
ARCHITECTURE EXPLORATION AND TOOLS FOR PIPELINED COARSE-GRAINED

RECONFIGURABLE ARRAYS

Florian Stock ∗

Tech. Univ. Braunschweig

Dept. for Integrated

Circuit Design (E.I.S.)

Braunschweig, Germany

stock@eis.cs.tu-bs.de

Andreas Koch

Tech. Univ. Darmstadt

Embedded Systems and

Applications Group (ESA)

Darmstadt, Germany

koch@esa.cs.tu-darmstadt.de

ABSTRACT

We present a heavily parametrized tool suite that allows the

modeling and exploration of heterogeneous, coarse-grained,

heavily pipelined reconfigurable architectures. Our tools

perform a simultaneous mapping and pipelining-aware place-

ment, which is then followed by a congestion-avoiding router.

Initial experiments show that this flow can succeed in im-

plementing applications with smaller track count and re-

duced connectivity than existing commercial tools, suggest-

ing changes to the original array architecture. The placer can

reduce pipeline latency mismatches on converging paths,

simplifying the problem for a pipelining-aware routing step.

1. INTRODUCTION

When designing a new reconfigurable device architecture,

the quality of the architecture is linked tightly with the qual-

ity of supporting design tools. However, effective tool de-

velopment is commonly performed only for stable target ar-

chitectures.

To solve this chicken-and-egg problem, highly parametriz-

able tool suites exist that can quickly adapt to architectural

changes by using flexible architecture definitions instead of

hard-coded descriptions. While less efficient than dedicated

tools (that can special-case architectural features), tool suites

for architecture exploration often trade run-time for flexibil-

ity. Note that the quality-of-results should not be compro-

mised by the exploratory capabilities of the software, since

the conclusions drawn from the results will in turn guide

further development of the architecture.

In contrast to previous efforts [1] [2], which targeted fine-

grained FPGA-like devices, our efforts deal with coarse-

grained heterogeneous fabrics that have word-wide ALUs as

processing elements. Furthermore, we also consider pipelin-

∗Supported by PACT XPP Technologies AG, Germany.

ing effects due to registers both in the processing elements

as well as in the interconnect. Specifically, our work uses

a device structure similar to that of the PACT XPP2 [3] as

basis. However, many of our results will be generally appli-

cable to coarse-grained arrays with pipelined interconnect.

From that starting point, we evaluate both architectural ex-

tensions as well as suitable tool algorithms to improve the

quality of the current, unmodified state of both architecture

and tool flows. We examine how to improve the silicon area

usage of the architecture and how to improve the processing

throughput.

2. BASE ARCHITECTURE

The base architecture consists of a matrix of tiles, where

each tile contains both interconnect as well as compute blocks

(called objects). Both the number as well as the nature of the

objects within a tile may vary from tile to tile. The arrange-

ment in Figure 1 is typical, however: The primary compute

element is an ALU (having a word width of 24. . . 32 bits),

that can also include a multiplier. In addition to the word-

wide data operations, the ALU can also operate on boolean

single-bit event values. The latter are used for condition

codes and synchronization information. Secondary objects

supply registers or simple logic functions on events.

Connections are made using horizontal tracks running above

and below the rows of objects, and through the register ob-

jects (which connect vertically across a row). The objects

reach the tracks by going through configurable connection

points. Tracks are unidirectional and propagate their data

either to the left or to the right. The two value types (data

and event) are carried on separate tracks in the interconnect

network. Each track runs only within its own tile, at the

boundaries they connect to an adjacent tile via a segment

switch (which also registers for the signals).

Figure 2 depicts a complete array and shows how the tracks

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ALUFREG BREG

}
}

Event tracks

Data tracks

to tile below

to tile above

connection points

segment switches

Fig. 1. Simplified architecture tile

Tile 0,0 Tile 0,1 Tile 0,2 Tile 0,3

Tile 1,3Tile 1,2Tile 1,1Tile 1,0

Tile 2,0 Tile 2,1 Tile 2,2 Tile 2,3

Tile 3,3Tile 3,2Tile 3,1Tile 3,0

column

row

Fig. 2. A sample 4×4 array

in the abutting tiles form segmented busses spanning the en-

tire width of the array.

