
Acceleration and Energy Efficiency of A Geometric Algebra Computation using
Reconfigurable Computers and GPUs

Holger Lange
LOEWE Research Center AdRIA
Technische Universität Darmstadt

lange@esa.cs.tu-darmstadt.de

Florian Stock, Andreas Koch
Embedded Systems and

Applications Group (ESA)
Technische Universität Darmstadt

{stock|koch}@esa.cs.tu-darmstadt.de

Dietmar Hildenbrand
Interactive Graphics Systems Group (GRIS)

Technische Universität Darmstadt
dhilden@gris.informatik.tu-darmstadt.de

Abstract
Geometric algebra (GA) is a mathematical framework

that allows the compact description of geometric rela-
tionships and algorithms in many fields of science and
engineering. The execution of these algorithms, however,
requires significant computational power that made the
use of GA impractical for many real-world applications.
We describe how a GA-based formulation of the inverse
kinematics problem from computer animation and robotics
can be accelerated using reconfigurable FPGA-based
computing and using a graphics processing unit (GPU).
The practical evaluation covers not only the sheer compute
performance, but also the energy efficiency.

1. Introduction
Geometric Algebra (GA) is a mathematical framework

for the concise description of complex geometrical relation-
ships. The execution of these algorithms is highly compute
intensive, which is one of the reasons that GA has only
seen limited use in real-world applications.

Reconfigurable Adaptive Computer Systems (ACS) and
General Purpose Computing on Graphics Processing Units
(GPGPUs) both offer compute performance beyond that
of conventional processors (CPUs), but normally use
very different models of computation. GPUs generally
support a coarse grained SIMD approach [1], while ACSs
additionally allow a much finer parallelism at the instruction
or pipeline level [2]. Other differences include the clock
frequencies and the power consumption.

The GA-based formulation of the inverse kinematic
problem, which is a standard problem in the computer
animation and robotics, is significantly shorter and much
more accessible than the traditional one. We will then
use it as a benchmark for acceleration both on an FPGA-
based ACS as well as a current generation GPU. With
the increased importance of power and thermal budgets
in high-performance computing, especially in embedded
environments, our experimental evaluation will not just
cover the sheer compute performance, but also extend to
energy efficiency.

2. Geometric Algebra
GA unifies many other mathematical concepts like

imaginary numbers, quaternions or projective geometry. It
is based on the work of Hermann Grassmann and William
Clifford ([3], [4]). Pioneering work has been done by
David Hestenes, who firstly applied Geometric Algebra to
problems in mechanics and physics [5], [6].

GA is able to easily describe and manipulate high-level
geometric objects like spheres, circles and planes as well
as operations combining objects. By composing additional
primitives such as points and planes, applications from
diverse domains are easily formulated. Examples include
GA Fourier transforms, or the classification and clustering
of spatial patterns with GA [7], or the inverse kinematics
application which will be discussed later.

3. Related Work
Despite the tremendous expressive power of the geomet-

ric algebra (GA), it has only seen very limited practical use.
One of the reasons for this might be that the execution
or evaluation of GA algorithms (actually transforming
coordinates) requires significant computational effort. To
resolve this quandary, it is promising to look at dedicated
hardware architectures for the acceleration of this compu-
tation. Current integrated circuit technology offers a means
to achieve this in the form of FPGAs.

Prior attempts to accelerate GA computations include
composing GA specific hardware blocks using PROLOG
([8]), hardware acceleration of just the geometric product
[9], and GA operations which were decomposed into
microcode controlled primitive calculations ([10], [11],
[12], [13]).

4. Acceleration Approaches
When studying the prior attempts, it is obvious that

most of them lead to an application slowdown instead
of the hoped-for acceleration. The major reason for this
disappointing result is due to the architectural choices
made.



Our first implementation (Sec. 5) is completely dif-
ferent architecturally from the accelerator approaches
mentioned above and takes advantage of a high degree of
parallelization and pipelining. Instead of coarse granular
computation units capable of handling entire GA operators,
we decomposed the GA description into the underlying
scalar equations, which employ only basic arithmetic
operators. The set of equations from the GA model was
implemented one arithmetic operator at a time. For each of
these arithmetic operators we carefully examined the range
of values to be processed for the specific problem. With this
data, and external requirements on computational precision,
we determined for each operator the optimal numerical
representation (e.g., values in the range of 0 to 100 mm
with 1/16 mm of accuracy would be represented as 11 bit
unsigned fixpoint numbers). The circuits of the operators
were then optimally matched to their representation as well
as to one of their operands being the constant.

The second implementation (Sec. 6), however, trades
fine-grained parallelism and custom arithmetic for the brute-
force SIMD parallelism achievable with a modern GPU.

