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Abstract—Modulo scheduling is a key throughput optimisa-
tion when compiling for VLIW architectures, which has been
applied successfully to high-level synthesis (HLS) of hardware
accelerators in the past. However, problem instances in the HLS
context usually have larger and denser dependence graphs and
may contain many simple operations that are not subject to
resource constraints, causing long runtimes with VLIW-centric
modulo schedulers.

We propose a complexity-reduction approach for existing exact
modulo schedulers that retains their ability to compute provably
optimal schedules, but shortens their runtime on typical HLS
instances. The basic idea is to simplify a problem instance’s
dependence graph by abstracting entire subgraphs of non-critical
operations with a single edge, then schedule this reduced problem
comprising only the critical operations. A solution obtained for
the reduced problem can be easily completed to a solution for
the original problem.

Applied to the well-known, originally VLIW-centric, and exact
ILP formulation by Eichenberger and Davidson, we show a mean
speedup of 4.37x for 21 large instances, which makes it com-
petitive again with the recently proposed, HLS-tailored Moovac
formulation. As both formulations show different problem-
dependent strengths and weaknesses, these insights are a first
step towards an oracle that selects the most promising scheduler
for a given problem instance.

I. INTRODUCTION

Loop pipelining, i.e. the partially overlapping execution
of subsequent loop iterations, is an important throughput-
optimising technique. It is enabled by modulo schedulers,
which compute start times for the operations in a loop’s
body, ensuring that all inter-iteration dependences and resource
constraints are satisfied when new iterations are started with a
fixed number of time steps, called the initiation interval (II),
apart.

Most of the research in the field targets VLIW processors
that typically have only a handful of functional units and a
limited number of registers [1], [2]. However, loop pipelining
also plays an important role during the automatic generation of
FPGA-based accelerators in a high-level synthesis (HLS) en-
vironment [3], [4]. Compared to the VLIW context, instances
of the modulo scheduling problem (MSP) that arise in an HLS
flow are much larger, due to implicit loop-wide if-conversion
[5], and have denser dependence graphs, due to the additional
edges required to model operator chaining [6], [7] as well as
to retain a sequential ordering of the loop’s memory accesses
where needed. This is apparent in our test MSP set (cf. Section

IV): The 21 instances contain 471 operations and 1578 edges
(median values). The ratio of the aforementioned additional,
non-data-dependence edges ranges from 29% to 90% with a
median value of 63%.

On the other hand, HLS generally aims to create spatially
distributed computations (employing a dedicated hardware
operator for each operation node). This is possible, as many
resources, e.g. logic gates, exist in abundance. Only a fraction
of the operations needs to be time-multiplexed onto scarce
shared resources, such as a limited number of memory ports, or
large floating-point operators. The spatial approach thus results
in far fewer resource constraints that need to be included in
the HLS MSP than in the VLIW MSP. In our test instances,
for example, the ratio of the limited operations ranges between
3% and 29% with a median value of 12%.

In a recent study [4], the ILP formulation by Eichenberger
and Davidson [8] (abbreviated here as ED), which originates
from a VLIW compiler context, performed significantly worse
on average than the newly proposed Moovac formulation on a
set of MSP instances taken from an HLS tool flow. However,
given that the prior formulation has received widespread
recognition in the community [9], and some instances in [4]
appear to be scheduled faster with ED, we suspect that the
inferior performance may be partly due to the aforementioned
characteristics of HLS MSP.

To this end, we propose a problem-complexity reduc-
tion algorithm for HLS MSP instances that yields problem
structures which are more similar in size and density to
instances expected by a VLIW modulo scheduler. Our work
specifically targets exact modulo schedulers that are able
to compute provably optimal solutions regarding a schedule
length minimisation objective. The proposed algorithm retains
this property.

The key insight is that only some operations in an MSP
instance are critical to the exact modelling, e.g. resource-
limited operations, while others are not. Non-critical opera-
tions can be scheduled in an as-soon-as-possible manner, and
thus, subgraphs of non-critical operations may be replaced
by a single edge with a delay equal to the minimum de-
lay of the subgraph’s longest path. The reduction makes it
tractable to discover additional, superfluous dependence edges.
Figures 1 - 4 demonstrate the proposed transformation. After
scheduling the reduced instance, the start times of the critical



operations are fixed in the original problem, and start times
for the remaining non-critical operations can be determined in
polynomial time.

