
An alternative OpenMP Backend for Polly
EuroLLVM 2019 Student Research Competition

Michael Halkenhäuser
TU Darmstadt

michael.halkenhaeuser@stud.tu-darmstadt.de

Lukas Sommer
Embedded Systems and Applications Group

TU Darmstadt
sommer@esa.tu-darmstadt.de

1 Introduction
LLVM’s polyhedral infrastructure framework Polly [1] may
automatically exploit thread-level parallelism throughOpenMP.
Currently, the user can only influence the number of utilized
threads, while other OpenMP parameters such as the sched-
uling type and chunk size are set to fixed values. This in turn,
limits a user’s ability to adapt the optimization process for
a given problem. Additionally, a project is required to sup-
port the GNU OpenMP runtime in order to benefit from the
automatic thread-level parallelization.
In this paper we will present an extension of Polly’s cur-

rent OpenMP backend, which not only provides the afore-
mentioned two additional customization options but is also
based on LLVM’s OpenMP runtime.
Our contribution comprises an OpenMP backend exten-

sion for Polly and an evaluation of how the different user
options influence program performance. Through the addi-
tional user options implemented in this work, significant
performance gains are possible in a number of cases, while
being overall competitive to the current backend. Further-
more, by supporting the use of an additional runtime library
this work may allow for a broader employment of polyhedral
techniques.

2 Approach
We will now take a closer look at the introduced customiza-
tion options and their theoretical effect. Generally, theOpenMP
API1 offers three scheduling types: static, dynamic and guided.
All kinds of scheduling support an additional parameter
called chunk size, which defines the size of a thread’s share
of work or its processing order.
static scheduling will (try to) distribute the work evenly

among the available worker threads. Therefore, the chunks
are determined before the actual computation begins and
then provided to every worker. This approach has the ad-
vantage that threads know their iterations upfront and do
not have to request any further information, which would
imply additional runtime calls. Hence, static scheduling is
well-suited for computation tasks where each chunk costs
about the same amount of time, such that the worker threads
complete (roughly) simultaneously.

1See e.g.: https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

dynamic scheduling assigns chunks on active request of a
worker thread. After completion of a chunk, another request
is issued by the respective worker until the complete amount
of work is done. For example a chunk size of one allows for
direct interleaving of worker threads, which minimizes the
overhead of waiting for other workers to finish but also leads
to many runtime calls, requesting the next chunk of work.

guided scheduling tries to strike a balance between static
and dynamic by assigning rather big chunks of work at the
beginning. Upon completion, the next chunk has to be re-
quested exactly as in the case of dynamic scheduling. How-
ever, the chunk size will be reduced successively, until it
reaches the provided minimum, at which point the behavior
of this scheduling type is not distinguishable from the dy-
namic type. As such the number of requests for next chunks
is reduced, while still being able to compensate load imbal-
ances of worker threads.
At present, the OpenMP backend of Polly supports only

dynamic scheduling paired with a chunk size of one.
Since the implementation of our backend is derived from

[1], the OpenMP parallelization is performed in the same
spot of Polly’s workflow, by using the program’s polyhedral
AST and reconverting it into LLVM-IR, accordingly. This is
accomplished by restructuring the basic blocks of the origi-
nal program and adding OpenMP runtime calls to a newly
created outlined function. The implementation of our back-
end follows the structure of the existing OpenMP backend,
therefore we achieve the exact same coverage as the current
backend and create similar structures, wherever applicable.

3 Evaluation Setup
In order to investigate the performance of our backend and
compare it to the existing one, we chose polybench2 as ex-
perimental platform. This benchmark suite offers 30 sample
programs, which are suitable for polyhedral transformations,
together with parameterizable datasets. Since only 18 bench-
marks contained automatically parallelizable loop structures,
we focused on those programs.

The runtime of each benchmark was measured multiple
times with the small and large dataset sizes and the final
results were calculated using the 10% truncated mean of 120
(small dataset) and 36 (large dataset) runs.

2See: https://sourceforge.net/projects/polybench/



Michael Halkenhäuser and Lukas Sommer

All experiments were conducted using a Linux platform
(kernel version 4.16) equipped with an AMD Ryzen 5 1600X
and 32 GiB of RAM.

4 Results
In this section we will first evaluate the impact of different
chunk sizes and scheduling strategies as well as the number
of threads within our backend. Afterwards, the performance
will be compared to the current OpenMP backend and Clang
8.