The GA algorithm for the inverse kinematics [14] leads
to a set of equations describing a function f : R3 7→ R6,
a mapping of the 3D coordinates of the target point to
the screw and curl angles of the arm’s shoulder and
elbow joints, expressed as quaternions. These equations
were manually optimized for performance, exploiting
algebraic equalities (e.g., the distributive law) and common
subexpressions elimination (this saved up to 50% of some
operators).

5. FPGA Implementation
For the FPGA implementation, the optimized GA equa-

tions were translated into a dataflow graph (DFG).
To reduce the required ressources on the FPGA, we

use only fixed point calculations instead of floating point
operations (which is possible but not as efficient as
fixed point). As a side effect of calculating in dedicated
arithmetic hardware, the cost of operations drastically
changes: e.g., constant multiplication and addition need the
same calculation time, whereas reciprocal value, division
and square root are more costly in both execution time
and FPGA resources.

For the optimization of numerical types on the FPGA
implementation, we thus analyzed the function domain and
ranges with regard to the required numerical precision. The
animation model has a positional accuracy of 1/16 mm
(which thus is the upper bound of the required precision
of the result). For the fitting of word-lengths of individual
operators to achieve this result precision, we employed
two methods: an analytical approach (using general and
domain specific knowledge) and an empirical (Monte-
Carlo) approach for cases where the analytical approach
does not yield satisfying results and for overall verification.

Note that some attempts at automatically performing this
optimization exist (e.g., [15]), but they are often limited
with regard to the operators supported.

Consider the high degree of parallelism in this fully
spatial pipeline: When it is filled in steady-state, all 140
operators in all 365 pipeline stages compute in parallel.
This far exceeds the capabilities even of modern super-
scalar processors which can handle about half a dozen
parallel operations per clock cycle [16, Chapter 3.6].

6. GPGPU Implementation
FPGAs are no longer the only easily accessible way

to exploit parallelism. In recent years the architecture of
Graphics Processing Units (GPUs) has advanced from
mostly fixed-function graphics pipelines to increasingly
flexible processor arrays. The latter now allow general
purpose computing on GPUs using dedicated languages
such as Brook+, Rapidmind, or CUDA.

For our experiments, we used the Compute Unified
Device Architecture (CUDA) from NVIDIA Inc. [1], which
extends the C language and provides a library for standard
tasks, e.g., determining GPU characteristics or performing
memory transfers.

NVIDIA refers to the CUDA compute model as SIMT:
Single Instruction Multiple Threads. It addresses a device
as an array of processing elements operating in a SIMD
manner, thus called multiprocessors.

A multiprocessor can schedule instructions from up to
512 different threads on its internal eight datapaths, aiming
to hide long latencies (e.g., accesses to external memory).
CUDA has certain limitations due to its architecture [1],
but those are not relevant to our implementation, as we
use a multi-threaded approach that executes independent,
data flow only computations (for different target points) in
parallel.

We implemented a GPU kernel which computes the
inverse kinematics function f . As it contains no control
flow the computation requires no thread synchronization.
By passing the three input parameters and the six output
parameters as separate arrays (struct of arrays instead
of array of structs) the parallel threads access sequential
memory addresses, that can be coalesced. The kernel uses
31 registers per kernel, so with the 16384 registers available
per block (in the NVIDIA GTX 280 we employed), we can
actually start threads up to the device limit of 512 threads
per block. Neither local memory nor shared memory is
accessed while computing.

The high-end NVIDIA GTX 280 card we used has 30
multiprocessors of eight scalar datapaths each. Each of
the 30 multiprocessors handles one block of data, and
can schedule instructions from one of 512 threads on its
datapaths. Thus, the GTX 280 executes our application in
15360 independent threads, each processing 1/15360th of
the total input data set.



Table 1: Mapping results on XILINX 5VLX155
Frequency 170 MHz # LUTs 34912 (35%)
Throughput 1 eval / cycle # FFs 49938 (51%)
Latency 365 cycles # DSPs 74 (57%)

a b c d ePo
w
er

(W
)

Time(µs)
4 8 12 16 20

2
4
6
8

0

Figure 1: Power consumption of the FPGA implemen-
tation

Since the GPU executes single-precision floating point as
quickly as integer operations, the fixed-point optimizations
we performed for the FPGA are thus not necessary. We
do, however, use the target-independent optimizations
described at the end of Sec. 4.

7. Experimental Results
In this section, we evaluate the performance and power

consumption not only of the FPGA and GPU implemen-
tations, but for completeness also cover software running
on conventional processors.

The Verilog HDL description of the DFG was mapped
to a Xilinx Virtex 5 LX155 FPGA [17] using Synplify
Premier 9.4 and Xilinx ISE 10.1.03. Tab. 1 shows the
mapping and performance results for the complete DFG.