Problem reduction (or compression) in general has been
explored in the Operations Research community to make
challenging problems more tractable by excluding non-critical
aspects (e.g. [10]). To the best of our knowledge, ours is the
first use of the technique to speed-up modulo scheduling.

II. BACKGROUND

A. Modulo scheduling problem

An instance I of the modulo scheduling problem (MSP) is
defined by:
• the set of operations O. Every operation i ∈ O has a

delay (in time steps) Di.
• the set of dependence edges E = {(i→j)} ⊆ O × O.

Edges may carry an edge delay1 dij . We use the notation
δij = Di + dij to describe the minimal number of
time steps that j can be started after i. Each edge
models a precedence relation that has to be satisfied βij
iterations later. We call βij the edge distance, and edges
with βij > 0 inter-iteration dependences, or shorter,
backedges, because they point in the opposite direction
of the normal data flow. Conversely, we call edges with
0-distance forward edges.

• a resource model. We consider a set of resource types
R = {mem, dsp, . . . }. There are ak uniform and fully-
pipelined instances of each resource type k ∈ R.
Operations may require at most one resource type. The set
Lk ⊆ O contains all operations using k. L =

⋃
k∈R Lk

is the set of all resource-limited operations. An operation
i ∈ Lk reserves exactly one k-instance in its start time
step.

• a range of candidate initiation intervals [λ⊥, λ>].
The solution to an MSP instance consists of an integer

initiation interval λ◦ and integer start times ti for all i ∈ O that
satisfy the precedence constraints imposed by the dependence
edges,

ti + δij ≤ tj + βij · λ◦, ∀(i→j) ∈ E, (1)

and ensure that no resource type is oversubscribed in any
congruence class (modulo II), i.e.

|{i ∈ Lk : ti mod λ◦ = m}| ≤ ak,
∀k ∈ R and m ∈ [0, λ◦ − 1]. (2)

We consider modulo scheduling to be a bi-criteria optimi-
sation problem. The first objective is to find the smallest II
for which a feasible schedule exists. In this work, the second
objective is to find the schedule with the shortest schedule
length Tλ = maxi∈O{ti + Di} for a given interval λ. In
practice, the first objective is far more important, as smaller
IIs correspond to a higher throughput of the loop accelerator.

1For example, we use edges with a delay of 1 to limit the amount of
operator chaining (see Section IV).

To this end, it is common to attempt to solve the MSP for
several fixed candidate IIs, starting with a lower bound λ⊥

inferred from (1) and (2), and increasing the candidate II until
a feasible schedule is found, or an upper bound λ> is reached.
Rau [11] presents several ways to compute λ⊥. The length of
any resource-constrained non-modulo schedule can serve as
λ>, and may be used as a fall-back schedule in case a modulo
scheduler does not find a solution with a smaller interval.

a) Running example: The MSP instance in Figure 1 is
defined by the set of operations O = {1, 2, . . . , 11}, the set
of edges E = {(1→2), (1→3), . . . }, and a simple resource
model (not shown in the figure) comprising only a single
limited resource type ρ ∈ R that provides one instance
(aρ = 1). We have Lρ = {2, 6, 9} = L, and use a grey
contour to distinguish these resource-limited operations from
the unlimited ones. The operation delay Di is 1 for all i ∈ O.
There are no edge delays, i.e. dij = 0 for all (i→j) ∈ E,
and only a single backedge (10→3) with β10 3 = 1 and a
dashed line style. All other edges (i→j) ∈ E are forward
edges with βij = 0. The lower bound for the interval λ⊥ is 5,
due to the recurrence spanned by the backedge. We assume a
non-modulo scheduler would determine a schedule of length
7, and define λ> accordingly.