Note that our work treats an object as a black-box, we do not

consider its internal structure. However, our tool flow does

consider how to map the abstract logical elements, given in

the form of a structural, netlist-like description, to the actual

physical blocks of the device (see below).

For high performance, the array is heavily pipelined: The

output of each operator is registered, explicit registers exist

in the form of the FREG/BREG objects, and each segment

switch also contains a register (as described above). The

FREG and BREG blocks are generic storage elements, ca-

pable of handling both data and event information. They

differ only in their propagation direction (forward up-down

and backward down-up).

An actual silicon device containing the XPP array as an syn-

thesized IP block is assumed to run at a fixed clock rate,

matched to the inter-register delay achievable on the de-

sired target technology. Thus, the practical performance is

dependent on the sequential latency and throughput of the

placed/routed application. The throughput, in turn, depends

on equalizing the latencies on all paths converging on a sin-

gle object.

To this end, we consider expanding the base architecture

with FIFOs for introducing additional latency into signal

paths. These FIFOs will be placed at two places in the archi-

tecture: First, PINFIFOs at the inputs of objects control the

individual latency on a per-sink basis. Second, the segment

switches are also expanded beyond the initial single regis-

ter stage with SEGFIFOs. This two-pronged approach dis-

tributes the available de-skewing latency across the fabric,

instead of concentrating it just at the objects. Note that plac-

ing FIFOs at the output ports of objects is not efficient: All

fan-outs of a source would be delayed by an equal amount,

which does not help when balancing the latency for each

separate path. The mapping tools also need to be made

aware on how to employ these hardware features to best ef-

fect.

3. ARCHITECTURAL PARAMETERS

Specific instances of the base fabric are defined in architec-

ture definition files. They describe the following character-

istics:

The names of functions. These are the elements the in-

put netlists are composed from. Examples of functions are

ALUs, various LUTs, registers, RAM blocks, and I/O streams.

Mapping rules from functions to actual physical objects.

For example, a DREG function specifically stores data val-

ues (word-wide). It can be implemented either in a physical

DFREG data register within an FREG object, or in a phys-

ical DBREG data register in a BREG object.

The number of routing tracks in each direction for both

data and event tracks. In the original XPP2, this was set

to 8 and 6 respectively, leading to total number of 16 data

and 12 event horizontal tracks per tile. However, as will be

shown in Section 5, with our improved tools, this can gen-

erally be reduced to 4 tracks each for data and event lines in

most applications examined. For more concise architectural

descriptions, named subgroups of tracks can be defined and

referred to later when describing the detailed connectivity.

The physical objects implemented in this architecture in-

stance. These are described by a name, their connectivity

and mapping characteristics. In the connectivity section,

each port on the object is identified by a number and its type

(data, event), its direction as well how it connects to the hor-

a c db a c dba c dba c db

O2O1 O2O1 O2O1 O2O1

I1 I2I1 I2I1 I2 I1 I2

b)a) c)

R1

R2

L1

L2

Object A

Object B

Object A Object A

Object C

Object B

Object DObject B

X

Fig. 3. Interconnect details

{DFREG}:

(DFREG.<D.Q>; <0.4>,<1.5>,<2.6>,<3.7>);

{EFREG}:

(EFREG.<E.R>; <8.12>,<9.13>,<10.14>,<11.15>);

{DFREG, EFREG}:

(DFREG.<D.Q>; <0.4>,<1.5>,<2.6>,<3.7>);

(EFREG.<E.R>; <8.12>,<9.13>,<10.14>,<11.15>);

Fig. 4. Logical-to-physical object mapping for FREG

izontal tracks. The latter is achieved by giving the location

(top, bottom) of the port and its horizontal position. Figure

3.a shows examples for such positions labeled with a. . . d,

their actual use will be described later. Additional specifica-

tions describe the maximum depth of FIFOs on input ports

(PINFIFOs).

