines
directives and clauses that allow the programmer to specify
which and how data should be mapped to the device memory.
In combination, these features allow portable programming of
heterogeneous systems with a single codebase.

The implementation of the OpenMP offloading features in
LLVM, the Clang frontend and the corresponding OpenMP
runtime extensions is under active development. Among oth-
ers, the potential for the use of OpenMP offloading directives
has been demonstrated for Nvidia GPUs [2].

Besides GPUs, FPGAs have received increasing attention as
dedicated accelerators in heterogeneous systems, showcased
i.a. by their use in the Amazon AWS F1-instances and
Microsoft’s Azure and Bing cloud. The goal of this work is
to develop a compile-flow to map OpenMP target regions to
FPGA accelerators based on LLVM and the Clang frontend.

Our work is based on the open-source
ThreadPoolComposer-project (TPC) [3]. The project provides
us with an automated flow for the execution of HLS-tools
for code that should be mapped to FPGA-based accelerators.
Additionally, TPC implements a generic top-level architecture
which provides standardized host- and memory-connectivity
to every hardware kernel. On the software-side, TPC comes
with a portable library that defines an API to control the
execution on the FPGA and to map data to/from the external
memory on the FPGA-device.

Based on the TPC tool-flow, we have developed an au-
tomated flow to compile OpenMP target regions to FPGA
accelerators. To this end, we have introduced a new target-

triple for OpenMP device compilation in Clang. Target regions
are extracted to standalone kernels, which are then processed
by Vivado HLS, yielding an FPGA bitstream with the TPC
top-level architecture and the accelerator kernel.

Additionally, we have implemented a plugin for
libomptarget [4], which is part of the LLVM OpenMP
runtime implementation. The plugin uses the portable TPC
API and is responsible for mapping data to the FPGA memory
and controlling the execution on the device.

Both parts of our implementation (Clang compile-flow and
runtime library plugin) integrate seamlessly with the existing
LLVM OpenMP offloading infrastructure and together allow
to offload regions of code to specialized FPGA accelerator
kernels from a single OpenMP codebase.

We have succesfully tested our proof-of-concept implemen-
tation by mapping different BLAS-kernels in OpenMP target
regions to a heterogeneous system comprising a x86-CPU
(Intel Core i7-6700K) and a Xilinx Virtex 7 FPGA. Data is
transfered to/from the host using PCIe Gen3 and the BLAS
computation is conducted in accelerator kernels on the FPGA.

Currently, our prototype is only using a single kernel in-
stance on the FPGA. In future work we want to exploit parallel
OpenMP device features, such as omp distribute, to
distribute the computation across multiple kernel instances and
improve the performance of our prototype.

REFERENCES

[1] “OpenMP Application Programming Interface - OpenMP Standard 4.5,”
Nov. 2015.

[2] S. F. Antao, A. Bataev, A. C. Jacob, G.-T. Bercea, A. E. Eichenberger,
G. Rokos, M. Martineau, T. Jin, G. Ozen, Z. Sura et al., “Offloading
support for OpenMP in Clang and LLVM,” in Proceedings of the Third
Workshop on LLVM Compiler Infrastructure in HPC. IEEE Press, 2016,
pp. 1–11.

[3] J. Korinth, D. d. l. Chevallerie, and A. Koch, “An Open-Source Tool Flow
for the Composition of Reconfigurable Hardware Thread Pool Archi-
tectures,” in 2015 IEEE 23rd Annual International Symposium onField-
Programmable Custom Computing Machines (FCCM), May 2015, pp.
195–198.

[4] Samuel Antao, Carlo Bertolli, Andrey Bokhanko, Alexandre
Eichenberger, Hal Finkel, Sergey Ostanevich, Eric Stotzer, and
Guansong Zhang, “OpenMP offload infrastructure in LLVM.” [Online].
Available: https://github.com/clang-omp/OffloadingDesign

[5] L. Sommer, J. Korinth, and A. Koch, “OpenMP Device Offloading
to FPGA Accelerators,” in 2017 IEEE 28th International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2017, pp. 201–205.