B. Exact modulo schedulers

Exact modulo schedulers, in contrast to algorithms that rely
on heuristic simplifications (e.g. [3], [12], [13]), model all the
above aspects of the problem and are therefore able to find
provably optimal schedules. They are often defined in terms
of a mathematical framework such as integer linear programs
(e.g. [4], [8], [14]), or constraint programming (e.g. [15]), and,
unfortunately, inherit the frameworks’ exponential worst-case
runtimes to find a solution. Still, they are a viable option in
the context of an HLS system, as logic synthesis and place-
and-route often requires multiple hours even on mid-sized
FPGA devices anyway. This easily amortises the time spent to
determine a high quality (provably optimal) solution by exact
modulo scheduling.

However, most exact modulo schedulers were proposed for
and evaluated with VLIW-style MSP instances. Using the ED
formulation as the representative for this class of schedulers,
we showed that HLS-style instances require special attention
in the design of a practical exact scheduler [4]. Our Moovac
formulation copes well with rather large instances, as the
(many) unlimited operations are represented by a single integer
decision variable. Similarly, a large number of dependence
edges is unproblematic, as each edge results in only one linear
constraint (Eq. 5 in [4]).

In contrast, the ED formulation uses II-many binary decision
variables per operation, regardless whether the operation is
subject to resource constraints or not. The authors achieved
a significant speed-up by using II-many, but 0-1-structured2

constraints to represent dependence edges (Eq. (20) in [8]).

2Every decision variable occurs only once, and is multiplied by either -1,
0, or 1 [8].
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Fig. 1: Example instance
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Fig. 2: Reduced instance:
critical operations
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Fig. 3: Reduced instance:
constructed edges
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Fig. 4: Reduced instance:
edges filtered, backedges added

These scalability difficulties when scheduling large and dense
dependence graphs, and HLS-typical candidate IIs, make the
ED formulation the ideal subject to demonstrate the strength
of our proposed approach.

However, we expect other exact VLIW modulo schedulers,
such as the formulations by Dinechin [14] and by Ayala
and Artigues [16], to benefit from the proposed complexity
reduction as well. A common feature in these formulations is
the use of time-indexed binary decision variables to model the
operations’ start times. This design typically results in complex
linear constraints involving sums of subsets of these variables.
Reducing the number of operations in the problem, and re-
ducing the density of dependence edges therefore gives ample
opportunity for speed-up when retrofitting these formulations
for use in an HLS setting.

III. REDUCED-COMPLEXITY MODULO SCHEDULING

Our reduced-complexity modulo scheduling approach com-
prises three steps. First, given an HLS-style MSP instance I,
we derive a reduced problem instance I ′ with the set of critical
operations Q ⊆ O and infer a new set of edges F ⊆ Q×Q.
Then, I ′ is scheduled with an arbitrary modulo scheduler, e.g.
the ED formulation. The operation start times obtained from
the solution to I ′ are fixed in I. This makes scheduling I
tractable, as it is no longer a resource-constrained scheduling
problem and can thus be solved in polynomial time.

A. Construction of a reduced problem instance

Let B = {e = (u→v) | e ∈ E ∧ βuv > 0} be the set of all
backedges in E, pred(v) = {u | ∃(u→v) ∈ E with βuv = 0}
denote the set of predecessors of an operation v, and analo-
gously, succ(v) = {w | ∃(v→w) ∈ E with βvw = 0} denote
the set of successors of v.

a) Critical operations: The proposed problem reduction
shall guarantee that a feasible/optimal solution to I ′ can be
completed to a feasible/optimal solution to I.

The feasibility of I for a candidate interval λ is subject
to the interaction of the backedges (which impose deadlines,
i.e. latest possible start times) and resource constraints (which

may require operations to be scheduled in a later time step
than required by their predecessors’ finish times), as defined
by (1) and (2). Additionally, operations without non-backedge
predecessors must be included in Q to capture the earliest start
times in the schedule.

The schedule length depends, per definition, on the start
times of operations without outgoing forward edges. These
operations, in addition to the resource-limited operations,
therefore need to be considered in I ′ to ensure that an optimal
solution for I ′ may serve as the base for an optimal solution
to I.