For mapping, each physical object describes which logi-

cal function(s) it can realize, and the required assignment

of function ports to physical pins, if any. This information is

used during a combined mapping / placement step: Here, we

simultaneously map a logical function to a suitable kind of

object, and place that at a specific geometric position on the

array. Figure 4 is an excerpt of such an architecture defini-

tion for a physical FREG object: The object can implement

DFREG (data forward register) and/or EFREG (event for-

ward register) functions. Up to four instances of each func-

tion can be implemented in the FREG. As an example for a

pin assignment, consider an instance of a DFREG function.

It will have to use pin 0 for the logical D port (input), and pin

4 for the logical Q port (output). Other instances will use the

other pin/port combinations. Analogously for the EFREG

event register function, with its input port E and output port

R.

A final section describes the composition of the entire re-

configurable array by listing, for each tile in the matrix, the

contained physical objects. Note that the linear order of the

objects is relevant (see below).

In addition to these detailed characteristics, various aspects

can be set globally for the entire array:

Control, whether the tracks within a tile can be segmented

between connection points. In effect, this determines whether

the use of a track for a connection blocks this track for other,

unrelated connections. An example of this is shown in Fig-

ure 3.b. The independent nets (ObjectA.O1,ObjectB.I1) and

(ObjectA.O2,ObjectB.I2) can only be routed together on Track

R2 if the track is segmented at ’X’. Otherwise, the second

net has to be routed on R1. The re-usability of tracks on

a per-segment basis is dependent on the horizontal order of

connection points on the tracks.

Another parameter controls whether fan-out can occur only

at the source port of a net, or whether it can occur at any

track at the connection point-level. Figure 3.c shows the

difference: In the first case a net sourced by ObjectB.O2

and sunk at ObjectC.I1 and I2 requires two tracks L1 and

L2. In the second case, a similar net connecting ObjectA.O1

to ObjectD.I1 and I2 requires only the track R1.

A last parameter describes the maximum depth of FIFOs in

the segment switches (SEGFIFOs)

4. CORE ALGORITHMS

The parametrized tool flow consists of a combined map-

ping/placement step followed by a routing procedure.

Mapping is handled simultaneously placement, which in it-

self is realized using the self-adaptive simulated annealing

suggested by VPR [1]. The rules in the architecture defi-

nition files describe which logical functions are compatible

with which physical objects, and thus determine the valid

moves / locations for each function. The placement step thus

also performs the mapping / packing of logical functions to

physical objects as described above.

Ordinarily, the cost function in VPR is the weighted sum

of a delay and a wiring length term. However, due to the

fixed-frequency nature of our target architecture, delay is no

longer relevant. On the other hand, the balancing of sequen-

tial pipeline delays is crucial and must be considered in the

placement cost function. Thus, our “raw” cost function con-

sists of a weighted sum of the balancing latency mismatch

and the wiring length, with the weight factor λ controlling

the trade-off between both terms. This raw cost is then self-

normalized (as in VPR) to get the actual cost. As will be

shown in Table 2, increasing λ does indeed lower the bal-

ancing mismatch, but excessive values lead to a deteriora-

tion of result quality.

Figure 5 shows the cost function used in our placer. The con-

verging path sets C of paths to balance are specified by the

user as part of the circuit description. They are part of the

application, since an automatic approach could not distin-

guish between intentional latencies in a path (e.g., for a FIR

filter), and mismatched latencies that it needs to balance.