The power consumption of the FPGA, shown in Fig. 1,
was estimated with the Xilinx XPower Analyzer using a
complete signal change dump from post-layout simulation.
In this scenario the FPGA is first reset, shown as time
interval a in the Figure. The clock is stopped since the
clock manager is being held in reset, yielding a quiescent
power of ≈ 2 W. In interval b, the pipeline gradually
fills when random values are applied to its inputs. Hence,
an increasing number of flip-flops toggle, manifesting
in a rise of power consumption. Interval c shows the
device in steady-state operation with the whole pipeline
calculating in parallel. Here, the power consumption peaks
at 8.3 W. In interval d the pipeline is drained, with inputs
held constant. Most of the flip flops now gradually stop
toggling, contributing to a declining power intake. Power
consumption drops further to 4.5 W afterwards (in interval
e), but remains higher than in the reset-state since the clock
net is still active. The steep gradients in intervals b and d
are attributable to the I/O pins starting/stopping to toggle
and driving output loads.

Our GPU implementation performs the complete calcula-
tion for all target points as one kernel on the GPU to avoid
the high overhead of a CPU-GPU function invocation (≈
40 µs per call).

The C implementation of the inverse kinematic compu-
tation is the same code as the GPU code (sans the GPU-

specific attributes). To achieve maximum performance, we
experimented with both icc and gcc compilers and multiple
optimization options. In the end, gcc with the options
-O3 -lm -ffast-math -fstrict-aliasing -fwhole-program -combine
proved to be fastest targeting a 2.4 GHz Intel Core 2 Quad
Q6600 running an otherwise idle Linux system. All four
cores were used by executing the computation in four
parallel threads.

Power measurements are more difficult in this setting,
since we did not want to interfere with the GPU’s PCIe
connection by directly inserting a watt meter into the GPUs
power supply lines. We thus used an indirect approach,
measuring the power drawn between mains and the host
PCs power supply. We first established a baseline by
measuring the power for an idle system, and then measure
the power drawn when the benchmark is actually running.
This set-up was validated on two different host PCs, in both
cases, the power difference between idle and computing
states was identical. To reduce measurement errors, we
processed a large data set and let the GPU warm-up with
dummy computations to ensure that its fan was running on
the otherwise idle system. Total energy for the GPU is then
estimated as the product of peak power (which remained
almost constant during the computation) and run-time.

8. Comparison

In all cases, we ensure that the required data is available
in local memory (i.e. on-card on the GPU and FPGA, in the
cache on the CPU). Furthermore, we made the assumption
that the accelerators are placed in a host system and are
not running stand-alone (as would be possible with the
FPGA).

Table 2 shows the results for the three different platforms
when computing 109 function evaluations (expressed as
“million evaluations per second”, MEPS).

On the GPU, which incurs the high call overhead as
described above, short-running functions (such as the
inverse kinematics for a single point) will be very expensive
and should be avoided in practice.

When deviating from the ideal condition that all data is
available in local memory, the performance advantage of
the GPU dwindles: Today’s GPUs are generally connected
to the rest of the system (and thus main memory) by PCI
Express (PCIe). Modern GPUs have 16 PCIe 2.0 lanes, so
they have a maximum transfer rate of 8 GB/s. This becomes
the bottle neck when the data is not resident in GPU on-
board memory and has to be fetched over PCIe from main
memory (shown in Table 2 as “GPU (bus limited)” where
the data is copied parallel to the computation over the PCIe
bus). Thus, with PCIe 2.0, the inverse kinematic could be
computed at 333 MEPS, a 75% drop in throughput.

The GPU performance is also degraded by the high
communications latency. Note that a single computation in



Table 2: Comparison of the different implementations for a data set with 109 points. All used the optimized
equations. Power is the difference of active power - idle power. System energy includes the host system.

Implementation Throughput Latency Power Energy System Energy HW Cost Impl. Effort
106 evals/s [MEPS] [µs] [W] [Ws] [Ws] [EUR] [Days]

CPU 24.5 0.163 32.0 1304.80 5830.82 150 < 1
GPU 1366.0 40.146 170.0 124.50 210.05 400 < 1
GPU (bus limited) 333.0 40.146 170.0 510.51 840.84 400 < 1
FPGA (in host PC) 170.0 2.147 8.3 48.82 695.88 2000 10
FPGA (embedded) 170.0 2.147 8.3 48.82 78.24 2000 10

itself just takes 146ns on the GPU (and is thus almost 15
times faster than on the FPGA). However, it takes 40µs
to start the GPU kernel.

The power numbers for the CPU and GPU are shown
as peak difference between idle and computing states, and
simulated for the FPGA (we used the maximum steady-
state power drawn of Fig. 1, time interval c).