With this considerations in mind, we define the set of
critical operations Q to contain

• all resource-limited operations, L,
• operations at the endpoints of backedges, formally
{v | ∃(u→v) ∈ B ∨ ∃(v→w) ∈ B}, and

• operations with either no incoming or no outgoing for-
ward edges, formally {v | pred(v) = ∅ ∨ succ(v) = ∅}.

Figure 2 depicts the set Q for the running example: opera-
tions 2, 6 and 9 are resource-limited, 3 and 10 are the endpoints
to the only backedge, and 1 and 11 are the extremal vertices
in the dependence graph.

In contrast, the start times of the remaining non-critical
operations are determined only by the instance’s forward edges
when considering schedule length minimisation as the sec-
ondary objective. Entire subgraphs of non-critical operations
can then be scheduled in an as-soon-as-possible manner be-
tween critical operations, given that enough time steps separate
the critical operations. As a consequence, such subgraphs can
be modelled in I ′ by a single edge with the minimally required
delay to fit the non-critical operations, as discussed in the next
section.

b) Edge construction: The set of edges F is not a subset
of E. Rather, it contains forward edges that are constructed
based on the results of a data flow analysis that computes
∆IN
v (q), i.e. the length of longest path (in terms of operation

and edge delays) in E from a critical operation q ∈ Q to an
operation v ∈ O.



The function ∆IN
v (q) : (O ×Q) → N0 ∪ {−∞} is defined

by the data flow equations (3) and (4), where the value −∞
is to be interpreted as “unreachable”.

∆IN
v (q) =

−∞ if pred(v) = ∅
max

u∈pred(v)
∆OUT
u (q) + δuv otherwise

(3)

∆OUT
v (q) =


0 if v = q

−∞ if v ∈ Q ∧ v 6= q

∆IN
v (q) otherwise

(4)

The important distinction from a standard longest-path com-
putation is the fact that only paths from the nearest preceding
critical operations are considered: the definition of ∆OUT

v (q)
for a critical operation v ∈ Q sets the outgoing path length
from itself (v = q) to 0, and resets the path length concerning
all other critical operations to −∞.

After computing ∆IN
v (q), we construct new forward edges

between the critical operations:

Fcons = {(p→q), dpq = ∆IN
q (p)−Dp |

∀q ∈ Q, ∀p ∈ Q with ∆IN
q (p) > −∞} (5)

Specifically, for all q ∈ Q, we add an edge from the preceding
critical operations p ∈ Q, for which ∆IN

q (p) > −∞, to q.
The corresponding edge delay dpq is set to ∆IN

q (p) − Dp.
We subtract Dp, as otherwise we would account for p’s delay
twice later.

Note that Fcons is smaller than the transitive hull of E
restricted to Q, which would per definition connect all critical
operations with each other. In contrast, in situations where all
paths connecting two critical operations q1, q2 contain at least
one other critical operation, our construction scheme would
not add the redundant edge (q1→q2).

Figure 3 shows Fcons corresponding to the running example.
Where specified, the edge labels now represent a non-zero
edge delay, e.g. d2 9 = 2. For all other edges, the edge delay
remains 0.

c) Edge filtering: On the reduced graph (Q,Fcons), it
is now tractable to compute all-pair-longest-path information
lp(u, v) for pairs of operations u, v ∈ Q using the Floyd-
Warshall algorithm [17], which we use to filter out superfluous
direct edges whose implied precedence constraints are satisfied
transitively by other edges: an edge (u→v) ∈ Fcons is removed
iff δuv < lp(u, v).

Finally, we compose the set of edges F = Fcons ∪ B in I ′
from the newly constructed and filtered forward edges, and
the unmodified set of backedges B.

The final, reduced version of the running example is illus-
trated in Figure 4.

Complexity: In a single pass over E, we precompute the
sets B, and pred(v), succ(v) for all operations v ∈ O. Collect-
ing all critical operations Q requires visiting all operations in
O once. As we only consider forward edges when computing
∆IN
v (q), the data flow analysis operates on an acyclic graph

and reaches its fix point after handling each operation v ∈ O
(which requires inspecting the |pred(v)| predecessors) once in
topological order. Performing all these preparation steps is in
O(|O|+ |E|).