Since the actual routing is only performed after placement,

the cost function is only an estimate, both for the wiring and

the balancing parts. The first uses the same heuristics as

VPR (fanout dependent correction factor on bounding box),

cost(placement) = λ ·balcost(placement)

+ (1−λ) ·wirecost(placement)

balcost(placement) = ∑
Converging path sets C in placement

mismatch(C)

mismatch({P1, . . . ,Pk}) = max(0, max
1≤ j≤k

(latency(Pj)

− min
1≤ j≤k

(latency(Pj)+ f i f os(Pj))))

latency((e1, . . . ,el)) = dmanhattan(e1,el)

f i f os((e1, . . . ,el)) = |column(e1)− column(el)| ·SEGFIFOS

+|row(e1)− row(el)| ·PINFIFOS

SEGFIFOS = max. depth of FIFOS in segment switches

PINFIFOS = max. depth of FIFOS in object input pins

Fig. 5. Pipeline balancing in placer cost function

latency=0 latency=1 latency=3

fifos=0fifos=1 fifos=0

mismatch({P1,P2,P3}) = max(0, 3 − 1) = 2

P3P1 P2

FIFO

re
g

is
te

r

Fig. 6. Pipeline latency balancing

the second estimates the maximum difference of converg-

ing paths. This is done using the Manhattan distance as a

base for computing the latency, and then attempting to ex-

tend shorter paths by activating additional FIFO stages in the

segment switches (up to the parametrized maximum SEGFI-

FOS) and object input pins (up to the parameter PINFIFOS).

Figure 6 shows an example. Here, we assume a converg-

ing path set of C = {P1,P2,P3}. Each path has a number of

registers, and a maximum number of available FIFO stages.

In the example, P3 has the longest latency of 3. To deter-

mine the mismatch, we now compute the shortest path that

results even if we slow down the paths as much as possible

using FIFOs (e.g., in the segment switches or in the input

ports). In this case, P1 ends up at a total latency of 1 (due to

switching on the single available FIFO stage), while P2 con-

tains a single register, but no FIFO stages. In the final result,

the difference between the slowest and the fastest paths (the

balancing mismatch) is 2.

In this first stage of our work, one of our aims was to de-

termine whether reducing the generous routing structure of

the original commercial architecture was possible without

a) b)

ALU ALU

Fig. 7. Comparison of normal and depopulated architecture

adversely affecting routability. To this end, we implemented

a negotiation-based router in the PathFinder [4] fashion, im-

proved by adding the closest-sink first heuristic of [5]. Note

that, in its current stage, the tool flow does not attempt to

consider pipeline balancing during routing, but only during

placement. However, we do already perform an exact bal-

ancing analysis after routing, retrieving the largest differ-

ence between converging paths as well as the sum of differ-

ences to judge the overall quality.

5. EXPERIMENTAL RESULTS

In our first set of experiments, we focused on reducing the

device area by relying the improved router to succeed with

fewer tracks and more limited connectivity. To test the lat-

ter, we depopulated the connection point patterns between

ALU objects and the horizontal tracks. Instead of the full

connectivity shown in Figure 7.a, which is also employed in

the original architecture, we employed the more restricted

pattern in Figure 7.b. The ALUs were modified to make the

input pins commutative. Furthermore, we enabled intra-tile

segmented wires and allowed fan-outs at connection points1.

Table 1 presents the results of our approach for a number of

sample applications. These were either compiled from C to

hardware using a vectorizing C compiler [6], or have been

manually described in the structural netlist format. When

considering the complexity of these sample circuits (given

as number of objects and nets), remember that the array is

a coarse-grained architecture with data flow control inte-

grated directly into the fabric. For comparison, [7] discusses

the practical use of a 4x3 array with just 12 ALUs to accel-

erate various video decoders. The target array we used here

has a dimension of 8x8 tiles, with each tile having the struc-

ture shown in Figure 1.

As can be seen in the Table, almost all of the samples are

routable on the depopulated architecture. Furthermore, in

most cases, they require considerably fewer tracks than the

original array design. Also, circuits that turned out to be

unroutable on the depopulated connection pattern are also

unroutable using the original, fully populated one.

1According to PACT XPP Technologies AG, these two options do not

lead to significant increases in silicon area.