Execution times and power consumption are combined
in the energy required to perform the 109 computations.
Here, we show both the active energy consumption for
the computation itself (sans system idle power) as well
as the total system energy consumption (standard PC, one
hard disk, idle power drawn is 110 W). Note that the
FPGA could execute stand-alone, while the GPU and CPU
require host systems. We show both scenarios for the
FPGA: Running in a PC host (110 W idle power) and
running as a stand-alone embedded platform (requiring 5
W for memories and network interface).

9. Conclusion
Computing on non-standard processors such as GPUs

or FPGAs allows the use of GA algorithms in practical
applications, these platforms outperform a conventional
processor by one order of magnitude. The best specific
technology is highly dependent on the scenario: In a
high-performance computing setting, the GPU provides
a tremendous speed-up, especially when keeping the
complete computation on the GPU and not interacting with
the host. This capability, however, requires a significant
power supply and associated cooling, which might make
it less attractive for embedded applications. This is where
the FPGA shines: It is 7x faster than the CPU, but requires
only a fraction of the power.

References
[1] NVIDIA Corp., NVIDIA CUDA Compute Unified Device

Architecture – Programming Guide, June 2007.
[2] A. D. Scott Hauck, Ed., Reconfigurable Computing: The

Theory and Practice of FPGA-Based Computation. Morgan
Kaufmann, 2007.

[3] W. K. Clifford, “Applications of grassmann’s extensive alge-
bra,” in Mathematical Papers, R. Tucker, Ed. Macmillian,
London, 1882, pp. 266–276.

[4] ——, “On the classification of geometric algebras,” in
Mathematical Papers, R. Tucker, Ed. Macmillian, London,
1882, pp. 397–401.

[5] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric
Calculus: A Unified Language for Mathematics and Physics.
Dordrecht, 1984.

[6] D. Hestenes, New Foundations for Classical Mechanics.
Dordrecht, 1986.

[7] M. Pham, K. Tachibana, E. Hitzer, T. Yoshikawa, and T. Fu-
ruhashi, “Classification and clustering of spatial patterns
with geometric algebra,” in International Conference on
Applications of Geometric Algebras in Computer Science
and Engineering (AGACSE), Leipzig, 2008.

[8] D. Crookes, K. Alotaibi, B. Bouridane, P. Donachy, and
A. Benkrid, “An environment for generating FPGA ar-
chitectures for image algebra-based algorithms,” in Proc.
International Conference on Image Processing (ICIP), 1998.

[9] C. Perwass, C. Gebken, and G. Sommer, “Implementa-
tion of a Clifford algebra co-processor design on a field
programmable gate array,” in CLIFFORD ALGEBRAS:
Application to Mathematics, Physics, and Engineering, ser.
Progress in Mathematical Physics, R. Ablamowicz, Ed., 6th
Int. Conf. on Clifford Algebras and Applications, Cookeville,
TN. Birkhäuser, Boston, 2003, pp. 561–575.

[10] A. Gentile, S. Segreto, F. Sorbello, G. Vassallo, S. Vitabile,
and V. Vullo, “Cliffosor, an innovative FPGA-based archi-
tecture for geometric algebra,” in International Conference
on Engineering of Reconfigurable Systems and Algorithms
(ERSA), 2005, pp. 211–217.

[11] S. Franchini, A. Gentile, M. Grimaudo, C. Hung, S. Im-
pastato, F. Sorbello, G. Vassallo, and S. Vitabile, “A sliced
coprocessor for native Clifford algebra operations,” in Eu-
romico Conference on Digital System Design, Architectures,
Methods and Tools (DSD), 2007.

[12] B. Mishra and P. Wilson, “Color edge detection hardware
based on geometric algebra,” in European Conference on
Visual Media Production (CVMP), 2006.

[13] B. Mishra and P. R. Wilson, “VLSI implementation of
a geometric algebra parallel processing core,” Electronic
Systems Design Group, University of Southampton, UK,
Tech. Rep., 2006.

[14] D. Hildenbrand, H. Lange, F. Stock, and A. Koch, “Efficient
inverse kinematics algorithm based on conformal geometric
algebra using reconfigurable hardware,” in International
Conference on Computer Graphics Theory and Applications
(GRAPP), Madeira, 2008.

[15] K. Han, “Automating transformations from floating-point
to fixed-point for implementing digital signal processing
algorithms,” Ph.D. dissertation, Dept. of Electrical and
Computer Engineering, The University of Texas at Austin,
2006.

[16] J. L. Hennessy and D. A. Patterson, Computer architecture.
Amsterdam [u.a.]: Kaufmann [u.a.], 2007.

[17] Xilinx, Virtex 5 Family Overview, Xilinx, 2008.