Computing Fcons has a worst-case runtime ofO(|Q|2), while
the edge filtering step is in O(|Q|3) due to the longest-path
calculation. However, as HLS-style MSP instances are char-
acterised by |Q| � |O|, the resulting runtimes are negligible
compared to the runtime of the actual modulo scheduler even
for the cubic parts of the reduction approach.

B. Modulo scheduling

The reduced problem instance I ′ comprises the sets Q and
F , and inherits all other parameters from the original instance
I. We obtain a feasible interval λ◦ and start times tq for all
q ∈ Q from solving I ′ with any modulo scheduler. In case
the nested modulo scheduler does not find any solution to I ′,
our approach will stop here and report the failure. To avoid
the obvious name clash, we refer to the computed start times
as sq in the following section.

C. Schedule completion

Lastly, start times for the non-critical operations i ∈ O \Q
have to be computed. To this end, we solve the following ILP,
defined for integer variables ti:

min T (6)
s.t. ti + δij ≤ tj + βij · λ◦ ∀(i→j) ∈ E (7)

ti = si ∀i ∈ Q (8)
ti +Di ≤ T ∀i ∈ O (9)

Together with λ◦ as computed in the previous step, the start
times ti, i ∈ O, yield a complete solution to the orignal
problem instance I.

Complexity: The ILP above can easily be transformed
into a system of difference constraints (SDC) [7]. SDCs
comprise a special class of ILPs that are optimally solvable
in polynomial time, due to the fact that their LP relaxation is
guaranteed to produce an integer-valued solution.

IV. EXPERIMENTAL EVALUATION

We evaluate our reduced-complexity modulo scheduling
approach on a set of realistic test instances: C applications
from the HLS benchmark suites CHStone [18] and MachSuite
[19] are compiled with Clang3 to LLVM-IR [20]. Nymble [5]
constructs per-loop control-data-flow graphs (CDFG), where
the original control flow is replaced by multiplexers and
predicated operations. Nested loops become special operations
in the graph, thus making it possible to modulo schedule all
loops in the application instead of being limited to the most
deeply nested ones. Nymble also constructs edges to retain
the sequential order amongst memory access operations where
needed, as determined by LLVM’s dependence analysis. We
use operator latencies and physical delays from the Bambu

3We use LLVM/Clang version 3.3, optimisation preset “-O2” with loop
unrolling disabled, and perform exhaustive inlining.



HLS framework’s [21] extensive operator library for a Xilinx
xc7vx690 device. For each operator, we choose the lowest-
latency variant that is estimated to achieve a frequency of
at least 250 MHz. The edges to limit operator chaining are
constructed with a simple path-based approach similar to [6]
and aim to enforce a maximum cycle time of 5 ns. From a total
set of 354 loops, we selected 21 unique instances that took
more than 10 seconds to schedule with at least one scheduler
configuration. The MSP instances use the following resource
types: memory load (2 available)/store (1), nested loop (1),
integer division (8), floating-point addition (4), FP subtraction
(4), FP multiplication (4), other FP operations (2 each).

In the second step (Section III-B) of our approach, we
delegate the actual modulo scheduling to the ED formulation,
defined by (1), (2), (5) and (20) in [8], and to the Moovac
formulation according to Figure 3 in [4]. Both formulations
were adapted to minimise the schedule length.

We use CPLEX 12.6.3 to solve the ILPs constructed ac-
cording to the ED and Moovac formulations, as well as
for the ILP used in the schedule construction step (Section
III-C). We set a time limit of 3 minutes (minus the time
to construct the linear program via the solver’s API) per
scheduling attempt/candidate II, and try at most 20 candidate
IIs per instance, thereby capping its total runtime to one hour.
The solver uses deterministic multithreading with up to 8
threads. We ran up to two scheduling jobs concurrently [22]
on 2x12-core Intel Xeon E5-2680 v3 systems running at 2.8
GHz with 64 GB RAM. The scheduler runtimes presented
here correspond to the best (in terms of the computed II, the
schedule length, and lastly, the scheduler runtime) of three
runs.