.grph-file (xppvcgen) #Objects #Nets Routability .grph-file (manual) #Objects #Nets Routability

adpcm decoder.grph 44 55 4444s wavelet/main.grph 14 12 4444

arrayfir2.grph 17 20 4444 2dfir/sampfilt.grph 134 136 5555s

arrayfir3.grph 38 46 4444 2didct/invdct8.grph 259 264 x

arrayiir.grph 29 34 4444 compcorr/comp corr.grph 99 125 4444

chendcttest2.grph 37 46 4444 single conf DCT32/main.grph 200 232 6688s

chendcttest.grph 36 44 4444 DCT 2D XPP20/dct main.grph 76 94 4444

condit3.grph 29 41 4444 enhance/main 5 dead MAIN 5 DEAD.grph 63 92 4444

condit.grph 20 28 4444 fft1024/main.grph 61 93 4444

corr16 pipe.grph 60 74 4444 fft256/main.grph 42 56 4444

dct1.grph 91 118 4444 fft 64/fft64.grph 136 155 5555

dct2.grph 69 88 4444 fft64 complex/fft64 fft64 mod.grph 26 35 4444

dct3.grph 70 93 4444 fir/fir 16.grph 35 33 4444

edge3x3.grph 53 68 4444 h264/forward.grph 140 140 4444

ellip1.grph 14 24 4444 IDCT 2D XPP20/idct main.grph 88 120 4444

filt.grph 25 33 4444 IDCT 2D XPP64/main idct main.grph 169 223 6688

iquant.grph 25 30 4444 idct8x8/idct8x8.grph 259 264 x

iwt2DShore.grph 64 79 4444 jacobi/jacobi MAIN.grph 83 107 4444

memdistr.grph 88 103 4444 median/median main.grph 59 81 5555

mult.grph 70 91 4444 mpeg4 all/XPP mpeg4 convert.grph 107 136 4444

pipetest2.grph 31 37 4444 mpeg4 all/XPP mpeg4 yuv2yuv.grph 68 89 4444

pipetest.grph 12 13 4444 mpeg4 all/XPP mpeg4 decoder conf1 mod.grph 190 250 6688s