4.1 Chunk sizes (12 Threads, Dynamic Sched.)
Our results indicate that in case of large datasets, a variation
of the chunk size with the following values {1, 2, 3, 4, 6} might
reduce performance in seven out of 18 benchmarks while
nine results stay roughly the same when compared to the
baseline with a chunk size of one. However, in two cases
(ludcmp, trmm), an increased chunk size leads to considerable
speed-ups between 1.25× and 3.25× – it is important to note
that in case of the trmm benchmark the peak performance
was not reached with the highest chunk size.

When switching over to small datasets, we observe an
overall significant drop in performance as the amount of total
work and therefore the resulting number of distributable
chunks is decreased. As a result, only a fraction of available
threads is actually provided with work.
Overall, our evaluation shows that the chunk size is an

important parameter to fine-tune the performance of auto-
matically parallelized applications.

4.2 Scheduling types (12 Threads, Chunk Size 1)
In this setup the similarities between guided and dynamic
scheduling strategies may be observed as the first one may
only achieve significantly different speed-ups (up to 4.5×) in
two benchmarks (ludcmp, trmm). Static scheduling on the
other hand may even exceed these speed-ups (reaching up
to 8.5×) in the small and large dataset settings, but will also
decrease performance in eight cases.

4.3 Number of Threads (Chunk Size 1)
Lastly, we will evaluate different thread numbers: {4, 8, 12},
always using four threads as our baseline. As described in
the previous section, guided and dynamic scheduling are
very similar and therefore guided will not be discussed since
the results did not provide any additional information.

Overall dynamic scheduling will benefit from more avail-
able threads, but in case of small datasets the performance of
three benchmarks slightly decreases. Similar results may be
observed when static scheduling is taken into account: only
small problem sizes suffer from a decrease in performance
(five cases). Especially trmm will double its execution time.

Our assumption is that the setup of threads, library calls
and collection of results creates a considerable overhead,

such that a higher amount of threads may hamper perfor-
mance significantly.

4.4 Backend comparison
We will now accumulate and use the results of the previ-
ous section: a chunk size of one is usually a good choice
and the maximum number of threads performs best in case
of large datasets. Therefore, we will compare the different
scheduling kinds of our backend with said settings against
the current OpenMP backend and use Polly (without vec-
torization) as a reference. Since in case of small datasets
Polly without OpenMP parallelization significantly outper-
formed both backends in nearly every benchmark, we will
only concentrate on the results of the large datasets.

In general we can observe that the results are comparable
and there is only one benchmark (syrk) where our alternative
backend is at least 5% slower with any scheduling strategy
(0.7-0.9×). However, our backend may surpass the perfor-
mance of the current backend (and Polly) in six out of 18
cases ranging from at least 1.1× speed-up (compared to the
GNU backend) to 2.7× for ludcmp and even reach 8.9× for
trmm.

4.5 Overall evaluation
Finally, we want to perform a comparison between both
backends and vanilla clang-8 -O3 (as baseline) on the large
dataset: using dynamic scheduling, chunk size one and en-
abled vectorization (both backends).
The gathered results show that automatic parallelization

may obtain significant speed-ups, starting at 2.5× and reach-
ing around 25-30× for specific benchmarks. Generally, the
achieved results are comparable, but in five cases our back-
end is able to gain significantly higher speed-ups than the
GNU backend (bicg: 3.7 vs. 2.9, gesummv: 6.7 vs. 3.9 ludcmp:
1.2 vs. 0.4, mvt: 4.2 vs. 3.4, trmm: 10.0 vs. 1.1).

Nevertheless, we have to point out that automatic par-
allelization is not able to achieve positive results in every
benchmark. In two cases only around 1.0× speed-up is possi-
ble and performance may even decrease (atax) in this setting.

5 Conclusion
These results suggest that our implementation was overall
successful. Our additional customization options allow for
significant performance gains in particular cases and carry
no clear drawback. As such we think that this work would be
a considerable addition to Polly and plan to contact the de-
velopers in the foreseeable future. Currently, the alternative
backend is hosted at: https://github.com/mhalk/polly.

References
[1] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,

Armin Größlinger, and Louis-Noël Pouchet. 2011. Polly-Polyhedral
optimization in LLVM. In Proceedings of the First International Workshop
on Polyhedral Compilation Techniques (IMPACT), Vol. 2011. 1.

https://github.com/mhalk/polly

	1 Introduction
	2 Approach
	3 Evaluation Setup
	4 Results
	4.1 Chunk sizes (12 Threads, Dynamic Sched.)
	4.2 Scheduling types (12 Threads, Chunk Size 1)
	4.3 Number of Threads (Chunk Size 1)
	4.4 Backend comparison
	4.5 Overall evaluation

	5 Conclusion
	References