Table I shows the effects of our approach on the prob-
lem complexity. The instances are named according to the
CHStone/MachSuite benchmark application4 they originated
from, and distinguished by an arbitrary loop ID assigned by the
Nymble compiler. The complexity of the original instance I is
specified by the number of operations |O|, edges |E|, resource-
limited operations |L|, and backedges |B|. Recall that L ⊆ O
and B ⊆ E. For example, instance aes2::2 has 155 operations,
of which 34 are resource-limited, as well as 291 edges in total,
of which 26 are backedges. The complexity of the reduced
instance is specified accordingly by the number of critical
operations |Q|, and inferred edges |F |. By construction, the
sets L and B are carried over unchanged to the reduced
problem, and therefore their sizes are not repeated in the table.
In the next column, we report the time required for the problem
reduction, including all steps of our approach without the
actual modulo scheduling with the delegate modulo scheduler.

The remaining columns show the effects of our proposed
approach to the size of the ILPs, i.e. the number of decision
variables NX and the number of linear constraints CX , when

4As both suites contain an application named aes, we refer to MachSuite’s
version as aes2.

applying either the ED5 or the Moovac formulation to an
instance X . We present the absolute numbers for the original
instance I, and relative to that, the quantities for the reduced
instance I ′. For example, the ILP according to the ED formu-
lation for aes2::2 has roughly 3600 decision variables initially.
After the problem reduction, only 26% remain, i.e. the ILP for
the reduced instance requires about 936 variables. Overall, ED
formulation ILPs are reduced to 15% of variables and 22% of
constraints (excluding dfsin::1), whereas Moovac ILPs retain
over 83% of their original sizes (geometric means).

In Table II, overall runtimes to schedule the original in-
stances with and without our proposed reduced-complexity
approach are shown alongside the computed initiation intervals
λ◦ and the corresponding schedule lengths Tλ◦ . Asterisks de-
note which parts of the solution were proven to be optimal. We
distinguish four cases: “(*,*)” solutions are optimal according
to both objectives, i.e. a minimum length schedule was found
for the smallest feasible II. In a “(*, )” solution, the determined
II is proven to be optimal, but the solver was not able find or
prove the optimal schedule length. This typically means that
the solver depleted its 3 min time budget, at whose end we
accept any feasible solution. We only know that we have a
feasible solution “( , )” if at least one scheduling attempt was
aborted due to the time limit without finding a solution, and
conservatively classified as infeasible. In the worst case, no
solution was found for any candidate II, for which we note
“-” in the table.

The results clearly show that our reduced-complexity mod-
ulo scheduling approach significantly speeds-up scheduling
with the ED formulation. The accumulated runtime to schedule
the 21 test instances is improved by 18%. The per-instance
speed-ups are never below 1x, and range up to 14x, with a
geometric mean of 4.37x. As a side effect, the solution quality
for the largest instances is improved as well: the solver is able
to turn feasible solutions into optimal ones (e.g. jpeg::19), or
finding feasible solutions at all (e.g. jpeg::17). Compared to
solver runtimes, the time spent in the problem reduction and
schedule completion is negligible.

The distribution of the IIs in our set of test instances (cf.
Table II) plays an important role in explaining these substantial
performance gains. Considering that each operation in the ED
formulation is represented by II-many binary variables, and
each edge is expressed by II-many linear constraints, it is
obvious (and evident in Table I) that any reduction in the input
problem complexity will have a huge impact on the size of the
constructed and solved ILP.

The accumulated runtime with the Moovac formulation
improves marginally, but the per-instance speed-ups ranging
from 0.2x to 1.33x indicate that Moovac is not amenable to be
accelerated by our problem reduction approach. We attribute
the small positive gains to the already efficient modelling of
non-critical operations and edges in the Moovac formulation,
as documented in Table I. Most of the performance regressions

5As the number of variables and constraints in the ED formulation is
dependent on the candidate II, we present here the ILP complexity for the
last (= successful) scheduling attempt.