simpedge2.grph 48 60 4444 mpeg4 all/XPP mpeg4 decoder conf2 mod.grph 76 97 4444

simpedge.grph 65 75 4444 mpeg4 all/XPP mpeg4 dummy mod.grph 3 1 4444

sort7.grph 61 75 4444 mpeg4 all/XPP mpeg4 ME.grph 105 148 5555

streamfir2.grph 22 24 4444 mpeg4 all/XPP mpeg4 framediffmod.grph 13 20 4444

streamfir.grph 9 9 4444 RS encoder/rs encoder.grph 11 12 4444

test10.grph 7 7 4444 rake1/DeScrambleDeSpread.grph 72 88 4444

test11.grph 8 8 4444 rake2/DeScrambleDeSpread.grph 26 35 4444

test12.grph 9 10 4444 MPEG4 Huffman Dec/ivop ReadMPEGData.grph 122 151 5555s

test13.grph 11 13 4444

test15.grph 7 8 4444

test16.grph 10 12 4444

test17.grph 19 23 4444

test3.grph 10 12 4444

test4.grph 8 8 4444

test5.grph 6 7 4444

test6.grph 7 11 4444

test7.grph 10 15 4444

test8.grph 24 27 4444

test9.grph 5 4 4444

testbool.grph 15 16 4444 Legend

test.grph 9 11 4444 ddee: Data/event tracks Left/right

vecaddnew.grph 53 64 4444 s: Placer run in high-quality mode

vecadd.grph 16 20 4444 x: unroutable in 8866s

Table 1. Placement and routing results

Application Balancing Mismatch Mismatch Mismatch Inherent

λ = 0 λ = 0.75 λ = 0.9999 XMAP Mismatch

PathSets Nets Sum Max Sum Max Sum Max xmap Sum Max

adpcm decoder 1 34 33 17 28 14 28 14 x 10 3

arrayfir2 1 18 23 13 21 19 22 13 x 9 3

arrayfir3 3 38 21 10 76 14 62 15 x 27 3

arrayiir 1 18 8 4 15 5 13 4 ok 11 3

chendcttest2 3 20 0 0 0 0 0 0 ok 0 0

chendcttest 3 17 0 0 0 0 0 0 ok 0 0

compcorr comp corr 5 73 46 9 49 12 31 5 x 18 2

condit3 1 2 0 0 7 4 1 1 ok 0 0

condit 1 12 8 7 4 4 5 4 ok 4 2

corr16 pipe 3 50 326 18 143 7 489 25 x 178 8

dct1 5 128 1168 79 850 45 891 56 x 339 17

dct2 3 94 1280 84 649 46 819 60 x 335 22

dct3 4 38 14 14 11 10 19 18 x 7 4

edge3x3 2 43 27 8 16 5 39 9 x 17 3

enhance main 5 2 3 0 0 0 0 0 0 ok 0 0

fft64 complex 1 17 11 11 10 10 6 6 ok 4 4

filt 1 13 4 3 12 11 11 10 ok 6 4

iquant 1 15 0 0 3 3 3 3 x 5 3

iwt2DShore 1 41 44 27 40 20 37 23 x 12 6

memdistr 5 125 1278 71 521 41 709 48 n.r. 308 17

mpeg4 decoder conf2 mod 1 46 165 23 120 17 57 10 - 63 5

mpeg4 framediffmod 1 13 0 0 0 0 0 0 - 0 0

mpeg4 yuv2yuv 1 33 1 1 1 1 1 1 - 2 1

mult 4 38 0 0 6 5 1 1 ok 1 1

pipetest 1 4 0 0 0 0 0 0 ok 0 0

simpedge2 3 35 13 10 8 8 14 11 x 4 3

simpedge 3 18 16 8 9 9 9 6 x 8 4

sort7 2 14 5 5 5 5 4 4 ok 4 2

test8 1 5 0 0 0 0 0 0 ok 0 0

test 1 7 0 0 0 0 0 0 ok 0 0

vecadd 2 12 0 0 0 0 0 0 ok 0 0

vecaddnew 1 4 0 0 0 0 0 0 ok 0 0

Sums 4491 422 2604 315 3271 347 1372 120

Table 2. Balancing-oriented placement

In the next set of tests, we examine the quality of our balancing-

oriented placement in Table 2. Of course, we consider only

the sub-set of applications that actually has balancing con-

straints. For each applications, we give the number of path

sets C and the total number of nets affected by them. Then,

we show the sum and maximal values of the mismatches

for three values of λ . For comparison, we show results ob-

tained when using a commercial, mainly balancing-oriented

router in the column labeled XMAP. Since XMAP does not

produce detailed mismatch data, we use a coarser presenta-

tion: ’ok’ means that the router was able to achieve perfect

balancing, ’x’ indicates it failed to do so, ’n.r.’ stands for

“not routable”, and ’-’ signifies that no data was output by

XMAP. In the last two columns, we show the inherent bal-

ance mismatches in the circuit (without considering place-

ment and routing). For these benchmarks, we used SEGFI-

FOS=1 and PINFIFOS=0, which is similar to the setup of

the original architecture.

From these numbers, it is obvious that the balancing-oriented

placement can indeed reduce both the maximal and the over-

all mismatches. Compared to the purely wiring-driven solu-

tion (λ = 0), a value of λ = 0.75 leads to a reduction of

the summed maximum mismatch by 25%, and reduces the

overall mismatches by 42%. On the other hand, it is also ap-

parent that a balancing-aware router is sorely needed: Even

with these reduced values, the summed maximum balanc-

ing mismatch increases over that already present in the cir-

cuits almost by a factor of three. Only in very rare cases can

the balancing-aware placement actually decrease the inher-

ent mismatch by approriately using the interconnect regis-

ters. As the XMAP column shows, even a simple balancing-

aware router can significantly reduce the mismatches.

We also measured the quality of our latency estimation dur-

ing placement by actually performing a full routing for each

step of the simulated annealing. While this is unsuitable for

production use (due to excessive run-times), it does produce

precise wire-length and latency values. However, this ap-

proach does not improve the quality of results beyond those

achievable by the estimation.

6. CONCLUSION AND FUTURE WORK

Our work uses a combination of techniques to improve the

area efficiency of the architecture family we have exam-

ined, and the quality of results of the design tools. The

first is accomplished by applying suitably modified rout-

ing techniques from fine- to coarse-granular target archi-

tectures. The second is achieved by a simultaneous map-

ping/placement pass, refined to include balancing estimates

into the placer cost function. This can significantly reduce

both the maximum as well as the overall latency mismatches.

Of course, the improvements in throughput required the in-

troduction of balancing FIFOs into the fabric, offsetting the

area gains by the better router. Our entire experimental flow

was implemented in a very flexible manner, allowing fast

and easy exploration of architectural variations by just alter-

ing the architecture definitions.

The next step in tool development will be a pipelining-aware

router. While approaches such as [8] for the RaPID ar-

chitecture could be used as a starting point, the techniques

are not entirely applicable: RaPID has a simpler, linear ar-

rangement with fewer latency-inducing so-called bus con-

nectors. Furthermore, the RaPID tools expect as input a

re-timed netlist that explicitly enumerates pipeline registers.

These are then directly mapped to appropriate bus connec-

tors during placement (similar to our simultaneous place-

ment/mapping step). In our two-dimensional XPP2-related

target architecture, signals incur extra latency at tile bound-

aries in a less predictable fashion (due to the two-dimensional

arrangement).

Our current planning is to employ an A∗-like strategy, where

the router estimates the latency towards the next sink (sim-

ilar to the placer) and then routes signals along a least-con-

gestion-cost detour until a sufficient number of registers has

been picked up. The balancing can further be improved by

adding deeper FIFOs to the input pins of physical objects,

this is already covered in our architecture definition model.

However, since these FIFOs will increase the overall silicon

area, they should be carefully sized only after the tool chain

has been made fully balancing-aware.

Acknowledgments: The authors would like to thank Daniel

Bretz, Martin Vorbach, and Markus Weinhardt, all of PACT

XPP Technologies AG, for providing details on the XPP2

architecture and netlists of the sample applications.

7. REFERENCES

[1] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD

for Deep-Submicron FPGAs”, Kluwer Academic Publishers,

1999

[2] A. Danilin, M. Bennebroek, and S. Sawitzki, “A Novel

Toolset for the Development of FPGA-like Reconfigurable

Logic”, Proc. Intl. Conf. on Field-Programmable Logic

(FPL), Tampere, 2005

[3] www.pactxpp.com, 2006

[4] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns,

“Placement and Routing Tools for the Triptych FPGA”, IEEE

Trans. on VLSI, Dec. 1995, pp. 473-482.

[5] J.S. Swartz, V. Betz, J. Rose, “A Fast Routability-Driven

Router for FPGAs”, Proc. Intl. Symp. on FPGAs (FPGA),

Monterey, 1998

[6] J. M. P. Cardoso, M. Weinhardt, “PXPP-VC: A C compiler

with temporal partitioning for the PACT-XPP architecture”,

Proc. Intl. Conf. on Field Programmable Logic and Applica-

tions (FPL), Montpellier, 2002

[7] http://www.pactxpp.com/xneu/download/

PACT Video Decoding White Paper.pdf, 2006

[8] A. Sharma, K. Compton, C. Ebeling, S. Hauck, “Explo-

ration of Pipelined FPGA Interconnect Structures”, Proc.

Intl. Symp. on FPGAs (FPGA), Monterey, 2004