TABLE I: Complexity-reduction results

Original instance I Reduced instance I′ ILP complexity: ED ILP complexity: Moovac
Instance |O| |E| |L| |B| |Q| |F | time [s] NI NI′/NI CI CI′/CI NI NI′/NI CI CI′/CI

fft strided::2 84 290 24 65 29 112 0.02 6.5k 35% 22.1k 40% 0.4k 85% 1.1k 84%
aes2::2 155 291 34 26 41 92 0.03 3.6k 26% 6.3k 32% 1.5k 92% 4.6k 96%
aes::2 177 377 29 25 34 81 0.02 8.7k 19% 18.1k 22% 0.7k 79% 1.9k 84%
gsm::3 194 313 18 12 43 120 0.03 2.3k 22% 3.4k 36% 0.5k 72% 1.3k 86%
aes2::4 225 683 62 158 69 285 0.05 7.9k 31% 22.6k 42% 3.8k 96% 12.4k 97%
aes::15 236 439 32 2 37 81 0.03 3.5k 16% 6.0k 18% 1.4k 85% 4.1k 91%
md grid::7 300 577 24 53 35 115 0.02 14.4k 12% 27.0k 20% 1.1k 75% 3.1k 85%
jpeg::87 380 1574 35 102 40 171 0.04 15.6k 11% 61.1k 11% 1.6k 78% 5.4k 74%
jpeg::63 382 1577 35 102 40 171 0.04 15.7k 10% 61.2k 11% 1.6k 78% 5.4k 74%
jpeg::47 383 1578 35 102 40 171 0.04 15.7k 10% 61.2k 11% 1.6k 78% 5.4k 74%
jpeg::59 471 1919 50 223 55 308 0.05 23.6k 12% 91.8k 16% 2.4k 83% 8.2k 80%
jpeg::19 476 1609 69 363 74 489 0.07 26.2k 16% 85.3k 30% 4.8k 92% 16.2k 93%
jpeg::41 480 1956 50 224 55 309 0.05 24.5k 11% 95.5k 16% 2.4k 82% 8.3k 80%
adpcm::2 710 1478 100 82 105 388 0.12 37.6k 15% 76.2k 26% 9.3k 93% 30.6k 96%
adpcm::1 777 1746 95 141 106 396 0.11 50.5k 13% 110.8k 21% 8.4k 92% 27.5k 95%
blowfish::1 789 2558 107 42 118 517 0.12 90.7k 15% 289.1k 20% 18.6k 96% 63.8k 97%
jpeg::17 942 5047 106 1041 111 1210 0.15 105.5k 11% 553.3k 23% 9.5k 91% 33.9k 89%
mips::1 1076 4441 65 1155 76 1595 0.09 34.4k 6% 132.1k 32% 5.7k 82% 19.9k 86%
aes::12 1367 3065 205 532 210 911 0.27 128.5k 15% 283.3k 29% 45.8k 97% 156.5k 99%
aes::4 1374 2816 205 402 212 785 0.31 129.2k 15% 260.7k 28% 46.3k 97% 158.0k 99%
dfsin::1 2651 38642 67 1222 76 1402 0.10 NI′ = 16.7k, CI′ = 305.3k † 6.7k 62% 52.3k 29%

† Timeout during ILP construction for original instance.

TABLE II: Scheduling results

ED (standard) ED (reduced) ED Moovac (standard) Moovac (reduced) Moovac
Instance time [s] λ◦ Tλ◦ time [s] λ◦ Tλ◦ speed-up time [s] λ◦ Tλ◦ time [s] λ◦ Tλ◦ speed-up

fft strided::2 45.04 *74 *77 13.04 *74 *77 3.45 0.54 *74 *77 0.80 *74 *77 0.67
aes2::2 26.77 *20 *21 4.70 *20 *21 5.69 37.24 *20 *21 27.00 *20 *21 1.38
aes::2 18.60 *46 *48 2.92 *46 *48 6.37 2.97 *46 *48 3.35 *46 *48 0.89
gsm::3 0.45 *9 *20 0.25 *9 *20 1.82 36.34 *9 *20 180.03 *9 20 0.20
aes2::4 1277.49 32 33 703.53 32 33 1.82 2520.00 33 33 2700.04 34 33 0.93
aes::15 2.04 *12 *18 0.29 *12 *18 6.99 180.00 *12 18 180.02 *12 18 1.00
md grid::7 15.80 *45 *45 2.20 *45 *45 7.19 6.20 *45 *45 5.75 *45 *45 1.08
jpeg::87 16.26 *38 *47 1.22 *38 *47 13.33 0.28 *38 *47 0.48 *38 *47 0.59
jpeg::63 16.33 *38 *47 1.22 *38 *47 13.41 0.25 *38 *47 0.48 *38 *47 0.52
jpeg::47 15.88 *38 *47 1.27 *38 *47 12.51 0.28 *38 *47 0.48 *38 *47 0.58
jpeg::59 42.08 *47 *55 3.12 *47 *55 13.47 1.01 *47 *55 1.10 *47 *55 0.92
jpeg::19 180.00 *52 61 18.27 *52 *54 9.85 1.53 *52 *54 4.65 *52 *54 0.33
jpeg::41 48.20 *48 *56 3.40 *48 *56 14.17 1.05 *48 *56 1.21 *48 *56 0.87
adpcm::2 180.00 *50 132 39.59 *50 *85 4.55 180.00 *50 94 180.10 *50 92 1.00
adpcm::1 1620.00 62 94 758.32 58 72 2.14 1440.00 61 81 1080.11 59 73 1.33
blowfish::1 3600.00 - - 3600.12 - - 1.00 3600.00 - - 3571.82 - - 1.01
jpeg::17 1080.00 - - 86.08 *104 *105 12.55 8.93 *104 *105 11.47 *104 *105 0.78
mips::1 1077.93 29 34 398.66 26 38 2.70 2160.00 35 34 1980.08 34 34 1.09
aes::12 3600.00 - - 3600.27 - - 1.00 3600.00 - - 3600.29 - - 1.00
aes::4 3600.00 - - 3600.31 91 92 1.00 3600.00 - - 3600.27 - - 1.00
dfsin::1 3240.00 - - 3240.10 - - 1.00 24.28 *201 *216 24.89 *201 *216 0.98

sum [min] 328.38 267.98 290.02 285.91
geomean 4.37 0.80

λ◦ = computed initiation interval, Tλ◦ = corresponding schedule length. Asterisks (*) denote optimality.

occur on reduced instances that are already scheduled in very
short runtimes in their original versions, and can be considered
negligible in practice. However, instances gsm::3 and aes2::4
incur a loss of solution quality. We believe that this is caused
by a phenomenon called performance variability which is
inherent to ILP solvers. In a nutshell, even small structural
changes to linear programs may significantly influence the
solver runtime [23]. As removing redundant constraints and
decision variables is at the core of our approach, it is suscep-
tible to this effect.

V. CONCLUSION AND OUTLOOK

We presented a complexity-reduction approach intended to
be used in conjunction with exact modulo schedulers whose
internal structure does not scale well with the size and density
of dependence graphs typical for HLS-style MSP instances.
Applied to the ILP formulation by Eichenberger and Davidson,
we were able to unconditionally speed up all instances in
our benchmark set, and obtain better quality solutions for the
largest loops.

With our new preprocessing of the dependence graphs, the
ED and Moovac formulations are much closer performance-



wise on HLS-typical MSP instances. However, the two sched-
ulers still exhibit different strengths and weaknesses, which
make each of them better suited for a certain set of MSP
instances. We plan to capitalise on that by building an oracle
to decide a-priori which scheduler is most promising for a
given MSP.

Our experiment also suggests that none of the quantities
in Table I individually will be sufficient to predict whether a
given instance constitutes a hard problem for the formulations.
To this end, we plan to develop a configurable MSP generator
to investigate further which additonal structural properties have
a significant influence on the scheduler runtimes, and to guide
the development of the aforementioned oracle.
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